Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9299, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653843

RESUMO

Phthorimaea absoluta is a global constraint to tomato production and can cause up to 100% yield loss. Farmers heavily rely on synthetic pesticides to manage this pest. However, these pesticides are detrimental to human, animal, and environmental health. Therefore, exploring eco-friendly, sustainable Integrated Pest Management approaches, including biopesticides as potential alternatives, is of paramount importance. In this context, the present study (i) evaluated the efficacy of 10 Bacillus thuringiensis isolates, neem, garlic, and fenugreek; (ii) assessed the interactions between the most potent plant extracts and B. thuringiensis isolates, and (iii) evaluated the gut microbial diversity due to the treatments for the development of novel formulations against P. absoluta. Neem recorded the highest mortality of 93.79 ± 3.12% with an LT50 value of 1.21 ± 0.24 days, Bt HD263 induced 91.3 ± 3.68% mortality with LT50 of 2.63 ± 0.11 days, compared to both Bt 43 and fenugreek that caused < 50% mortality. Larval mortality was further enhanced to 99 ± 1.04% when Bt HD263 and neem were combined. Furthermore, the microbiome analyses showed that Klebsiella, Escherichia and Enterobacter had the highest abundance in all treatments with Klebsiella being the most abundant. In addition, a shift in the abundance of the bacterial genera due to the treatments was observed. Our findings showed that neem, garlic, and Bt HD263 could effectively control P. absoluta and be integrated into IPM programs after validation by field efficacy trials.


Assuntos
Bacillus thuringiensis , Extratos Vegetais , Trigonella , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Trigonella/química , Controle Biológico de Vetores/métodos , Mariposas/efeitos dos fármacos , Mariposas/microbiologia , Larva/efeitos dos fármacos , Larva/microbiologia , Alho/química , Microbioma Gastrointestinal/efeitos dos fármacos , Solanum lycopersicum/microbiologia
2.
Braz J Biol ; 83: e274954, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37909558

RESUMO

Aedes aegypti L. (Diptera: Culicidae) is the main transmitter of pathogens that cause human diseases, including dengue, chikungunya, zika and yellow fever. Faced with this problem, this study aims to select fungi with entomopathogenic potential against Ae. aegypti and develop formulations that optimize the control action of entomopathogenic fungi in the semi-field condition. 23 fungal strains native from Amazon were inoculated in Potato-Dextrose-Agar (PDA) culture medium for 14 days and then transferred by scraping to tubes containing 0.9% NaCl solution. To obtain the larvae, eggs were collected using traps in peridomestic environments for 7 days. 20 larvae of Ae. aegypti in 125 mL erlenmeyers containing 20 mL of conidial suspension at a concentration of 1x106 conidia/mL for initial selection and 1×104, 1×105, 1×106 and 1×107 conidia/mL for determination of LC50. Mortality was checked every 24 h for 5 days. The three fungi with the best virulence rates were identified using molecular techniques. The compatibility between fungi at a concentration of 1×106 conidia/mL and oily adjuvants, mineral oil and vegetable oil (andiroba, chestnut and copaiba) at concentrations of 0.1, 0.5 and 1% was evaluated. The germination capacity of 100 conidia per treatment was evaluated after incubation at 28 ºC for 24 h. To evaluate the entomopathogenic potential of the fungal formulations, conidial suspensions (1×106 conidia/mL) were added with 0.1% mineral and vegetable oil. The treatments were submitted to laboratory and semi-field conditions and mortality was verified every 24 h for 5 days. Beauveria sp. (4,458) (LC50 = 8.66× 103), Metarhizium anisopliae (4,420) (LC50 = 5.48×104) and M. anisopliae (4,910) (LC50 = 1.13×105) were significantly more effective in the larval control of Ae. aegypti, in relation to the other fungal morphospecies evaluated. Mineral oil was better compatible in all treatments evaluated. Beauveria sp. (4,458) was considerably less virulent under semi-field conditions. M. anisopliae (4,910) formulated with mineral oil increased larval mortality to 100% on the 4th day in the laboratory and on the 5th day in the semi-field. Fungal formulations developed from native Amazonian isolates represent a promising tool for the development of strategies to control Ae. aegypti.


Assuntos
Aedes , Metarhizium , Infecção por Zika virus , Zika virus , Animais , Humanos , Controle Biológico de Vetores/métodos , Óleo Mineral , Larva/microbiologia , Óleos de Plantas , Esporos Fúngicos
3.
J Econ Entomol ; 116(5): 1934-1938, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37478407

RESUMO

Wireworms (Coleoptera: Elateridae) are economically significant pests of potatoes (Solanum tuberosum), damaging the marketable portion of the crop by feeding and tunneling into tubers. While conventional potato growers use the few registered synthetic insecticides to control wireworms, certified organic growers are left with less options due to the limited effectiveness of the available insecticides. Biologically derived pesticides provide an additional alternative for both systems. Certain gram-negative proteobacteria, such as Burkholderia spp., possess insecticidal compounds. However, very little is known about their efficacy on wireworms. From 2018 to 2021, we conducted experiments in Virginia to assess the efficacy of a Burkholderia spp.-based commercial pesticide, Majestene, as a wireworm control in potatoes. In a lab experiment, soil drench application of this insecticide at a rate of 66 g a.i. per 1 liter resulted in 30% wireworm mortality and significantly reduced wireworm feeding damage on potato tubers. In the field, in-furrow applications of Burkholderia spp. at a rate of 17.66 kg a.i. per ha significantly reduced wireworm damage to tubers in 2 of 7 field experiments conducted. By comparison, the commercial standard insecticide, bifenthrin, significantly reduced tuber damage in 3 of the 7 field experiments. Our study demonstrates the prospect for proteobacteria-derived insecticides for control of wireworms and potentially other soil-dwelling insects. In conclusion, findings present growers with another option to combat wireworm pressure, especially in organic systems.


Assuntos
Besouros , Inseticidas , Solanum tuberosum , Animais , Larva/microbiologia , Agentes de Controle Biológico , Solo
4.
Int Microbiol ; 26(2): 397-409, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36484909

RESUMO

The current plastic pollution throughout the world is a rising concern that demands the optimization of biodegradation processes. One avenue for this is to identify plastic-degrading bacteria and associated enzymes from the gut bacteria of insect models such as Tenebrio molitor, Plodia interpunctella or Galleria mellonella that have the ability to ingest and rapidly degrade polyethylene. Therefore, this study takes part in understanding the role of the gut bacteria by investigating G. mellonella as a biological model feeding with a diet based on honeybee wax mixed or not with low-density polyethylene. Gut microbiome was analyzed by high throughput 16S rRNA sequencing, and Enterococcaceae and Oxalobacteraceae were found to be the major bacterial families. Compared to the control, the supplementation of low-density polyethylene did not cause significant modification of the bacterial microbiota at community and taxa levels, suggesting bacterial microbiome resilience. The bacterial proteome analysis of gut contents was encouraging for the identification of plastic degrading enzymes such as the phenylacetaldehyde dehydrogenase which participate in styrene degradation. This study allowed a better characterization of the gut bacteria of G. mellonella and provided a basis for the further study of biodegradation of polyethylene based on the bacterial microbiota from insect guts.


Assuntos
Mariposas , Polietileno , Humanos , Abelhas/genética , Animais , Larva/metabolismo , Larva/microbiologia , Polietileno/metabolismo , RNA Ribossômico 16S/genética , Mariposas/genética , Mariposas/metabolismo , Mariposas/microbiologia , Plásticos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Dieta , Suplementos Nutricionais
5.
Microbiol Spectr ; 10(6): e0227222, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36413019

RESUMO

Beneficial gut bacteria can enhance herbivorous arthropod adaptation to plant secondary compounds (PSMs), and specialist herbivores provide excellent examples of this. Tea saponin (TS) of Camellia oleifera is triterpenoids toxic to seed-feeding weevil pest, Curculio chinensis (CW). Previous studies disclosed that Acinetobacter, which was specific enriched in the CW's gut, was involved in helping CW evade TS toxicity of C. oleifera. However, it is still not clear whether Acinetobacter is associated with other anti-insect compounds, and the molecular mechanism of Acinetobacter degradation of TS has not been clarified. To address these questions, we explored the relationship between host plant toxin content and Acinetobacter of CW gut bacteria. Results demonstrated that TS content significantly affected the CW gut microbiome structure and enriched bacteria functional for TS degradation. We further isolated Acinetobacter strain and conducted its genome and transcriptome analyses for bacterial characterization and investigation on its role in TS degradation. Biological tests were carried out to verify the ability of the functional bacterium within CW larvae to detoxify TS. Our results showed that TS-degrading bacteria strain (Acinetobacter sp. AS23) genome contains 47 genes relating to triterpenoids degradation. The AS23 strain improved the survival rate of CW larvae, and the steroid degradation pathway could be the key one for AS23 to degrade TS. This study provides the direct evidence that gut bacteria mediate adaptation of herbivorous insects to phytochemical resistance. IMPORTANCE Microorganism is directly exposed to the plant toxin environment and play a crucial third party in herbivores gut. Although previous studies have proved the existence of gut bacteria that help CWs degrade TS, the specific core flora and its function have not been explored. In this study, we investigated the correlation between the larva gut microbiome and plant secondary metabolites. Acinetobacter genus was the target flora related to TS degradation. There were many terpenoids genes in Acinetobacter sp. AS23 genome. Results of transcriptome analysis and biological tests suggested that steroid degradation pathway be the key pathway of AS23 to degrade TS. This study not only provides direct evidence that gut microbes mediate the rapid adaptation of herbivorous insects to phytochemical resistance, but also provides a theoretical basis for further research on the molecular mechanism of intestinal bacteria cooperating with pests to adapt to plant toxins.


Assuntos
Acinetobacter , Camellia , Saponinas , Gorgulhos , Animais , Gorgulhos/genética , Gorgulhos/microbiologia , Acinetobacter/genética , Camellia/genética , Saponinas/metabolismo , Transcriptoma , Larva/microbiologia , Insetos , Bactérias/genética , Perfilação da Expressão Gênica , Genômica , Chá/metabolismo
6.
Microbiol Spectr ; 10(5): e0232122, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36197291

RESUMO

Larvae of black soldier flies, Hermetia illucens, are increasingly used for biological conversion of animal and plant wastes into ingredients of animal feeds on an industrial scale. The presence of pathogenic microorganisms in harvested larvae may be a serious problem for wide-scale adoption of this technology. Fortunately, black soldier fly larvae may have some antimicrobial properties. Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterium associated with various environments that can be pathogenic to humans and farmed animals. We tested whether black soldier fly larvae suppress MRSA on potato substrate. Autoclaved potatoes containing black soldier fly larvae (P+BSFL), potatoes inoculated with MRSA and containing black soldier fly larvae (P+MRSA+BSFL), and potatoes inoculated with MRSA (P+MRSA) were incubated in glass jars. Substrate samples were taken after 3 and 7 days of incubation and plated on Trypticase soy agar (TSA) and Staphylococcus medium 110 agar (SA) to quantify total bacteria and MRSA, respectively. DNA was extracted from potato substrates on both days and sequenced to assess bacterial and fungal diversity using 515F/806R and internal transcribed spacer (ITS) 1/2 primers, respectively, and QIIME 2.0 software. Both total bacterial and MRSA-specific CFU were reduced in the presence of black soldier fly larvae, with a larger reduction for the latter. Twenty-five bacterial genera and 3 fungal genera were detected. Twenty bacterial genera were shared among the treatments and the days, but their relative abundances often varied. Among the most abundant genera, only Enterococcus and Lactococcus were universally present. Our findings confirm antimicrobial properties of black soldier fly larvae. IMPORTANCE Larvae of black soldier flies, Hermetia illucens, may be used to provide an environmentally sustainable and economically viable method for biological conversion of animal and plant wastes into ingredients of animal feeds on an industrial scale. However, contamination of harvested larvae by pathogenic microorganisms inhabiting decaying substrates may be a serious problem for wide-scale adoption of this technology. Fortunately, black soldier fly larvae may have some antimicrobial properties, including suppression of several common pathogens. Our study showed that such a suppression applies to methicillin-resistant Staphylococcus aureus, which is a ubiquitous bacterium pathogenic to animals (including humans).


Assuntos
Dípteros , Staphylococcus aureus Resistente à Meticilina , Solanum tuberosum , Animais , Humanos , Larva/microbiologia , Ágar , Dípteros/microbiologia , Bactérias
7.
Exp Appl Acarol ; 87(4): 351-363, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36001248

RESUMO

The tick Rhipicephalus microplus (Canestrini) is a major economic hurdle to the global livestock industry. The incorrect and indiscriminate control carried out by synthetic chemical compounds has contributed to the emergence of parasite resistance present today to many products available in the veterinary market. Effective, economically viable and potentially safe alternatives need to be investigated, including herbal medicine and biological control by entomopathogenic fungi. In this study, extracts from Achyrocline satureioides (Lam.) DC. obtained by extraction with solvents of different polarities associated and not associated with the entomopathogenic fungus Beauveria bassiana (Balsamo-Crivelli) Vuillemin were evaluated on different stages of the life cycle of R. microplus. The activity of plant extracts, fungus and their associations in ticks was analyzed in vitro through the adult immersion test, larval packet test and larval immersion test. The highest efficacy on engorged females (43.3%) was reached by the hexanic partition (ASh) at 5 mg/mL + fungus, reducing larval hatchability. ASh associated with B. bassiana also caused high mortality of larvae, reaching LC50 of 6.23 and 2.65 mg/mL in the packet and immersion tests, respectively. The results obtained showed that extracts, when used in combination with the fungus, have their action enhanced, reaching 100% mortality of larvae. Among the evaluated methodologies, it was observed that the larval immersion test allows better assessment, due to the time of contact with the larvae. The results obtained with A. satureioides associated with the fungus are considered promising and open new perspectives for future product development.


Assuntos
Achyrocline , Beauveria , Rhipicephalus , Animais , Feminino , Larva/microbiologia , Controle Biológico de Vetores/métodos , Extratos Vegetais/farmacologia
8.
ISME J ; 16(9): 2160-2168, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35726020

RESUMO

Honey bees have suffered dramatic losses in recent years, largely due to multiple stressors underpinned by poor nutrition [1]. Nutritional stress especially harms larvae, who mature into workers unable to meet the needs of their colony [2]. In this study, we characterize the metabolic capabilities of a honey bee larvae-associated bacterium, Bombella apis (formerly Parasaccharibacter apium), and its effects on the nutritional resilience of larvae. We found that B. apis is the only bacterium associated with larvae that can withstand the antimicrobial larval diet. Further, we found that B. apis can synthesize all essential amino acids and significantly alters the amino acid content of synthetic larval diet, largely by supplying the essential amino acid lysine. Analyses of gene gain/loss across the phylogeny suggest that four amino acid transporters were gained in recent B. apis ancestors. In addition, the transporter LysE is conserved across all sequenced strains of B. apis. Finally, we tested the impact of B. apis on developing honey bee larvae subjected to nutritional stress and found that larvae supplemented with B. apis are bolstered against mass reduction despite limited nutrition. Together, these data suggest a novel role of B. apis as a nutritional mutualist of honey bee larvae.


Assuntos
Suplementos Nutricionais , Lisina , Animais , Abelhas , Dieta , Larva/microbiologia , Simbiose
9.
Philos Trans R Soc Lond B Biol Sci ; 377(1853): 20210171, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35491605

RESUMO

Bee performance and well-being strongly depend on access to sufficient and appropriate resources, in particular pollen and nectar of flowers, which constitute the major basis of bee nutrition. Pollen-derived microbes appear to play an important but still little explored role in the plant pollen-bee interaction dynamics, e.g. through affecting quantities and ratios of important nutrients. To better understand how microbes in pollen collected by bees may affect larval health through nutrition, we investigated correlations between the floral, bacterial and nutritional composition of larval provisions and the gut bacterial communities of the solitary megachilid bee Osmia bicornis. Our study reveals correlations between the nutritional quality of pollen provisions and the complete bacterial community as well as individual members of both pollen provisions and bee guts. In particular pollen fatty acid profiles appear to interact with specific members of the pollen bacterial community, indicating that pollen-derived bacteria may play an important role in fatty acid provisioning. As increasing evidence suggests a strong effect of dietary fatty acids on bee performance, future work should address how the observed interactions between specific fatty acids and the bacterial community in larval provisions relate to health in O. bicornis. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.


Assuntos
Ácidos Graxos , Microbiota , Animais , Bactérias , Abelhas , Larva/microbiologia , Pólen/microbiologia
10.
J Med Entomol ; 59(3): 1076-1080, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35187572

RESUMO

Maggot debridement therapy (MDT) is a therapy with the medical use of sterile fly larvae of certain species, particularly those within the Calliphoridae family including green bottle fly, Lucilia sericata (Meigan, Diptera: Calliphoridae), for treating chronically infected wounds and ulcers. Lucilia sericata flies were maintained under insectary conditions, and the eggs were sterilized using three treatments: hydrogen peroxide solutions, used as a hand disinfectant (Treatment 1-T1), hydrogen peroxide, surface disinfectant (Treatment 2-T2), and SaniHigene (Treatment 3-T3) and the control (without treatment). All three treatment caused the complete sterilization of eggs, and no bacterial colonies were found on the blood agar culture. The egg hatching rate after 72 h was much higher than after 24 h. Egg mortality in hydrogen peroxide solutions, T1 and T2, was 3-4% and less than in solution T3 (13%). Owing to less mortality and more sterility of the eggs, the aforementioned solutions are suggested to be appropriate for sterility in maggot therapy.


Assuntos
Dípteros , Infertilidade , Animais , Calliphoridae , Desbridamento , Dípteros/microbiologia , Peróxido de Hidrogênio , Larva/microbiologia , Esterilização
11.
Elife ; 112022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35025730

RESUMO

Antimicrobial resistance in Gram-negative bacteria is one of the greatest threats to global health. New antibacterial strategies are urgently needed, and the development of antibiotic adjuvants that either neutralize resistance proteins or compromise the integrity of the cell envelope is of ever-growing interest. Most available adjuvants are only effective against specific resistance proteins. Here, we demonstrate that disruption of cell envelope protein homeostasis simultaneously compromises several classes of resistance determinants. In particular, we find that impairing DsbA-mediated disulfide bond formation incapacitates diverse ß-lactamases and destabilizes mobile colistin resistance enzymes. Furthermore, we show that chemical inhibition of DsbA sensitizes multidrug-resistant clinical isolates to existing antibiotics and that the absence of DsbA, in combination with antibiotic treatment, substantially increases the survival of Galleria mellonella larvae infected with multidrug-resistant Pseudomonas aeruginosa. This work lays the foundation for the development of novel antibiotic adjuvants that function as broad-acting resistance breakers.


Antibiotics, like penicillin, are the foundation of modern medicine, but bacteria are evolving to resist their effects. Some of the most harmful pathogens belong to a group called the 'Gram-negative bacteria', which have an outer layer ­ called the cell envelope ­ that acts as a drug barrier. This envelope contains antibiotic resistance proteins that can deactivate or repel antibiotics or even pump them out of the cell once they get in. One way to tackle antibiotic resistance could be to stop these proteins from working. Proteins are long chains of building blocks called amino acids that fold into specific shapes. In order for a protein to perform its role correctly, it must fold in the right way. In bacteria, a protein called DsbA helps other proteins fold correctly by holding them in place and inserting links called disulfide bonds. It was unclear whether DsbA plays a role in the folding of antibiotic resistance proteins, but if it did, it might open up new ways to treat antibiotic resistant infections. To find out more, Furniss, Kaderabkova et al. collected the genes that code for several antibiotic resistance proteins and put them into Escherichia coli bacteria, which made the bacteria resistant to antibiotics. Furniss, Kaderabkova et al. then stopped the modified E. coli from making DsbA, which led to the antibiotic resistance proteins becoming unstable and breaking down because they could not fold correctly. Further experiments showed that blocking DsbA with a chemical inhibitor in other pathogenic species of Gram-negative bacteria made these bacteria more sensitive to antibiotics that they would normally resist. To demonstrate that using this approach could work to stop infections by these bacteria, Furniss, Kaderabkova et al. used Gram-negative bacteria that produced antibiotic resistance proteins but could not make DsbA to infect insect larvae. The larvae were then treated with antibiotics, which increased their survival rate, indicating that blocking DsbA may be a good approach to tackling antibiotic resistant bacteria. According to the World Health Organization, developing new treatments against Gram-negative bacteria is of critical importance, but the discovery of new drugs has ground to a halt. One way around this is to develop ways to make existing drugs work better. Making drugs that block DsbA could offer a way to treat resistant infections using existing antibiotics in the future.


Assuntos
Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Mariposas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Adjuvantes Farmacêuticos , Animais , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica , Genes Bacterianos , Larva/microbiologia , Testes de Sensibilidade Microbiana , Dobramento de Proteína , beta-Lactamases/genética , beta-Lactamases/metabolismo
12.
BMC Complement Med Ther ; 22(1): 27, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35086541

RESUMO

BACKGROUND: The overuse of antibiotics has led to increased antimicrobial resistance, but plant-derived biological response modifiers represent a potential alternative to these drugs. This investigation examined the immunomodulatory and antibacterial activities of Sida cordifolia (used in ethnomedicinal systems to treat infectious disease). METHODS: Successive extractions were performed from the roots of these plants in hexane, chloroform, methanol and water. Immunomodulatory activity was determined in a series of experiments measuring the responses of splenocytes, macrophages and an in vivo model of innate immunity (Galleria mellonella). Antibacterial activity was assessed by determining minimum inhibitory/bactericidal concentrations (MIC/MBCs) for various Gram-positive and Gram-negative bacterial strains. RESULTS: Immunomodulatory activity was confined to the aqueous extract, and further fractionation and biochemical analysis yielded a highly potent polysaccharide-enriched fraction (SCAF5). SCAF5 is a complex mixture of different polysaccharides with multiple immunomodulatory effects including immune cell proliferation, antibody secretion, phagocytosis, nitric oxide production, and increased expression of pro-inflammatory cytokines. Furthermore, Galleria mellonella pre-treated with SCAF5 produced more haemocytes and were more resistant (P < 0.001) to infection with methicillin-resistant Staphylococcus aureus (MRSA) with a 98% reduction in bacterial load in pre-treated larvae compared to the negative control. The antibacterial activity of Sida cordifolia was confined to the methanolic fraction. Extensive fractionation identified two compounds, rosmarinic acid and its 4-O-ß-d-glucoside derivative, which had potent activity against Gram-positive antibiotic-resistant bacteria, including MRSA. CONCLUSIONS: Sida cordifolia counters bacterial infections through a dual mechanism, and immunomodulatory polysaccharides from this plant should be isolated and characterised to realise their potential as anti-infective agents. Such properties could be developed as an antibiotic alternative (1) in the clinic and (2) alternative growth promoter for the agri-food industry.


Assuntos
Antibacterianos/farmacologia , Cinamatos/farmacologia , Depsídeos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Malvaceae/química , Polissacarídeos/farmacologia , Animais , Feminino , Bactérias Gram-Negativas/efeitos dos fármacos , Larva/microbiologia , Medicina Tradicional , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Mariposas/microbiologia , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Ácido Rosmarínico
13.
Microbiol Res ; 248: 126753, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33882376

RESUMO

Menadione (MND) is known to induce oxidative stress in fungal cells. Here, we explore how exposure to this molecule alters conidial enzyme activities, fungal efficacy against Rhipicephalus microplus, and mycelial secretion (secretome) of an isolate of Metarhizium anisopliae sensu lato. First, the fungus was exposed to different MND concentrations in potato-dextrose-agar (PDA) to determine the LC50 by evaluating conidia germination (38µM). To ensure high cell integrity, a sublethal dose of MND (half of LC50) was added to solid (PDA MND) and liquid media (MS MND). Changes in colony growth, a slight reduction in conidia production, decreases in conidial surface Pr1 and Pr2 activities as well as improvements in proteolytic and antioxidant (catalase, superoxide dismutase, and peroxidase) conidial intracellular activities were observed for PDA MND conidia. Additionally, PDA MND conidia had the best results for killing tick larvae, with the highest mortality rates until 15 days after treatment, which reduces both LC50 and LT50, particularly at 108 conidia mL-1. The diversity of secreted proteins after growth in liquid medium + R. microplus cuticle (supplemented or not with half of MND LC50), was evaluated by mass spectrometry-based proteomics. A total of 654 proteins were identified, 31 of which were differentially regulated (up or down) and mainly related to antioxidant activity (catalase), pathogenicity (Pr1B, Pr1D, and Pr1K), cell repair, and morphogenesis. In the exclusively MS MND profile, 48 proteins, mostly associated with cellular signaling, nutrition, and antioxidant functions, were distinguished. Finally, enzymatic assays were performed to validate some of these proteins. Overall, supplementation with MND in the solid medium made conidia more efficient at controlling R. microplus larvae, especially by increasing, inside the conidia, the activity of some infection-related enzymes. In the liquid medium (a consolidated study model that mimics some infection conditions), proteins were up- and/or exclusively-regulated in the presence of MND, which opens a spectrum of new targets for further study to improve biological control of ticks using Metarhizium species.


Assuntos
Proteínas Fúngicas/metabolismo , Metarhizium/efeitos dos fármacos , Metarhizium/patogenicidade , Controle Biológico de Vetores/métodos , Rhipicephalus/microbiologia , Esporos Fúngicos/enzimologia , Virulência/efeitos dos fármacos , Vitamina K 3/farmacologia , Animais , Proteínas Fúngicas/genética , Larva/crescimento & desenvolvimento , Larva/microbiologia , Metarhizium/enzimologia , Metarhizium/genética , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/genética , Peroxidase/metabolismo , Rhipicephalus/crescimento & desenvolvimento , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/genética , Esporos Fúngicos/patogenicidade , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Vitamina K 3/análise
14.
Int J Med Mushrooms ; 23(4): 93-104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33822511

RESUMO

Ophiocordyceps sinensis appears as stroma emerging from underground sclerotium enclosed by the skeleton of Thitarodes moth larvae. However, the actual distribution of the fungus in soil still remains unclarified. In this study, 40 soil samples were used for detection of O. sinensis to confirm its distribution in native habitats using denaturing gradient gel electrophoresis, nested internal transcribed spacer (ITS) PCR, and 454 pyrosequencing methods. The soil samples included six types: Os, where both stromata and host moth larvae were found; NL, representing no signs of stromata, but where moth larvae were found; NOs, where neither stroma nor moth larvae were found; BS, with bare soil without the presence of stroma of O. sinensis or moth larvae; AF, from soil surrounding the stroma; and MP, soil particles firmly wrapping the sclerotium of O. sinensis. Of 40 samples tested, 36 showed positive detection of O. sinensis by at least one of the three detection methods, with positive detection in all six sample types at all five sites. The results showed that traces of O. sinensis can be detected in locations with no macroscopically visible evidence of the fungus or its host and at least 100 m away from such locations.


Assuntos
Cordyceps/fisiologia , Microbiologia do Solo , Animais , China , Cordyceps/química , Cordyceps/genética , DNA Fúngico/química , DNA Fúngico/isolamento & purificação , Eletroforese em Gel de Gradiente Desnaturante , Sequenciamento de Nucleotídeos em Larga Escala , Concentração de Íons de Hidrogênio , Larva/microbiologia , Mariposas/microbiologia , Reação em Cadeia da Polimerase , Solo/química , Solo/classificação , Água/análise
15.
Appl Environ Microbiol ; 87(12): e0021221, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33863703

RESUMO

A pervasive pest of stored leguminous products, the bean beetle Callosobruchus maculatus (Coleoptera: Chrysomelidae) associates with a simple bacterial community during adulthood. Despite its economic importance, little is known about the compositional stability, heritability, localization, and metabolic potential of the bacterial symbionts of C. maculatus. In this study, we applied community profiling using 16S rRNA gene sequencing to reveal a highly conserved bacterial assembly shared between larvae and adults. Dominated by Firmicutes and Proteobacteria, this community is localized extracellularly along the epithelial lining of the bean beetle's digestive tract. Our analysis revealed that only one species, Staphylococcus gallinarum (phylum Firmicutes), is shared across all developmental stages. Isolation and whole-genome sequencing of S. gallinarum from the beetle gut yielded a circular chromosome (2.8 Mb) and one plasmid (45 kb). The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine, which is increasingly recognized as an important symbiont-supplemented precursor for cuticle biosynthesis in beetles. A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus. The ontogenic conservation of the gut microbiota in the bean beetle, featuring a "core" community composed of S. gallinarum, may be indicative of an adaptive role for the host. In clarifying symbiont localization and metabolic potential, we further our understanding and study of a costly pest of stored products. IMPORTANCE From supplementing essential nutrients to detoxifying plant secondary metabolites and insecticides, bacterial symbionts are a key source of adaptations for herbivorous insect pests. Despite the pervasiveness and geographical range of the bean beetle Callosobruchus maculatus, the role of microbial symbioses in its natural history remains understudied. Here, we demonstrate that the bean beetle harbors a simple gut bacterial community that is stable throughout development. This community localizes along the insect's digestive tract and is largely dominated by Staphylococcus gallinarum. In elucidating symbiont metabolic potential, we highlight its possible adaptive significance for a widespread agricultural pest.


Assuntos
Besouros/microbiologia , Microbioma Gastrointestinal/genética , Genoma Bacteriano , Staphylococcus/genética , Simbiose , Animais , Feminino , Genômica , Larva/microbiologia , Masculino , Óvulo/microbiologia , Staphylococcus/isolamento & purificação
16.
Sci Rep ; 11(1): 2993, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542351

RESUMO

Increasing evidence suggests the microbiome plays an important role in bee ecology and health. However, the relationship between bees and their bacterial symbionts has only been explored in a handful of species. We characterized the microbiome across the life cycle of solitary, ground-nesting alkali bees (Nomia melanderi). We find that feeding status is a major determinant of microbiome composition. The microbiome of feeding larvae was similar to that of pollen provisions, but the microbiome of post-feeding larvae (pre-pupae) was similar to that of the brood cell walls and newly-emerged females. Feeding larvae and pollen provisions had the lowest beta diversity, suggesting the composition of larval diet is highly uniform. Comparisons between lab-reared, newly-emerged, and nesting adult females suggest that the hindgut bacterial community is largely shaped by the external environment. However, we also identified taxa that are likely acquired in the nest or which increase or decrease in relative abundance with age. Although Lactobacillus micheneri was highly prevalent in pollen provisions, it was only detected in one lab-reared female, suggesting it is primarily acquired from environmental sources. These results provide the foundation for future research on metagenomic function and development of probiotics for these native pollinators.


Assuntos
Abelhas/microbiologia , Lactobacillus/isolamento & purificação , Larva/microbiologia , Microbiota/genética , Álcalis/metabolismo , Animais , Abelhas/genética , Abelhas/metabolismo , Parede Celular/metabolismo , Dieta , Feminino , Lactobacillus/genética , Larva/genética , Larva/metabolismo , Pólen/microbiologia
17.
Nat Commun ; 12(1): 942, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574256

RESUMO

The mosquito microbiota impacts the physiology of its host and is essential for normal larval development, thereby influencing transmission of vector-borne pathogens. Germ-free mosquitoes generated with current methods show larval stunting and developmental deficits. Therefore, functional studies of the mosquito microbiota have so far mostly been limited to antibiotic treatments of emerging adults. In this study, we introduce a method to produce germ-free Aedes aegypti mosquitoes. It is based on reversible colonisation with bacteria genetically modified to allow complete decolonisation at any developmental stage. We show that, unlike germ-free mosquitoes previously produced using sterile diets, reversibly colonised mosquitoes show no developmental retardation and reach the same size as control adults. This allows us to uncouple the study of the microbiota in larvae and adults. In adults, we detect no impact of bacterial colonisation on mosquito fecundity or longevity. In larvae, data from our transcriptome analysis and diet supplementation experiments following decolonisation suggest that bacteria support larval development by contributing to folate biosynthesis and by enhancing energy storage. Our study establishes a tool to study the microbiota in insects and deepens our knowledge on the metabolic contribution of bacteria to mosquito development.


Assuntos
Interações entre Hospedeiro e Microrganismos/fisiologia , Microbiota/fisiologia , Mosquitos Vetores/microbiologia , Aedes/genética , Aedes/crescimento & desenvolvimento , Aedes/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Ácido Fólico , Alimentos Fortificados , Trato Gastrointestinal/microbiologia , Regulação da Expressão Gênica , Vida Livre de Germes , Larva/genética , Larva/crescimento & desenvolvimento , Larva/microbiologia , Metabolismo dos Lipídeos , Mosquitos Vetores/crescimento & desenvolvimento , RNA Ribossômico 16S
18.
Fish Shellfish Immunol ; 108: 42-52, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33232807

RESUMO

Probiotic supplements are being used to improve the growth and immune performance of aquaculture species over the last couple of decades. In recent times, black soldier fly (BSF) is considered as one of the promising sources of alternative protein to fishmeal protein in aqua-diets. Since the freshwater crayfish, marron (Cherax cainii), a Western Australian's native and iconic freshwater crayfish species, grows fairly slow under commercial farming environment, this study was aimed to investigate the supplemental effect of BSF and BSF with probiotic bacteria Lactobacillus plantarum (BSFLP) on overall health and immune performance of marron after 56 days of feeding under laboratory conditions. The post-trial data revealed insignificant influences of any diets on growth performance, however, both BSF and BSFLP based diets significantly improved some haemolymph parameters and gut health of marron. High throughput sequence data revealed that both BSF and BSFLP diets significantly improved the diversity of microbial communities including some beneficial bacteria for crustaceans in the hindgut of marron. Further analysis showed that both BSF and BSFLP diets upregulated the expression of some genes in the gut tissue and haemocytes associated with the innate immune response of marron at 48 h post injection. The up-regulation of some immune genes in BSFLP diet group was found significantly linked to OTU abundance for Lactobacillus. The findings of this study could be helpful for improving overall health status of marron.


Assuntos
Astacoidea/imunologia , Imunidade Inata , Lactobacillus plantarum/química , Probióticos/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Dípteros/química , Dípteros/crescimento & desenvolvimento , Dípteros/microbiologia , Relação Dose-Resposta a Droga , Trato Gastrointestinal/fisiologia , Larva/química , Larva/crescimento & desenvolvimento , Larva/microbiologia , Probióticos/administração & dosagem , Distribuição Aleatória
19.
BMC Microbiol ; 20(1): 275, 2020 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-32891143

RESUMO

BACKGROUND: Fusarium species are the fungal pathogens most commonly responsible for the mycotic keratitis, which are resistant to the majority of currently available antifungal agents. The present study was designed to assess the efficacy of a combination of low doses chlorhexidine with two other commonly used drugs (voriconazole and natamycin) to treat Fusarium infections. RESULTS: We utilized combinations of chlorhexidine and natamycin or voriconazole against 20 clinical Fusarium strains in vitro using a checkerboard-based microdilution strategy. In order to more fully understand the synergistic interactions between voriconazole and chlorhexidine, we utilized a Galleria mellonella model to confirm the combined antifungal efficacy of chlorhexidine and voriconazole in vivo. We found that for voriconazole, natamycin, and chlorhexidine as single agents, the minimum inhibitory concentration (MIC) ranges were 2-8, 4-16, and > 16 µg/ml, respectively. In contrast, the MIC values for voriconazole and chlorhexidine were reduced to 0.25-1 and 1-2 µg/ml, respectively, when these agents were administered in combination, with synergy being observed for 90% of tested Fusarium strains. Combined chlorhexidine and natamycin treatment, in contrast, exhibited synergistic activity for only 10% of tested Fusarium strains. We observed no evidence of antagonism. Our in vivo model results further confirmed the synergistic antifungal activity of chlorhexidine and voriconazole. CONCLUSIONS: Our results offer novel evidence that voriconazole and chlorhexidine exhibit synergistic activity when used to suppress the growth of Fusarium spp., and these agents may thus offer value as a combination topical antifungal treatment strategy.


Assuntos
Antifúngicos/farmacologia , Clorexidina/farmacologia , Fusarium/efeitos dos fármacos , Voriconazol/farmacologia , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Sinergismo Farmacológico , Quimioterapia Combinada , Fusariose/tratamento farmacológico , Fusariose/microbiologia , Fusarium/isolamento & purificação , Humanos , Larva/microbiologia , Testes de Sensibilidade Microbiana , Mariposas/microbiologia , Natamicina/farmacologia
20.
Biomed Pharmacother ; 130: 110580, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32745913

RESUMO

The increased resistance of Candida to conventional antifungals brings great challenges for the clinical treatment of Candida infections. Recently, more attention has been paid to the research on combination therapy, which is a potential therapeutic approach for overcoming Candida resistance. In the present study, we first investigated the interaction between gypenosides (Gyp) and fluconazole (FLC) against Candida albicans (C. albicans) in vitro and in vivo. The in vitro test revealed a synergistic antifungal activity between Gyp and FLC against FLC-resistant (FLCR) C. albicans and indifferent effects for FLC-susceptible (FLCS) C. albicans, with the fractional inhibitory concentration index of 0.2539-0.2578 and 1-1.5, respectively. Besides, Gyp displayed synergistic interaction with FLC against FLCRC. albicans performed biofilm over 4 h, with the fractional inhibitory concentration index <0.5. In vivo, the combined antifungal efficacy of Gyp with FLC was evaluated by Galleria mellonella (G. mellonella) larvae. Gyp plus FLC prolonged the survival rate and reduced tissue invasion of larvae infected with FLCRC. albicans. Further experiments to get a first hint at what antifungal mechanisms might be inhibition of early biofilm formation, suppression of drug efflux, and inhibition of yeast-hyphal conversion. These findings will provide a new approach for the treatment of C. albicans infection.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Fluconazol/farmacologia , Animais , Biofilmes/efeitos dos fármacos , Candida albicans/fisiologia , Candidíase/tratamento farmacológico , Sinergismo Farmacológico , Gynostemma , Larva/microbiologia , Lepidópteros/microbiologia , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA