Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Gut Microbes ; 16(1): 2337317, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38619316

RESUMO

The diet during pregnancy, or antenatal diet, influences the offspring's intestinal health. We previously showed that antenatal butyrate supplementation reduces injury in adult murine offspring with dextran sulfate sodium (DSS)-induced colitis. Potential modulators of butyrate levels in the intestine include a high fiber diet or dietary supplementation with probiotics. To test this, we supplemented the diet of pregnant mice with high fiber, or with the probiotic bacteria Lactococcus lactis subspecies cremoris or Lactobacillus rhamnosus GG. We then induced chronic colitis with DSS in their adult offspring. We demonstrate that a high fiber antenatal diet, or supplementation with Lactococcus lactis subspecies cremoris during pregnancy diminished the injury from DSS-induced colitis in offspring. These data are evidence that antenatal dietary interventions impact offspring gut health and define the antenatal diet as a therapeutic modality to enhance offspring intestinal health.


Assuntos
Colite , Microbioma Gastrointestinal , Lactococcus lactis , Lactococcus , Feminino , Gravidez , Animais , Camundongos , Lactococcus lactis/genética , Suplementos Nutricionais , Butiratos
2.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38479791

RESUMO

Lactic acid bacteria (LAB) have evolved into fastidious microorganisms that require amino acids from environmental sources. Some LAB have cell envelope proteases (CEPs) that drive the proteolysis of high molecular weight proteins like casein in milk. CEP activity is typically studied using casein as the predominant substrate, even though CEPs can hydrolyze other protein sources. Plant protein hydrolysis by LAB has rarely been connected to the activity of specific CEPs. This study aims to show the activity of individual CEPs using LAB growth in a minimal growth medium supplemented with high molecular weight casein or potato proteins. Using Lactococcus cremoris MG1363 as isogenic background to express CEPs, we demonstrate that CEP activity is directly related to growth in the protein-supplemented minimal growth media. Proteolysis is analyzed based on the amino acid release, allowing a comparison of CEP activities and analysis of amino acid utilization by L. cremoris MG1363. This approach provides a basis to analyze CEP activity on plant-based protein substrates as casein alternatives and to compare activity of CEP homologs.


Assuntos
Lactococcus lactis , Peptídeo Hidrolases , Animais , Peptídeo Hidrolases/metabolismo , Caseínas/metabolismo , Peso Molecular , Endopeptidases/química , Lactococcus lactis/metabolismo , Aminoácidos/metabolismo
3.
Plant Foods Hum Nutr ; 79(1): 219-224, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38345666

RESUMO

The industry has increasingly explored the development of foods with functional properties, where supplementation with probiotics and bioactive compounds has gained prominence. In this context, the study aimed to evaluate the influence of in vitro biological digestion on the content of phenolic compounds, antioxidant activity, and inhibition of α-amylase and α-glucosidase activities of probiotic yogurt supplemented with the lactic acid bacteria Lactococcus lactis R7 and red guava extract (Psidium cattleianum). A yogurt containing L. lactis R7 (0.1%) and red guava extract (4%) was characterized for the content of phenolic compounds, antioxidant activity, and potential for inhibition of digestive enzymes after a simulated in vitro digestion process. After digestion, the caffeic and hydroxybenzoic acids remained, and sinapic acid only in the last digestive phase. Antioxidant activity decreased during digestion by 28.93, 53.60, and 27.97% for DPPH, nitric oxide and hydroxyl radicals, respectively, and the inhibition of the α-amylase enzyme decreased only 4.01% after the digestion process. α-glucosidase was more efficient in intestinal digestion, demonstrating an increase of almost 50% in probiotic yogurt with red guava extract before digestion. Possibly, the phenolics change their conformation during digestion, generating new compounds, reducing antioxidant activity, and increasing the inhibitory activity of α-glucosidase digestive enzymes. It was concluded that the probiotic yogurt formulation supplemented with red guava extract could interfere with the concentration of phenolic compounds and the formation of new compounds, suggesting a positive and effective inhibition of the digestive enzymes, even after the digestive process.


Assuntos
Lactococcus lactis , Probióticos , Psidium , Antioxidantes/farmacologia , alfa-Amilases , alfa-Glucosidases , Psidium/química , Iogurte , Suplementos Nutricionais , Extratos Vegetais/farmacologia , Extratos Vegetais/química
4.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38397005

RESUMO

Gamma-aminobutyric acid (GABA)-producing lactic acid bacteria (LAB) can be used as starters in the development of GABA-enriched functional fermented foods. In this work, four GABA-producing strains each of Lactococcus lactis and Streptococcus thermophilus species were isolated from cow's milk, and their phenotypic, technological, and safety profiles determined. Genome analysis provided genetic support for the majority of the analyzed traits, namely, GABA production, growth in milk, and the absence of genes of concern. The operon harboring the glutamate decarboxylase gene (gadB) was chromosomally encoded in all strains and showed the same gene content and gene order as those reported, respectively, for L. lactis and S. thermophilus. In the latter species, the operon was flanked (as in most strains of this species) by complete or truncated copies of insertion sequences (IS), suggesting recent acquisition through horizontal gene transfer. The genomes of three L. lactis and two S. thermophilus strains showed a gene encoding a caseinolytic proteinase (PrtP in L. lactis and PrtS in S. thermophilus). Of these, all but one grew in milk, forming a coagulum of good appearance and an appealing acidic flavor and taste. They also produced GABA in milk supplemented with monosodium glutamate. Two L. lactis strains were identified as belonging to the biovar. diacetylactis, utilized citrate from milk, and produced significant amounts of acetoin. None of the strains showed any noticeable antibiotic resistance, nor did their genomes harbor transferable antibiotic resistance genes or genes involved in toxicity, virulence, or pathogenicity. Altogether these results suggest that all eight strains may be considered candidates for use as starters or components of mixed LAB cultures for the manufacture of GABA-enriched fermented dairy products.


Assuntos
Queijo , Lactobacillales , Lactococcus lactis , Animais , Leite/microbiologia , Lactococcus lactis/genética , Streptococcus thermophilus/genética , Ácido gama-Aminobutírico , Genômica , Fermentação , Queijo/microbiologia
5.
Prep Biochem Biotechnol ; 54(4): 494-502, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37607210

RESUMO

The production of Nisin, an FDA-approved food preservative, was attempted by Lactococcus lactis subsp. lactis ATCC® 11454 using the underutilized milk industry effluent, acid-whey, as a substrate. Nisin production was further improved by studying the effect of supplementation of nutrients and non-nutritional parameters. The addition of yeast extract (6% w/v) as nitrogen source and sucrose (4% w/v) as carbon source were found to be suitable nutrients for the maximum nisin production. The changes in the medium pH due to lactic acid accumulation during batch fermentation and its influence on the production of nisin were analyzed in the optimized whey medium (OWM). The production characteristics in OWM were further compared with the nisin production in MRS media. The influence of nisin as an inducer for its own production was also studied and found that the addition of nisin at 0.22 mg/ml promote the nisin production. The analysis of consumption of various metal ions present in the OWM during the nisin production was also analyzed, and found that the copper ions are the most consumed ion. The highest nisin yield of 2.6 × 105 AU/mL was obtained with OWM.


Assuntos
Lactococcus lactis , Nisina , Nisina/metabolismo , Soro do Leite/metabolismo , Lactococcus lactis/metabolismo , Proteínas do Soro do Leite , Fermentação , Suplementos Nutricionais , Íons , Meios de Cultura
6.
Food Microbiol ; 118: 104427, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38049267

RESUMO

The production of plant-based dairy alternatives has been majorly focused on the improvement of sensorial, technological and nutritional properties, to be able to mimic and replace milk-based fermented products. The presence of off-flavours and antinutrients, the lack of production of dairy-like flavours or the metabolic inaccessibility of plant proteins are some of the challenges to overcome to generate plant-based dairy alternatives. However, in the present study, it is demonstrated how the synergistic effect of two LAB strains, when cocultured, can simultaneously solve those challenges when fermenting in four different plant-based raw materials: soy, pea, oat, and potato drinks (SPOP). The fermentation was performed through the mono- and co-culture of the two LAB strains isolated from Apis mellifera (honeybee): Leuconostoc pseudomesenteroides NFICC 2004 and Lactococcus lactis NFICC 2005. Firstly, the coculture of both strains demonstrated to increase the acidification rate of the four plant matrices. Moreover, L. pseudomesenteroides (LP) demonstrated to in situ produce high concentrations of mannitol when fructose was present as C-source. Furthermore, L. pseudomesenteroides, which encoded for PII-proteinase, demonstrated to break down SPOP proteins, releasing free amino acids that were used by L.lactis (LL) for growth and metabolism. Lastly, the analysis of their co-metabolic volatile performance showed the principal ability of removal of the main off-flavours found in SPOP, such as hexanal, 1-octen-3-ol, 2-pentylfuran, pentanal, octanal, heptanal, and nonanal, mainly led by L. pseudomesenteroides, as well as the production of dairy-like flavours, such as diacetyl and 3-methyl-1-butanol, triggered by L. lactis metabolism. Overall, these findings endorsed the use of honeybee isolated strains as starter cultures, demonstrated the potential of coupling genotypes and phenotypes of multiple strains to improve the organoleptic properties suggesting a potential of combining plant-based matrices for the generation of future high-quality plant-based dairy alternatives.


Assuntos
Lactococcus lactis , Solanum tuberosum , Abelhas , Animais , Avena , Técnicas de Cocultura , Pisum sativum , Fermentação , Plantas
7.
J Microbiol Biotechnol ; 33(6): 823-830, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36908272

RESUMO

Lactococcus lactis is a lactic acid bacterium and used in the dairy food industry. The ameliorating effects of Lactobacillus species on atopic dermatitis (AD) have been extensively studied, but the specific effect of L. lactis strains has not yet been investigated. In this study, the efficacy of L. lactis LB 1022, isolated from natural cheese, was evaluated using RAW 264.7, HMC-1 and HaCaT cell lines and an ovalbumin-sensitized AD mouse model. L. lactis LB 1022 exhibited nitric oxide suppression and anti-allergy and anti-inflammatory activity in vitro. Oral administration of L. lactis LB 1022 to AD mice significantly reduced the levels of IgE, mast cells, and eosinophils, and a range of T cell-mediated T helper Th1, Th2, and Th17-type cytokines under interleukin (IL)-10, transforming growth factor-ß (TGF-ß), thymus and activation-regulated chemokine (TARC), and thymic stromal lymphopoietin (TSLP). In addition, L. lactis LB 1022 treatment increased the concentration of short-chain fatty acids. Overall, L. lactis LB 1022 significantly modulated AD-like symptoms by altering metabolites and the immune response, illustrating its potential as candidate for use in functional food supplements to alleviate AD.


Assuntos
Dermatite Atópica , Agentes de Imunomodulação , Lactococcus lactis , Animais , Camundongos , Dermatite Atópica/imunologia , Dermatite Atópica/terapia , Células RAW 264.7 , Humanos , Células HaCaT , Anti-Inflamatórios , Citocinas/sangue , Ácidos Graxos Voláteis/metabolismo , Feminino , Camundongos Endogâmicos BALB C , Imunoglobulina E/sangue , Óxido Nítrico/metabolismo , Antialérgicos , Eosinófilos , Mastócitos
8.
J Med Food ; 26(2): 81-92, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36730815

RESUMO

Red chili pepper is a beneficial natural spicy food that has antiobesity and antitype II diabetes effects, but it is not conducive to in-depth research as a dietary strategy to treat obesity. This study aims to investigate the beneficial effects of red chili pepper, fermented with a novel Lactococcus lactis subs. cremoris RPG-HL-0136. LC-MS/MS analysis is conducted to detect the content of capsaicin and dihydrocapsaicin, and no significant difference is observed between the nonfermented red chili pepper (NFP) (W/W) and the prepared L. lactis subs. cremoris RPG-HL-0136-fermented chili mixture (LFP). After establishing a high-fat diet-induced obese type II diabetic mouse model, the effects on weight gain, weight loss of liver and testicular fat, total cholesterol, triglyceride, fasting glucose, insulin, and homeostatic model assessment for insulin resistance in LFP were evaluated to be better than those in NFP following 10 weeks of interventions. All animal experiments were approved by the Institutional Animal Care and Use Committee of Xinxiang medical university. NFP and LFP could increase the expression of transient receptor potential vanilloid subfamily 1, peroxisome proliferator-activated receptor-alpha and caspase-2 in the high-fat mice. Compared with unfermented red chili pepper, the fermented red chili pepper complex significantly reduced LPS, tumor necrosis factor-alpha, and interleukin-6 in serum (P < .05). Intake of LFP significantly increased the expression of claudin-1 and occludin in the colon of the high-fat mice (P < .05), and there was no damage to the stomach and colon. This study provides scientific evidence that red chili pepper, fermented with L. lactis subs. cremoris RPG-HL-0136, may be beneficial for future treatment of obesity and accompanying diabetes. (IACUC.No.XYLL-20200019).


Assuntos
Capsicum , Lactococcus lactis , Animais , Camundongos , Cânfora/metabolismo , Cromatografia Líquida , Dieta Hiperlipídica , Fermentação , Lactococcus lactis/metabolismo , Mentol/metabolismo , Camundongos Obesos , Obesidade/tratamento farmacológico , Espectrometria de Massas em Tandem
9.
J Sci Food Agric ; 103(9): 4413-4420, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36806249

RESUMO

BACKGROUND: Panax ginseng Meyer, a traditional herb in Asia, contains bioactive compounds such as polyphenolic compounds, flavonoids, and ginsenosides. Furthermore, fermentation with probiotics can promote the biofunctional activities of ginseng. This study's object was to investigate the neuroprotective effect of hydroponic ginseng against hydrogen peroxide (H2 O2 )-induced cytotoxicity and its effect on the fermentation time. RESULTS: Nonfermented hydroponic ginseng (HNF) was fermented with Lactococcus lactis KC24 at 37 °C for 12 h (H12F) or 24 h (H24F). As fermentation progressed, the content of ginsenosides Rd and F2 increased slightly. The viability of cells pretreated with H2 O2 -exposed nonfermented soil-cultivated ginseng (SNF), HNF, H12F, and H24F gradually improved. In addition, a similar cytotoxicity trend was observed for the level of lactate dehydrogenase released. Fermentation with L. lactis KC24 also enhanced the protective effect of HNF in all assays related to the neuroprotective pathway. In other words, superoxide dismutase and catalase messenger RNA (mRNA) expression levels were upregulated in H24F-treated cells. Similarly, H24F also upregulated the mRNA and protein expression of brain-derived neurotrophic factor to the highest observed concentration. Moreover, the Bax/Bcl-2 ratio was the lowest after H24F pretreatment in H2 O2 -induced SH-SY5Y cells. Attenuating the cytotoxicity in H2 O2 -induced SH-SY5Y cells, H24F markedly reduced caspase-3 and -9 mRNA expression and caspase-3 activity. CONCLUSION: These results suggest that HNF exhibited higher neuroprotection than SNF, which was enhanced after fermentation. This study demonstrates that H12F and H24F can be potential ingredients for developing healthy functional foods and pharmaceutical materials. © 2023 Society of Chemical Industry.


Assuntos
Ginsenosídeos , Lactococcus lactis , Neuroblastoma , Fármacos Neuroprotetores , Panax , Humanos , Ginsenosídeos/metabolismo , Fármacos Neuroprotetores/farmacologia , Caspase 3/genética , Caspase 3/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Panax/química , Hidroponia , Neuroblastoma/metabolismo
10.
J Sci Food Agric ; 103(5): 2512-2521, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36661481

RESUMO

BACKGROUND: Corn processing byproducts corn steep liquor (CSL), and thin stillage were evaluated as growth media for recombinant Lactococcus lactis modified to produce antifreeze proteins (AFPs) that could have important food and non-food applications. The AFP III sequence from ocean pout was cloned into a shuttle vector to make an expression vector that facilitated the production of recombinant AFP III in Lactococcus lactis. Light CSL from yellow dent corn and thin stillage from the industrial corn bioethanol process were optimized as fermentation media with a combination of the following additives and trace elements: disodium-ß-glycerophosphate (DG), tryptone (T), ascorbic acid (AA), iron (Fe), zinc (Zn), and magnesium (Mg). The growth of wild-type and recombinant Lactococcus lactis strains were compared over a 72 h period in 96-well plates and 250 mL shake flasks. RESULTS: The corn coproducts media consisting of 50% (v/v) light steep in water supplemented with DG-5 g L-1 , T-5 g L-1 , AA-0.5 g L-1 , and Zn-4 ppm resulted in best growth and was considered as the best-optimized media. The addition of additives and trace elements better supported the growth of both wild-type and recombinant Lactococcus lactis strains compared to control media without any additives. Respective fermentation supernatants were frozen to -20 °C, and the time to supercool and freeze was compared. A distinct supercooling effect was observed for the supernatants from recombinant strains thus, extending the time and temperature of supercooling and freezing. The maximum time of supercooling extended was 17.55 ± 4.45 min for thin stillage followed by M17 media (17.25 ± 4.45 min), Kent Corporation CSL (10.80 ± 2.12 min), and yellow dent CSL (6.9 ± 0.85 min) when fermented with recombinant Lactococcus lactis strains. CONCLUSION: The supplemented corn coproduct-based media enhanced the growth of both wild-type and recombinant Lactococcus lactis strains. These optimized media can replace or supplement more expensive media (e.g. M17), potentially reducing cost. The fermentation supernatants exhibited longer times to supercool, and freeze compared to control supernatants, indicating potential use as antifreeze compounds in frozen food and non-food applications. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Lactococcus lactis , Oligoelementos , Lactococcus lactis/metabolismo , Zea mays/metabolismo , Fermentação , Oligoelementos/metabolismo , alfa-Fetoproteínas/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Anticongelantes/metabolismo
11.
J Sci Food Agric ; 103(1): 450-456, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36205212

RESUMO

BACKGROUND: Nicotinamide mononucleotide (NMN), a key intermediate of nicotinamide adenine dinucleotide, plays an important in anti-aging and disease. Lactococcus lactis, an important probiotic lactic acid bacteria (LAB), has shown great potential for the biosynthesis of NMN, which will significantly affect the probiotic effects of the dairy products. RESULTS: We used the CRISPR/nCas9 technique to knockout nadR gene of L. lactis NZ9000 to enhance the accumulation of NMN by 61%. The nadE* gene from Francisella tularensis with codon optimization was heterologous in L. lactis NZ9000ΔnadR and has a positive effect on NMN production. Combined with optimization of the concentration of substrate nicotinamide, a final intracellular NMN titer was 2289 µmol L-1  mg-1 with 10 g L-1 nicotinamide supplement, which was 5.7-fold higher than that of the control. The transcription levels of key genes (pncA, nadD and prs1) involved in NMN biosynthesis were up-regulated by more than two-fold, indicating that the increase of NMN titer was attributed to FtnadE* heterologous expression. CONCLUSION: Our study provides a better understanding of the NMN biosynthesis pathway in L. lactis, and can facilitate NMN production in LAB via synthetic biology approaches. © 2022 Society of Chemical Industry.


Assuntos
Lactococcus lactis , Mononucleotídeo de Nicotinamida , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , NAD/metabolismo , Niacinamida/metabolismo
12.
J Chromatogr A ; 1685: 463590, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36323111

RESUMO

A reliable method for simultaneous determination of four organic selenium species by HPLC-ICP-MS was developed and implemented in determining organic selenoamino acids (Se-AAs) in selenoproteins from Lactococcus lactis (L. lactis) NZ9000. The method consisted of liberating Se-AAs from selenoproteins using ultrasound-assisted protease hydrolysis, and quantitatively detecting Se-AA speciations by HPLC-ICP-MS. After optimizations of proteolysis conditions, chromatographic conditions and determination conditions, the established method could efficiently separate the four Se-AAs, including SeCys, SeCys2, SeMeCys and SeMet within 10 min. It presented high sensitivity with the limits of detection and quantitation in the range of 0.197∼0.240 µg∙L-1 and 0.788∼0.960 µg∙L-1, respectively, good repeatability with a relative standard deviation (RSD) of less than 5%, and good recovery in the desired floating range of 90%∼105%, verifying the good accuracy. The method successfully detected four selenium species in the purified glutathione peroxidase (LlGPx) overexpressed in L. lactis NZ9000, SeCys (0.9716∼1.6784 µg∙g-1), SeCys2 (1.0695∼1.2124 µg∙g-1), SeMeCys (0.7288∼0.7984 µg∙g-1) and SeMet (1.0058∼1.9571 µg∙g-1), accounting for up to 80.14% of total selenium. There was no difference of order of magnitude in the four Se-AAs, indirectly indicating the random incorporation of selenium into selenoprotein LlGPx in L. lactis NZ9000. This work throws new light on the identification and biosynthesis of organic selenium species in selenoproteins and selenium-riched organisms like L. lactis.


Assuntos
Lactococcus lactis , Selênio , Cromatografia Líquida de Alta Pressão/métodos , Lactococcus lactis/metabolismo , Selênio/análise , Selenoproteínas , Espectrometria de Massas/métodos
13.
FEMS Microbiol Lett ; 369(1)2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36331038

RESUMO

Plant-based dairy alternatives are gaining increasing interest, e.g. alternatives to yoghurt, cheese, and butter. In all these products butter flavor (diacetyl + acetoin) plays an important role. We previously have reported efficient butter flavor formation from low value dairy side streams using a dairy isolate of Lactococcus lactis deficient in lactate dehydrogenase. Here, we have tested the ability of this strain, RD1M5, to form butter flavor in plant milks based on oat and soy. We found that oat milk, with its high sugar content, supported more efficient production of butter aroma, when compared to soy milk. When supplemented with glucose, efficient butter aroma production was achieved in soy milk as well. We also carried out an extended adaptive laboratory evolution of the dairy strain in oat milk. After two months of adaptation, we obtained a strain with enhanced capacity for producing butter aroma. Despite of its high sugar content, RD1M5 and its adapted version only metabolized approximately 10% of the fermentable sugars available in the oat milk, which we found was due to amino acid starvation and partly starvation for vitamins. The study demonstrates that dairy cultures have great potential for use in plant-based fermentations.


Assuntos
Queijo , Lactococcus lactis , Manteiga , Odorantes , Lactococcus lactis/metabolismo , Fermentação , Plantas , Açúcares/metabolismo
14.
Nutrients ; 14(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35956320

RESUMO

Women are prone to iron deficiency because of increased iron excretion associated with menstruation. This is often treated by oral iron supplementation, although this treatment can cause side effects, such as stomach pain and nausea, with low absorption of ingested iron. Previously, a significant increase in serum iron was observed in association with the consumption of foods containing Lactococcus lactis subsp. cremoris H61 (H61). However, the causal relationship between H61 ingestion and elevated serum iron is still unclear. Therefore, in this study, we aimed to determine the effects of H61 ingestion on the iron status of young women. Healthy young Japanese women (18-25 years of age) ingested either heat-killed H61 or placebo for 4 weeks. Serum iron, transferrin saturation, and ferritin were significantly elevated in the H61 group but remained unchanged in the placebo group. Compared to before the intervention, iron intake remained unchanged during the intervention period, so the change in the iron status of the H61 group was not due to increased iron intake. These results suggest that heat-killed H61 may elevate iron status by enhancing iron absorption.


Assuntos
Ferro , Lactococcus lactis , Adolescente , Adulto , Feminino , Ferritinas , Temperatura Alta , Humanos , Lactococcus , Adulto Jovem
15.
Microbiol Spectr ; 10(3): e0270821, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35638825

RESUMO

Manganese (Mn) is an essential trace element that is supplemented in microbial media with varying benefits across species and growth conditions. We found that growth of Lactococcus cremoris was unaffected by manganese omission from the growth medium. The main proteome adaptation to manganese omission involved increased manganese transporter production (up to 2,000-fold), while the remaining 10 significant proteome changes were between 1.4- and 4-fold. Further investigation in translationally blocked (TB), nongrowing cells showed that Mn supplementation (20 µM) led to approximately 1.5 X faster acidification compared with Mn-free conditions. However, this faster acidification stagnated within 24 h, likely due to draining of intracellular NADH that coincides with substantial loss of culturability. Conversely, without manganese, nongrowing cells persisted to acidify for weeks, albeit at a reduced rate, but maintaining redox balance and culturability. Strikingly, despite being unculturable, α-keto acid-derived aldehydes continued to accumulate in cells incubated in the presence of manganese, whereas without manganese cells predominantly formed the corresponding alcohols. This is most likely reflecting NADH availability for the alcohol dehydrogenase-catalyzed conversion. Overall, manganese influences the lactococcal acidification rate, and flavor formation capacity in a redox dependent manner. These are important industrial traits especially during cheese ripening, where cells are in a non-growing, often unculturable state. IMPORTANCE In nature as well as in various biotechnology applications, microorganisms are often in a nongrowing state and their metabolic persistence determines cell survival and functionality. Industrial examples are dairy fermentations where bacteria remain active during the ripening phases that can take up to months and even years. Here we investigated environmental factors that can influence lactococcal metabolic persistence throughout such prolonged periods. We found that in the absence of manganese, acidification of nongrowing cells remained active for weeks while in the presence of manganese it stopped within 1 day. The latter coincided with the accumulation of amino acid derived volatile metabolites. Based on metabolic conversions, proteome analysis, and a reporter assay, we demonstrated that the manganese elicited effects were NADH dependent. Overall the results show the effect of environmental modulation on prolonged cell-based catalysis, which is highly relevant to non-growing cells in nature and biotechnological applications.


Assuntos
Queijo , Lactococcus lactis , Queijo/microbiologia , Fermentação , Homeostase , Lactococcus , Lactococcus lactis/metabolismo , Manganês/metabolismo , Manganês/farmacologia , NAD/metabolismo , NAD/farmacologia , Oxirredução , Proteoma/metabolismo , Proteoma/farmacologia
16.
J Appl Microbiol ; 133(2): 733-742, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35491952

RESUMO

AIMS: The present work assessed the ability of two selected lactic acid bacteria (LAB) strains (Schleiferilactobacillus perolens CRL1724 and Lactococcus lactis subsp. lactis CRL1655) to inhibit the adherence of bovine mastitis pathogens to mammary epithelial cells (MAC-T) and their effects (if any) on the structure of the gland after intramammary inoculation at dry-off. METHODS AND RESULTS: Established bovine mammary epithelial cells (MAC-T) were used to assess the LAB strains' ability to inhibit the adherence of bovine mastitis pathogens. Monolayers of MAC-T cells were co-cultured with the LABs and then individual pathogen was added. Both strains prevented the adherence of S. aureus RC108, S. chromogenes, S. uberis UT102 and E. coli ATCC 35218. Adherence of the latter two pathogens was inhibited most strongly in vitro. To evaluate the effect of the LAB on the structure of the bovine udders, quarters were intramammary inoculated with the LAB mixture at dry-off. After slaughtering, the teats were dissected and histopathologically analysed. No modifications were identified post-inoculation in the structure of the epithelial, subepithelial and connective tissues of the mammary gland. CONCLUSIONS: Probiotic strains L. lactis subsp lactis CRL1655 and S. perolens CRL1724 were both able to inhibit the adherence of a number of bovine mastitis pathogens in vitro, and that the intramammary inoculation of these strains at the established dose and concentration did not cause significant alterations in the mammary epithelium nor had undesirable effects on tissues, and may therefore be considered harmless. SIGNIFICANCE AND IMPACT OF STUDY: The promising findings demonstrated in this work support the potential of probiotic micro-organisms as a natural and effective alternative to prevent bovine mastitis during the dry-off period.


Assuntos
Lactobacillales , Lactococcus lactis , Mastite Bovina , Animais , Bovinos , Combinação de Medicamentos , Escherichia coli , Feminino , Lactobacillus , Glândulas Mamárias Animais/microbiologia , Mastite Bovina/microbiologia , Mastite Bovina/prevenção & controle , Óleos de Plantas , Staphylococcus aureus , Extratos de Tecidos
17.
Arch Microbiol ; 204(1): 82, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34958412

RESUMO

Gamma amino butyric acid (GABA) is a chemical messenger that plays a significant role in muscle relaxation and brain health. Certain lactic acid bacteria (LAB) produce significant levels of GABA and thus act as potential psychobiotic cultures. In the present study, LAB were isolated from non-rhizospheric soil sample of Syzygium cumini (Black plum). A total of 57 LAB were isolated on the basis of their morphological and acid producing characteristic on de Man Rogosa Sharpe (MRS) agar. Only seven isolates were found to produce GABA (0.09-1.13 gL-1) in MRS broth and were identified as Lactococcus. However, L. lactis LP-68 produced highest amount of GABA and was selected for further optimization of culture conditions (pH, temperature and MSG) by response surface methodology (RSM). The optimization resulted in approximately four-fold increase in GABA production (4.11 gL-1). The results indicate that the L. lactis LP-68 can be used as starter culture for production of GABA-enriched functional foods.


Assuntos
Lactococcus lactis , Prunus domestica , Syzygium , Humanos , Solo , Ácido gama-Aminobutírico
18.
Appl Environ Microbiol ; 87(23): e0163621, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34524898

RESUMO

Composite microecological agents have received widespread attention due to their advantageous properties, including safety, multiple effects, and low cost. This study was conducted to evaluate the protective effects of selenium (Se) nanoparticle (SeNP)-enriched Lactococcus lactis NZ9000 (L. lactis NZ9000-SeNPs) against enterotoxigenic Escherichia coli (ETEC) K88-induced intestinal barrier damage in C57BL/6 mice. The oral administration of L. lactis NZ9000-SeNPs significantly increased the villus height and the number of goblet cells in the ileum; reduced the levels of serum and ileal interleukin-1ß (IL-1ß), tumor necrosis factor alpha (TNF-α), and interferon gamma (IFN-γ); and increased the activities of thioredoxin reductase (TrxR) and glutathione peroxidase (GSH-Px) compared with the ETEC K88-infected group not treated with L. lactis NZ9000-SeNPs. In addition, L. lactis NZ9000-SeNPs significantly attenuated the reduction of the expression levels of occludin and claudin-1, dysbiosis of the gut microbiome, and activation of the Toll-like receptor (TLR)/nuclear factor kappa B (NF-κB)-mediated signaling pathway induced by ETEC K88. These findings suggested that L. lactis NZ9000-SeNPs may be a promising and safe Se supplement for food or feed additives. IMPORTANCE The beneficial effects of microecological agents have been widely proven. Se, which is a nutritionally essential trace element for humans and animals, is incorporated into selenoproteins that have a wide range of pleiotropic effects, ranging from antioxidant to anti-inflammatory effects. However, sodium selenite, a common addition form of Se in feed and food, has disadvantages such as strong toxicity and low bioavailability. We investigated the protective effects of L. lactis NZ9000-SeNPs against ETEC K88-induced intestinal barrier injury in C57BL/6 mice. Our results show that L. lactis NZ9000-SeNPs effectively alleviate ETEC K88-induced intestinal barrier dysfunction. This study highlights the importance of developing a promising and safe Se supplement for the substitution of sodium selenite applied in food, feed, and biomedicine.


Assuntos
Escherichia coli Enterotoxigênica , Íleo/microbiologia , Lactococcus lactis , Nanopartículas , Selênio/farmacologia , Animais , Escherichia coli Enterotoxigênica/patogenicidade , Íleo/fisiologia , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Selenito de Sódio
19.
BMJ Case Rep ; 14(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34261634

RESUMO

A 59-year-old woman presented with fever and malaise and was found to have Lactococcus lactis bacteraemia. L. lactis infection is rare in humans with few reported cases, with most associated with dairy food product ingestion. The patient reported use of a multistrain over-the-counter probiotic supplement. After isolation of L. lactis from blood culture, the patient was treated empirically with ertapenem and amoxicillin and displayed clinical improvement. She remained well after completion of antibiotic regimen and discontinued probiotic supplementation use. We review the clinical presentation of L. lactis infection including diagnosis, identification and treatment.


Assuntos
Bacteriemia , Lactococcus lactis , Probióticos , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Suplementos Nutricionais , Humanos , Pessoa de Meia-Idade
20.
Microb Biotechnol ; 14(5): 2090-2100, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34310856

RESUMO

Impaired wound closure is an increasingly crucial clinical challenge. Recently, wound healing has shifted towards innovative treatments that exploit nanotechnology, biomaterials, biologics and phototherapy. Here, we constructed an engineered MG1363-pMG36e-mCXCL12 strain with pMG36e plasmid encoding stromal cell-derived factor 1α (named CXCL12) and evaluated the synergistic effects of light-emitting diode (LED) yellow light and MG1363-pMG36e-mCXCL12 on scald wounds in mice. The results indicated that the combined treatment with LED yellow light with mCXCL12 delivering strain accelerated wound closure, tissue remodelling, re-epithelialization and hair follicle regeneration and inhibited over-inflammation oppositely in the central and surrounding wounds by macroscopic, histopathologic and immunohistochemistry parameters. Furthermore, combination therapy increased the epidermal growth factor and Ki67-positive cells and upregulated beta-catenin (ß-catenin), cellular-myelocytomatosis (c-Myc), wingless-type MMTV integration site family member 1 (Wnt1), Jagged 1, neurogenic locus notch homolog protein 1 (Notch 1) and hairy and enhancer of split 1 (Hes 1) protein levels of the Wnt and Notch signalling pathways. It also facilitated collagen fibrogenesis and deposition and improved the activities of hydroxyproline, superoxide dismutase and glutathione peroxidase in scalded granulation tissue, in addition to reducing the inflammatory factors interleukin 1 beta (IL-1ß) and tumour necrosis factor alpha (TNF-α). The combined treatment effectively reduced skin pathogens Ralstonia and Acinetobacter to further reduce the risk of infection. Overall, combination of LED yellow light and MG1363-pMG36e-mCXCL12 represents a potential strategy for the treatment of cutaneous wounds.


Assuntos
Lactococcus lactis , Animais , Quimiocina CXCL12 , Inflamação , Camundongos , Transdução de Sinais , Pele , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA