Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiome ; 11(1): 218, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777765

RESUMO

BACKGROUND: High-copper diets have been widely used to promote growth performance of pigs, but excess copper supplementation can also produce negative effects on ecosystem stability and organism health. High-copper supplementation can damage the intestinal barrier and disturb the gut microbiome community. However, the specific relationship between high-copper-induced intestinal damage and gut microbiota or its metabolites is unclear. OBJECTIVE: Using fecal microbiota transplantation and metagenomic sequencing, responses of colonic microbiota to a high-copper diet was profiled. In addition, via comparison of specific bacteria and its metabolites rescue, we investigated a network of bacteria-metabolite interactions involving conversion of specific metabolites as a key mechanism linked to copper-induced damage of the colon. RESULTS: High copper induced colonic damage, Lactobacillus extinction, and reduction of SCFA (acetate and butyrate) concentrations in pigs. LefSe analysis and q-PCR results confirmed the extinction of L. johnsonii. In addition, transplanting copper-rich fecal microbiota to ABX mice reproduced the gut characteristics of the pig donors. Then, L. johnsonii rescue could restore decreased SCFAs (mainly acetate and butyrate) and colonic barrier damage including thinner mucus layer, reduced colon length, and tight junction protein dysfunction. Given that acetate and butyrate concentrations exhibited a positive correlation with L. johnsonii abundance, we investigated how L. johnsonii exerted its effects by supplementing acetate and butyrate. L. johnsonii and butyrate administration but not acetate could correct the damaged colonic barrier. Acetate administration had no effects on butyrate concentration, indicating blocked conversion from acetate to butyrate. Furthermore, L. johnsonii rescue enriched a series of genera with butyrate-producing ability, mainly Lachnospiraceae NK4A136 group. CONCLUSIONS: For the first time, we reveal the microbiota-mediated mechanism of high-copper-induced colonic damage in piglets. A high-copper diet can induce extinction of L. johnsonii which leads to colonic barrier damage and loss of SCFA production. Re-establishment of L. johnsonii normalizes the SCFA-producing pathway and restores colonic barrier function. Mechanistically, Lachnospiraceae NK4A136 group mediated conversion of acetate produced by L. johnsonii to butyrate is indispensable in the protection of colonic barrier function. Collectively, these findings provide a feasible mitigation strategy for gut damage caused by high-copper diets. Video Abstract.


Assuntos
Lactobacillus johnsonii , Microbiota , Camundongos , Animais , Suínos , Butiratos/metabolismo , Lactobacillus johnsonii/metabolismo , Cobre , Acetatos
2.
Biomed Pharmacother ; 165: 115204, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37499456

RESUMO

AIMS: The manipulation of macrophage recruitment and their shift in the M1/M2 ratio is a promising approach to mitigate osteoarthritis (OA). Nevertheless, the current clinical medication available for OA is only palliative and may result in undesirable outcomes. Hence, it is urgent to explore alternative disease-modifying drug supplement that are both safer and more effective in OA treatment, like probiotic and probiotic-derived membrane vesicles. METHODS: The synovial inflammation and cartilage damage in collagenase-induced OA (CIOA) mice were observed using haematoxylin and eosin, saffron O-solid green and immunohistochemical staining. Bipedal balance test and open field test were conducted to determine the effectiveness of L. johnsonii-derived membrane vesicles (LJ-MVs) in reducing joint pain of CIOA mice. Additionally, Transwell, western blot, and immunological testing were used to examine the effect of LJ-MVs on macrophage migration and reprogramming. Furthermore, a 4D label-free proteomic analysis of LJ-MVs and their parent bacterium was performed, and the glutamine synthetase (GS)/mTORC1 axis in macrophage was verified by western blot. RESULTS: L. johnsonii and its membrane vesicles, LJ-MVs, exhibit a novel ability to mitigate inflammation, cartilage damage, and pain associated with OA. This is achieved by their ability to impede macrophage migration, M1-like polarization, and inflammatory mediators secretion, while simultaneously promoting the M2/M1 ratio in synovial macrophages. The mechanism underlying this effect involves the modulation of macrophage GS/mTORC1 pathway, at least partially. SIGNIFICANCE: Owing to their probiotic derivation, LJ-MVs will be a more dependable and potent disease-modifying drugs for the prevention and therapy of OA in the long run.


Assuntos
Lactobacillus johnsonii , Osteoartrite , Camundongos , Animais , Glutamato-Amônia Ligase/metabolismo , Membrana Sinovial/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteômica , Osteoartrite/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo
3.
Bioengineered ; 12(1): 6354-6363, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34511035

RESUMO

This study aimed to analyze the effect of lactobacillus johnsonii BS15 (isolation of homemade yogurt from Ahu Hongyuan Grassland) combined with abdominal massage on intestinal permeability in rats with nonalcoholic fatty liver disease (NAFLD) and cell biofilm repair. Forty-five rats were divided randomly into five groups, four of which were fed with high-fat diet to establish NAFLD models. According to the treatment methods, they were grouped into group A (lactic acid bacteria feeding), group B (abdominal massage), group A + B (a combination of the two methods), model group (distilled water feeding), and normal group (distilled water feeding). Then, the pathological indexes of liver and intestinal permeability were observed. FITC-Dextran content of the model group elevated markedly compared with normal group (P < 0.01), indicating that the intestinal permeability of NAFLD rats fed with high-fat diet increased. The intestinal permeability of groups A, B, and A + B was lower sharply than that of model group (P < 0.01), and the effect of group A + B was the most obvious. HE staining of liver tissues showed that combined treatment could improve structural changes in liver cells caused by modeling and restore the normal structure of intestinal cells. Lactobacillus combined with abdominal massage was better than two treatments alone, further promoting the permeability of intestinal mucosa in NAFLD rats and repair biofilm of hepatocytes. The results initially verified the intervention effect of abdominal massage on intestinal mucosal permeability, and further revealed the mechanism of abdominal massage in treatment of NAFLD by improving intestinal mucosal barrier permeability.


Assuntos
Absorção Gastrointestinal/fisiologia , Lactobacillus johnsonii , Massagem , Hepatopatia Gordurosa não Alcoólica , Animais , Biofilmes , Dieta Hiperlipídica , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos , Ratos Sprague-Dawley
4.
J Nutr ; 151(11): 3391-3399, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34383918

RESUMO

BACKGROUND: Probiotics are beneficial in intestinal disorders. However, the benefits of Lactobacillus johnsonii in experimental colitis remain unknown. OBJECTIVES: This study aimed to investigate the benefits of L. johnsonii against Citrobacter rodentium-induced colitis. METHODS: Thirty-six 5-wk-old female C57BL/6J mice were randomly assigned to 3 groups (n = 12): control (Ctrl) group, Citrobacter rodentium treatment (CR) group (2 × 109 CFU C. rodentium), and Lactobacillus johnsonii and Citrobacter rodentium cotreatment (LJ + CR) group (109 CFU L. johnsonii with C. rodentium). Colon length, mucosal thickness, proinflammatory cytokine genes, and endoplasmic reticulum stress were tested. RESULTS: The CR group had greater spleen weight, mucosal thickness, and Ki67+ cells (0.4-4.7 times), and a 23.8% shorter colon length than the Ctrl group, which in the LJ + CR group were 22.4%-77.6% lower and 30% greater than in the CR group, respectively. Relative to the Ctrl group, serum proinflammatory cytokines and immune cell infiltration were greater by 0.3-1.6 times and 6.2-8.8 times in the CR group, respectively; relative to the CR group, these were 19.9%-61.9% and 69.5%-84.2% lower in the LJ + CR group, respectively. The mRNA levels of lysozyme (Lyz) and regenerating islet-derived protein III were 22.7%-36.5% lower and 1.5-2.7 times greater in the CR group than in the Ctrl group, respectively, whereas they were 22.2%-25.7% greater and 57.2%-76.9% lower in the LJ + CR group than in the CR group, respectively. Cell apoptosis was 11.9 times greater in the CR group than in the Ctrl group, and 87.4% lower in the LJ + CR group than in the CR group. Consistently, the protein abundances of C/EBP homologous protein (CHOP), cleaved caspase 1 and 3, activating transcription factor 6α (ATF6A), and phospho-inositol-requiring enzyme 1α (P-IRE1A) were 0.3-2.1 times greater in the CR group and 31.1%-60.4% lower in the LJ + CR group. All these indexes did not differ between the Ctrl and LJ + CR groups, except for CD8+ T lymphocytes and CD11b+ and F4/80+ macrophages (1-1.5 times greater in LJ + CR) and mRNA concentration of Lyz2 (20.1% lower in LJ + CR). CONCLUSIONS: L. johnsonii supplementation is a promising nutritional strategy for preventing C. rodentium-induced colitis in mice.


Assuntos
Colite , Infecções por Enterobacteriaceae , Lactobacillus johnsonii , Animais , Citrobacter rodentium , Colo , Estresse do Retículo Endoplasmático , Feminino , Camundongos , Camundongos Endogâmicos C57BL
5.
Viruses ; 14(1)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35062210

RESUMO

Porcine epidemic diarrhea (PED) induced by porcine epidemic diarrhea virus (PEDV) is an intestinal infectious disease in pigs that causes serious economic losses to the pig industry. To develop an effective oral vaccine against PEDV infection, we used a swine-origin Lactobacillus johnsonii (L. johnsonii) as an antigen delivery carrier. A recombinant strain pPG-T7g10-COE/L. johnsonii (L. johnsonii-COE) expressing COE protein (a neutralizing epitope of the viral spike protein) was generated. The immunomodulatory effect on dendritic cell in vitro and immunogenicity in pregnant sows was evaluated following oral administration. L. johnsonii-COE could activate monocyte-derived dendritic cell (MoDC) maturation and triggered cell immune responses. After oral vaccination with L. johnsonii-COE, levels of anti-PEDV-specific serum IgG, IgA, and IgM antibodies as well as mucosal secretory immunoglobulin A (SIgA) antibody were induced in pregnant sows. High levels of PEDV-specific SIgA and IgG antibodies were detected in the maternal milk, which provide effective protection for the piglets against PEDV infection. In summary, oral L. johnsonii-COE was able to efficiently activate anti-PEDV humoral and cellular immune responses, demonstrating potential as a vaccine for use in sows to provide protection of their piglets against PEDV.


Assuntos
Anticorpos Antivirais/análise , Infecções por Coronavirus/veterinária , Imunidade Materno-Adquirida , Lactobacillus johnsonii/imunologia , Vírus da Diarreia Epidêmica Suína/imunologia , Doenças dos Suínos/prevenção & controle , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Linfócitos T CD4-Positivos/imunologia , Colostro/imunologia , Infecções por Coronavirus/prevenção & controle , Citocinas/sangue , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/imunologia , Epitopos , Feminino , Imunoglobulina A Secretora/análise , Imunoglobulina G/análise , Lactobacillus johnsonii/genética , Gravidez , Proteínas Recombinantes de Fusão/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Suínos , Células Th1/imunologia , Vacinas Sintéticas/imunologia
6.
Benef Microbes ; 10(4): 473-482, 2019 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-30931589

RESUMO

Effective cultivation methods, total cost, and biomass preservation are key factors that have a significant impact on the commercialisation and effectiveness of probiotics, such as Lactobacillus. Sugar polymers, milk and whey proteins have been suggested as good additives for industrial preparations. Alternative compounds, such as phytophenols, are a more attractive option, given their potential benefits to human health. The overall goal of this study was to determine if the addition of blueberry phytophenols improves the survival of Lactobacillus johnsonii N6.2 during the freeze-drying process. The addition of blueberry aqueous extract (BAE) stimulated the growth of L. johnsonii under aerobic conditions and improved the stationary phase survival of the bacteria. Furthermore, the addition of BAE to the culture media improved the endurance of L. johnsonii N6.2 to freeze-drying stress, as well as to storage at 4 °C for up to 21 weeks. Moreover, blueberry extract performed more effectively as a lyophilising additive compared to skim milk and microencapsulation with whey protein/sodium alginate. In sum, this study demonstrates that BAE is an effective additive to increase the growth and survival of L. johnsonii N6.2 when added to the culture medium and/or used as a lyophilising preservative. Moreover, BAE or other polyphenols sources might likely enhance growth and increase survival of more probiotic lactic acid bacterial strains.


Assuntos
Mirtilos Azuis (Planta) , Aditivos Alimentares , Liofilização , Lactobacillus johnsonii/fisiologia , Probióticos , Aerobiose , Mirtilos Azuis (Planta)/química , Aditivos Alimentares/química , Aditivos Alimentares/farmacologia , Armazenamento de Alimentos , Lactobacillus johnsonii/efeitos dos fármacos , Lactobacillus johnsonii/crescimento & desenvolvimento , Viabilidade Microbiana/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/química , Polifenóis/farmacologia
7.
Elife ; 72018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29580380

RESUMO

Over the past century, soybean oil (SBO) consumption in the United States increased dramatically. The main SBO fatty acid, linoleic acid (18:2), inhibits in vitro the growth of lactobacilli, beneficial members of the small intestinal microbiota. Human-associated lactobacilli have declined in prevalence in Western microbiomes, but how dietary changes may have impacted their ecology is unclear. Here, we compared the in vitro and in vivo effects of 18:2 on Lactobacillus reuteri and L. johnsonii. Directed evolution in vitro in both species led to strong 18:2 resistance with mutations in genes for lipid biosynthesis, acid stress, and the cell membrane or wall. Small-intestinal Lactobacillus populations in mice were unaffected by chronic and acute 18:2 exposure, yet harbored both 18:2- sensitive and resistant strains. This work shows that extant small intestinal lactobacilli are protected from toxic dietary components via the gut environment as well as their own capacity to evolve resistance.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Intestino Delgado/microbiologia , Lactobacillus johnsonii/efeitos dos fármacos , Limosilactobacillus reuteri/efeitos dos fármacos , Ácido Linoleico/toxicidade , Óleo de Soja/toxicidade , Animais , Farmacorresistência Bacteriana , Lactobacillus johnsonii/crescimento & desenvolvimento , Limosilactobacillus reuteri/crescimento & desenvolvimento , Camundongos , Mutação , Seleção Genética
8.
Mucosal Immunol ; 10(6): 1569-1580, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28295020

RESUMO

Regulation of respiratory mucosal immunity by microbial-derived metabolites has been a proposed mechanism that may provide airway protection. Here we examine the effect of oral Lactobacillus johnsonii supplementation on metabolic and immune response dynamics during respiratory syncytial virus (RSV) infection. L. johnsonii supplementation reduced airway T helper type 2 cytokines and dendritic cell (DC) function, increased regulatory T cells, and was associated with a reprogrammed circulating metabolic environment, including docosahexanoic acid (DHA) enrichment. RSV-infected bone marrow-derived DCs (BMDCs) from L. johnsonii-supplemented mice had altered cytokine secretion, reduced expression of co-stimulatory molecules, and modified CD4+ T-cell cytokines. This was replicated upon co-incubation of wild-type BMDCs with either plasma from L. johnsonii-supplemented mice or DHA. Finally, airway transfer of BMDCs from L. johnsonii-supplemented mice or with wild-type derived BMDCs pretreated with plasma from L. johnsonii-supplemented mice reduced airway pathological responses to infection in recipient animals. Thus L. johnsonii supplementation mediates airway mucosal protection via immunomodulatory metabolites and altered immune function.


Assuntos
Células da Medula Óssea/imunologia , Células Dendríticas/imunologia , Lactobacillus johnsonii/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/imunologia , Linfócitos T Reguladores/metabolismo , Células Th2/metabolismo , Animais , Células da Medula Óssea/virologia , Linhagem Celular , Microambiente Celular , Reprogramação Celular , Citocinas/metabolismo , Células Dendríticas/virologia , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/metabolismo , Imunomodulação , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Linfócitos T Reguladores/imunologia , Células Th2/imunologia
9.
Lipids Health Dis ; 16(1): 38, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28183305

RESUMO

BACKGROUND: Meat is considered as a major source of polyunsaturated fatty acid (PUFA) which is essential for humans, therefore its lipid level and fatty acid composition have drawn great attention. As no clinical sign can be found in chicks subclinically infected by Clostridium perfringens (CP), the meat may be purchased and eaten. The objective of the present study was to determine whether Lactobacillus johnsonii (LJ) can control the CP-caused impact on growth, lipid levels, fatty acid composition and other flavor or nutritional quality in the meat. METHODS: 480 one-day-old chicks were divided into four groups and fed with basal diet (control and CP group). Supplemented with 1 × 105 (L-LJ) and 1 × 106 (H-LJ) colony-forming unit (cfu), CP diet was fed for 42 days. From day 19 to 22, birds of CP and LJ groups were administered with CP twice per day and the control was administered with liver broth. RESULTS: LJ-treated chickens were free from negative influences on growth performance and significant decrease of abdominal fat deposit., LJ inhibited CP-caused shearing force and drip loss increase and pH 40 min and 24 h decrease after sacrifice. In addition, LJ exhibited a positive effect on muscle lipid peroxidation by significantly increasing SOD, CAT and GSH-Px activity and decreasing MDA level. Besides, LJ attenuated the decrease of intramuscular fat, total cholesterol and triglyceride contents caused by CP infection. However, levels of total protein and most of amino acids were not changed. CP infection decreased C18:3n-3 (α-LA), C20:4n-6, C20:5n-3(EPA), C22:4n-6, C22:5n-3, C22:6n-3(DHA), total PUFA, n-3 PUFA and PUFA:SFA ratio and increased C14:0, total SFA and n-6:n-3 ratio. LJ was found to protect the muscle from these changes. Meanwhile, the 28-day gut permeability level was higher in CP group. CONCLUSIONS: These findings suggest that CP may affect the growth performance of chicks and negatively influence lipid content and fatty acid composition in chicken meat. Meanwhile, LJ treatment may be effective in controlling these changes by reducing the increased gut permeability caused by CP subclinical infection.


Assuntos
Galinhas , Infecções por Clostridium/veterinária , Ácidos Graxos/análise , Lactobacillus johnsonii , Probióticos/farmacologia , Aminoácidos/análise , Animais , Galinhas/crescimento & desenvolvimento , Infecções por Clostridium/metabolismo , Clostridium perfringens/patogenicidade , Cor , Suplementos Nutricionais , Qualidade dos Alimentos , Concentração de Íons de Hidrogênio , Lipídeos/análise , Lipídeos/química , Masculino , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/microbiologia , Proteínas/análise , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA