Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Food Microbiol ; 354: 109248, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34059319

RESUMO

This work was carried out to elaborate selenium (Se) bio-enriched fermented Mediterranean fruit juices. To this purpose, pomegranate and table red grape juices were added with sodium selenite (Na2SeO3) and fermented by Levilactobacillus brevis CRL 2051 and Fructobacillus tropaeoli CRL 2034 individually or combined. To better evaluate the effect of selenite addition and starter strain inoculums on the total bacterial community of the fruit juices, fermentation trials were performed with raw and pasteurized fruit juices. No statistical significant differences were observed for total mesophilic microorganisms (TMM) and rod-shaped lactic acid bacteria (LAB) levels among raw and pasteurized juices inoculated with the starter strains, while significant differences between those juices with and without selenite were registered. LAB cocci, Pseudomonadaceae and yeasts were detected only for the raw juice preparations. The dominance of L. brevis CRL 2051 and F. tropaeoli CRL 2034 was confirmed by randomly amplified polymorphic DNA (RAPD)-PCR analysis. After fermentation, pH dropped for all inoculated trials and control raw juices. The soluble solid content (SSC) levels of the raw juices were higher than the corresponding pasteurized trials. The thermal treatment affected consistently yellowness of grape juice trials and redness of pomegranate juices. No microbial Se accumulation was registered for pomegranate juices, while F. tropaeoli CRL 2034 accumulated the highest amount of Se (65.5 µg/L) in the grape juice. For this reason, only trials carried out with raw grape juices were investigated by metagenomics analysis by Illumina MiSeq technology. Non-inoculated grape juices were massively fermented by acetic acid bacteria while Fructobacillus and Lactobacillus (previous genus name of Levilactobacillus) represented the highest operational taxonomy units (OTUs) relative abundance % of the trials inoculated with the starter strains as confirmed by this technique.


Assuntos
Fermentação , Alimentos Fermentados , Microbiologia de Alimentos , Sucos de Frutas e Vegetais , Ácido Láctico , Selênio , Alimentos Fermentados/microbiologia , Sucos de Frutas e Vegetais/microbiologia , Ácido Láctico/metabolismo , Lactobacillaceae/genética , Lactobacillaceae/metabolismo , Leuconostocaceae/genética , Leuconostocaceae/metabolismo , Região do Mediterrâneo , Técnica de Amplificação ao Acaso de DNA Polimórfico , Selênio/metabolismo
2.
Food Res Int ; 123: 115-124, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31284959

RESUMO

Selenium (Se), which is present as SeCys in seleno-proteins, is involved in cancer prevention, thyroid functioning, and pathogen inhibition. Se is incorporated in the diet through Se-containing foods. Some lactic acid bacteria (LAB) can biotransform selenite (toxic) into Se-nanoparticles (SeNPs) and Se-amino acids. To exert their beneficial properties in the host, bacteria should survive the harsh conditions of the gastrointestinal tract and during food storage. We evaluated whether selenization of LAB influenced bacterial growth and survival during gastrointestinal digestion and after storage when present in a fermented fruit juice-milk (FJM) beverage. Lactobacillus brevis CRL 2051 and Fructobacillus tropaeoli CRL 2034 were grown in MRS with and without selenite, and used to inoculate the FJM matrix. Selenization had no effect on LAB growth (9.54-9.9 log CFU/mL) in the FJM drink. The presence of SeNPs was confirmed for both selenized strains in the FJM beverage; however, the highest Se concentration (100 µg/L) was detected for the fermented beverage with selenized L. brevis. Under storage conditions 1.1 log CFU/ml decrease in cell count of selenized cells of L. brevis was observed, while no effect on cell viability was detected for non-selenized L. brevis or both selenized and control cells of F. tropaeoli. Resistance of L. brevis during digestion of the fermented FJM beverage was not affected by selenization. Contrarily, an increase (1 log CFU/mL) in the resistance of F. tropaeoli was observed when cells were selenized. After digestion, Se was detected in the soluble fraction of the beverage fermented by both strains, being higher for L. brevis (23.6 µg/L). Although selenization did not exert a drastic effect on strains´ survival during storage and digestion, microbial selenization previous to food fermentation could be an interesting tool for Se enrichment avoiding thus the addition of toxic Se salts.


Assuntos
Digestão , Fermentação , Lactobacillales/metabolismo , Selênio/metabolismo , Animais , Bebidas/microbiologia , Alimentos Fermentados/microbiologia , Armazenamento de Alimentos , Concentração de Íons de Hidrogênio , Levilactobacillus brevis/isolamento & purificação , Levilactobacillus brevis/metabolismo , Leuconostocaceae/isolamento & purificação , Leuconostocaceae/metabolismo , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura , Leite/microbiologia , Modelos Biológicos
3.
Int J Syst Evol Microbiol ; 61(Pt 4): 898-902, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20495031

RESUMO

A fructophilic lactic acid bacterium, designated strain F214-1(T), was isolated from a flower of Tropaeolum majus in South Africa. Based on phylogenetic analysis of 16S rRNA gene sequences, the strain formed a subcluster with Fructobacillus ficulneus and Fructobacillus pseudoficulneus and, based on recA gene sequences, the strain formed a subcluster with F. ficulneus. DNA-DNA hybridization studies showed that strain F214-1(T) was phylogenetically distinct from its closest relatives. Acid was produced from the fermentation of d-glucose, d-fructose and d-mannitol only. d-Fructose was the preferred sole carbon and energy source and was fermented more rapidly than d-glucose. Growth of the strain on d-glucose under anaerobic conditions was very weak but external electron acceptors such as oxygen and pyruvate enhanced growth on d-glucose. Lactic acid and acetic acid were produced from d-glucose in equimolar amounts. Ethanol was produced at very low levels, despite the strain's obligately heterofermentative metabolism. Based on these data, strain F214-1(T) represents a novel species of fructophilic bacteria in the genus Fructobacillus, for which the name Fructobacillus tropaeoli sp. nov. is proposed. The type strain is F214-1(T) ( = JCM 16675(T)  = DSM 23246(T)).


Assuntos
Frutose/metabolismo , Ácido Láctico/metabolismo , Leuconostocaceae/classificação , Leuconostocaceae/isolamento & purificação , Tropaeolum/microbiologia , Ácido Acético/metabolismo , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Glucose/metabolismo , Leuconostocaceae/genética , Leuconostocaceae/metabolismo , Manitol/metabolismo , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Recombinases Rec A/genética , Análise de Sequência de DNA , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA