Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 289(51): 35314-25, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25371198

RESUMO

Calcium/voltage-gated, large conductance potassium (BK) channels control numerous physiological processes, including myogenic tone. BK channel regulation by direct interaction between lipid and channel protein sites has received increasing attention. Leukotrienes (LTA4, LTB4, LTC4, LTD4, and LTE4) are inflammatory lipid mediators. We performed patch clamp studies in Xenopus oocytes that co-expressed BK channel-forming (cbv1) and accessory ß1 subunits cloned from rat cerebral artery myocytes. Leukotrienes were applied at 0.1 nm-10 µm to either leaflet of cell-free membranes at a wide range of [Ca(2+)]i and voltages. Only LTB4 reversibly increased BK steady-state activity (EC50 = 1 nm; Emax reached at 10 nm), with physiological [Ca(2+)]i and voltages favoring this activation. Homomeric cbv1 or cbv1-ß2 channels were LTB4-resistant. Computational modeling predicted that LTB4 docked onto the cholane steroid-sensing site in the BK ß1 transmembrane domain 2 (TM2). Co-application of LTB4 and cholane steroid did not further increase LTB4-induced activation. LTB4 failed to activate ß1 subunit-containing channels when ß1 carried T169A, A176S, or K179I within the docking site. Co-application of LTB4 with LTA4, LTC4, LTD4, or LTE4 suppressed LTB4-induced activation. Inactive leukotrienes docked onto a portion of the site, probably preventing tight docking of LTB4. In summary, we document the ability of two endogenous lipids from different chemical families to share their site of action on a channel accessory subunit. Thus, cross-talk between leukotrienes and cholane steroids might converge on regulation of smooth muscle contractility via BK ß1. Moreover, the identification of LTB4 as a highly potent ligand for BK channels is critical for the future development of ß1-specific BK channel activators.


Assuntos
Ativação do Canal Iônico/fisiologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Leucotrieno B4/metabolismo , Animais , Cálcio/metabolismo , Artérias Cerebrais/citologia , Feminino , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/química , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/química , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Leucotrieno A4/química , Leucotrieno A4/metabolismo , Leucotrieno A4/farmacologia , Leucotrieno B4/química , Leucotrieno B4/farmacologia , Leucotrieno C4/química , Leucotrieno C4/metabolismo , Leucotrieno C4/farmacologia , Leucotrieno D4/química , Leucotrieno D4/metabolismo , Leucotrieno D4/farmacologia , Leucotrieno E4/química , Leucotrieno E4/metabolismo , Leucotrieno E4/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Microinjeções , Modelos Moleculares , Estrutura Molecular , Células Musculares/citologia , Células Musculares/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Oócitos/fisiologia , Técnicas de Patch-Clamp , Ligação Proteica , Estrutura Terciária de Proteína , RNA Complementar/administração & dosagem , RNA Complementar/genética , Ratos , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA