Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 174(1): 124-153, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28330936

RESUMO

The nonprotein amino acid pipecolic acid (Pip) regulates plant systemic acquired resistance and basal immunity to bacterial pathogen infection. In Arabidopsis (Arabidopsis thaliana), the lysine (Lys) aminotransferase AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) mediates the pathogen-induced accumulation of Pip in inoculated and distal leaf tissue. Here, we show that ALD1 transfers the α-amino group of l-Lys to acceptor oxoacids. Combined mass spectrometric and infrared spectroscopic analyses of in vitro assays and plant extracts indicate that the final product of the ALD1-catalyzed reaction is enaminic 2,3-dehydropipecolic acid (DP), whose formation involves consecutive transamination, cyclization, and isomerization steps. Besides l-Lys, recombinant ALD1 transaminates l-methionine, l-leucine, diaminopimelate, and several other amino acids to generate oxoacids or derived products in vitro. However, detailed in planta analyses suggest that the biosynthesis of 2,3-DP from l-Lys is the major in vivo function of ALD1. Since ald1 mutant plants are able to convert exogenous 2,3-DP into Pip, their Pip deficiency relies on the inability to form the 2,3-DP intermediate. The Arabidopsis reductase ornithine cyclodeaminase/µ-crystallin, alias SYSTEMIC ACQUIRED RESISTANCE-DEFICIENT4 (SARD4), converts ALD1-generated 2,3-DP into Pip in vitro. SARD4 significantly contributes to the production of Pip in pathogen-inoculated leaves but is not the exclusive reducing enzyme involved in Pip biosynthesis. Functional SARD4 is required for proper basal immunity to the bacterial pathogen Pseudomonas syringae Although SARD4 knockout plants show greatly reduced accumulation of Pip in leaves distal to P. syringae inoculation, they display a considerable systemic acquired resistance response. This suggests a triggering function of locally accumulating Pip for systemic resistance induction.


Assuntos
Arabidopsis/imunologia , Ácidos Pipecólicos/imunologia , Doenças das Plantas/imunologia , Imunidade Vegetal , Pseudomonas syringae/imunologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Cetoácidos/imunologia , Cetoácidos/metabolismo , Leucina/imunologia , Leucina/metabolismo , Lisina/imunologia , Lisina/metabolismo , Metionina/imunologia , Metionina/metabolismo , Ácidos Pipecólicos/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Pseudomonas syringae/fisiologia , Transaminases/genética , Transaminases/imunologia , Transaminases/metabolismo
2.
Eur J Appl Physiol ; 113(9): 2211-22, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23624785

RESUMO

Whey protein and leucine ingestion following exercise increases muscle protein synthesis and could influence neutrophil function during recovery from prolonged intense exercise. We examined the effects of whey protein and leucine ingestion post-exercise on neutrophil function and immunomodulators during a period of intense cycling. In a randomized double-blind crossover, 12 male cyclists ingested protein/leucine/carbohydrate/fat (LEUPRO 20/7.5/89/22 g h(-1), respectively) or isocaloric carbohydrate/fat control (CON 119/22 g h(-1)) beverages for 1-3 h post-exercise during 6 days of high-intensity training. Blood was taken pre- and post-exercise on days 1, 2, 4 and 6 for phorbol myristate acetate (PMA)-stimulated neutrophil superoxide (O2 (-)) production, immune cell counts, amino acid and lipid metabolism via metabolomics, hormones (cortisol, testosterone) and cytokines (interleukin-6, interleukin-10). During recovery on day 1, LEUPRO ingestion increased mean concentrations of plasma amino acids (glycine, arginine, glutamine, leucine) and myristic acid metabolites (acylcarnitines C14, myristoylcarnitine; and C14:1-OH, hydroxymyristoleylcarnitine) with neutrophil priming capacity, and reduced neutrophil O2 production (15-17 mmol O2 (-) cell(-1) ± 90 % confidence limits 20 mmol O2 (-) cell(-1)). On day 2, LEUPRO increased pre-exercise plasma volume (6.6 ± 3.8 %) but haematological effects were trivial. LEUPRO supplementation did not substantially alter neutrophil elastase, testosterone, or cytokine concentrations. By day 6, however, LEUPRO reduced pre-exercise cortisol 21 % (±15 %) and acylcarnitine C16 (palmitoylcarnitine) during exercise, and increased post-exercise neutrophil O2 (-) (33 ± 20 mmol O2 (-) cell(-1)), relative to control. Altered plasma amino acid and acylcarnitine concentrations with protein-leucine feeding might partly explain the acute post-exercise reduction in neutrophil function and increased exercise-stimulated neutrophil oxidative burst on day 6, which could impact neutrophil-dependent processes during recovery from intense training.


Assuntos
Exercício Físico/fisiologia , Hidrocortisona/sangue , Fatores Imunológicos/imunologia , Leucina/metabolismo , Proteínas do Leite/metabolismo , Proteínas Musculares/metabolismo , Neutrófilos/imunologia , Adulto , Aminoácidos/sangue , Aminoácidos/imunologia , Estudos Cross-Over , Carboidratos da Dieta/imunologia , Carboidratos da Dieta/metabolismo , Suplementos Nutricionais , Método Duplo-Cego , Humanos , Hidrocortisona/imunologia , Fatores Imunológicos/metabolismo , Interleucina-10/sangue , Interleucina-10/imunologia , Interleucina-6/sangue , Interleucina-6/imunologia , Leucina/imunologia , Metabolismo dos Lipídeos/imunologia , Metabolismo dos Lipídeos/fisiologia , Masculino , Proteínas do Leite/imunologia , Proteínas Musculares/imunologia , Músculo Esquelético/imunologia , Músculo Esquelético/metabolismo , Neutrófilos/metabolismo , Oxigênio/imunologia , Oxigênio/metabolismo , Superóxidos/sangue , Superóxidos/imunologia , Testosterona/sangue , Testosterona/imunologia , Proteínas do Soro do Leite
5.
J Immunol ; 115(4): 914-21, 1975 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-1100724

RESUMO

The interaction between sensitized lymphocytes and specific antigen occurring in classic delayed hypersensitivity causes guinea pig peritoneal macrophages to incorporate increased amounts of glucosamine into TCA precipitable, membrane-associated, cell surface material. Antigen-induced stimulation of glucosamine also occurred in peritoneal exudate cells (PEC) isolated from animals primed for cutaneous basophil hypersensitivity with certain strong antigens (KLH, vaccinia virus) in incomplete Freund's adjuvant (IFA), and lymphocytes from such animals elaborated MIF when cultured with specific antigen. Thus, the use of complete Freund's adjuvant is not obligatory for the induction of sensitized lymphocytes capable of secreting MIF or stimulating macrophage glucosamine incorporation; however, the potency of the immunogen employed is a critical variable since lymphocytes from animals primed with weaker antigens (HSA, BGG) in IFA did not have these capabilities. Significantly enhanced incorporation of radioactive glucosamine by macrophages occurred when normal PEC were cultured in lymphokine-containing supernatants, but the magnitude of incorporation was smaller than that of sensitized PEC stimulated by antigen. The final 24 hr of macrophage culture was critically important because lymphokines were equally effective in promoting glucosamine incorporation when present for only this interval. The kinetics of this response are thus very similar to those reported for macrophage "activation". The mechanism by which sensitized lymphocytes and their products stimulate glucosamine incorporation is not established, but at least part of the increment may be attributed to enhanced transport of glucosamine across the macrophage plasma membrane. The plant lectins Con A and PHA stimulated unsensitized plastic-adherent cells to increased glucosamine in corporation and exerted a further additive stimulation on sensitized PEC when nonadherent sensitized lymphocytes were present. It is likely that these mitogens stimulate glucosamine incorporation by two distinct mechanisms, one involving sensitized nonadherent lymphocytes and a second involving only adherent cells (macrophages and/or plastic adherent lymphocytes.


Assuntos
Antígenos , Líquido Ascítico/imunologia , Glucosamina/metabolismo , Hipersensibilidade Tardia/metabolismo , Imunidade Celular/efeitos dos fármacos , Macrófagos/metabolismo , Animais , Adesão Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Desoxiglucose/imunologia , Cobaias , Imunização/métodos , Leucina/imunologia , Linfócitos/imunologia , Substâncias Macromoleculares , Fatores Inibidores da Migração de Macrófagos/análise , Mitógenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA