Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.321
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Fish Physiol Biochem ; 50(4): 1879-1894, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38630161

RESUMO

Selenium (Se) is a vital trace element, essential for growth and other biological functions in fish. Its significance lies in its role as a fundamental component of selenoproteins, which are crucial for optimal functioning of the organism. The inclusion of Se in the diets of farmed animals, including fish, has proved invaluable in mitigating the challenges arising from elemental deficiencies experienced in captivity conditions due to limitations in the content of fishmeal. Supplementing diets with Se enhances physiological responses, particularly mitigates the effects of the continuous presence of environmental stress factors. Organic Se has been shown to have higher absorption rates and a greater impact on bioavailability and overall health than inorganic forms. A characteristic feature of yeasts is their rapid proliferation and growth, marked by efficient mineral assimilation. Most of the selenized yeasts currently available in the market, and used predominantly in animal production and aquaculture, are based on Saccharomyces cerevisiae, which contains selenomethionine (Se-Met). The object of this review is to highlight the importance of selenized yeasts. In addition, it presents metabolic and productive aspects of other yeast genera that are important potential sources of organic selenium. Some yeast strains discussed produce metabolites of interest such as lipids, pigments, and amino acids, which could have applications in aquaculture and further enrich their usefulness.


Assuntos
Ração Animal , Peixes , Selênio , Animais , Ração Animal/análise , Peixes/microbiologia , Peixes/metabolismo , Selênio/metabolismo , Leveduras/metabolismo , Dieta/veterinária , Suplementos Nutricionais
2.
Toxins (Basel) ; 16(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38668596

RESUMO

A random-effects meta-analysis was conducted to investigate the effect of mycotoxins (MT) without or with the inclusion of yeast cell wall extract (YCWE, Mycosorb®, Alltech, Inc., Nicholasville, KY, USA) on laying hen performance. A total of 25 trials were collected from a literature search, and data were extracted from 8 of these that met inclusion criteria, for a total of 12 treatments and 1774 birds. Laying hens fed MT had lower (p < 0.05) body weight (BW) by -50 g, egg production by -6.3 percentage points, and egg weight by -1.95 g than control fed hens (CTRL). Inclusion of YCWE during the mycotoxin challenges (YCWE + MT) resulted in numerically greater (p = 0.441) BW by 12.5 g, while egg production and egg weight were significantly (p < 0.0001) higher by 4.2 percentage points and 1.37 g, respectively. Furthermore, economic assessment calculations indicated that YCWE may not only support hen performance but also resulted in a positive return on investment. In conclusion, mycotoxins can play a role in negatively impacting laying hen performance and profitability. Inclusion of YCWE in feed with mycotoxin challenges provided benefits to egg production and egg weight and may support profitability. As such, the inclusion of YCWE could play an important role in minimizing mycotoxin effects and in turn aid farm efficiency and profitability.


Assuntos
Ração Animal , Parede Celular , Galinhas , Micotoxinas , Animais , Micotoxinas/toxicidade , Parede Celular/efeitos dos fármacos , Feminino , Leveduras , Reprodução/efeitos dos fármacos , Suplementos Nutricionais
3.
Sci Rep ; 14(1): 6069, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480775

RESUMO

Arabica coffee is the most popular and best-selling type of coffee. During coffee fermentation, microorganisms are essential for the production of metabolites and volatile compounds that affect coffee flavor quality. This work aimed to study the mutation, selection, and characterization of the Wickerhamomyces anomalus strain YWP1-3 as a starter culture to enhance the flavor quality of Arabica coffee. The results revealed that six mutants could produce relatively high levels of the pectinase enzyme on pectin agar media and exhibited high activity levels, ranging from 332.35 to 415.88 U/ml in mucilage broth. Strains UV22-2, UV22-3, UV41-1 and UV32-1 displayed higher levels of amylase activity than did the wild type. The UV22-2 and UV22-3 mutants exhibited the highest pectin degradation indices of 49.22% and 45.97%, respectively, and displayed significantly enhanced growth rates in nitrogen yeast base media supplemented with various sugars; thus, these mutants were evaluated for their ability to serve as a starter for fermentation of Arabica coffee. The cupping scores of coffees derived from UV22-2 and UV22-3 were 83.5 ± 1.5 and 82.0 ± 2.14, respectively. The volatile compounds in the roasted coffee fermented by UV22-2 were analyzed by GC‒MS, which revealed higher levels of furfuryl alcohol and furfuryl acetate than did the other samples. These findings suggested that UV22-2 could be an influential starter culture for Arabica coffee fermentation.


Assuntos
Coffea , Café , Café/metabolismo , Fermentação , Coffea/metabolismo , Leveduras/genética , Pectinas/metabolismo
4.
World J Microbiol Biotechnol ; 40(4): 118, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429465

RESUMO

This work aimed to study and characterize a product based on vegetable extract of quinoa (WVEQ) fermented with water kefir grains. The effect of sucrose concentration (SC), inulin concentration (IC), and xanthan gum (XG) concentration were evaluated using a central composite design (CCD) 23. They were subsequently characterized regarding cellular growth of the grains, beverage yield, pH, soluble solids, carbon dioxide (CO2) production, lactic acid, and ethanol production. Therefore, for the final stage, two formulations (F1 and F8) of the CCD were chosen to be characterized in terms of proximate composition, microbiological composition of the kefir culture, analysis of organic compounds, sensory analysis, and enzymatic and microbiological characterization before and after simulation of in vitro gastrointestinal digestion. In the two chosen products, one can see that fermentation optimized the bioavailability of proteins due to the high proteolytic activity of the microorganisms in kefir and the increase in lipid content. In identifying microorganisms, there was a prevalence of Saccharomyces sp. yeasts. In the sensory analysis, the F8 formulation showed better results than the F1 formulation. In vitro, gastrointestinal digestion showed reduced lactic acid bacteria and yeast and increased acetic acid bacteria in the liquid phase for both formulations. In the enzymatic profile, there was a reduction in all enzymes analyzed for both formulations, except for amylase in F1, which went from 14.05 U/mL to 39.41 U/mL. Therefore, it is concluded that using WVEQ as a substrate for the product appears to be a viable alternative with nutritional and technological advantages for serving a specific market niche.


Assuntos
Chenopodium quinoa , Kefir , Lactobacillales , Kefir/análise , Kefir/microbiologia , Verduras , Leveduras , Extratos Vegetais , Fermentação
5.
Int J Food Microbiol ; 415: 110638, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38430685

RESUMO

Biocontrol Agents (BCAs) can be an eco-friendly alternative to fungicides to reduce the contamination with mycotoxigenic fungi on coffee. In the present study, different strains of bacteria and yeasts were isolated from Ivorian Robusta coffee. Their ability to reduce fungal growth and Ochratoxin A (OTA) production during their confrontation against Aspergillus carbonarius was screened on solid media. Some strains were able to reduce growth and OTA production by 85 % and 90 % and were molecularly identified as two yeasts, Rhodosporidiobolus ruineniae and Meyerozyma caribbica. Subsequent tests on liquid media with A. carbonarius or solely with OTA revealed adhesion of R. ruineniae to the mycelium of A. carbonarius through Scanning Electron Microscopy, and an OTA adsorption efficiency of 50 %. For M. caribbica potential degradation of OTA after 24 h incubation was observed. Both yeasts could be potential BCAs good candidates for Ivorian Robusta coffee protection against A. carbonarius and OTA contamination.


Assuntos
Coffea , Lactobacillales , Ocratoxinas , Vitis , Café/metabolismo , Aspergillus/metabolismo , Coffea/microbiologia , Leveduras , Vitis/microbiologia
6.
Microb Pathog ; 190: 106613, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484919

RESUMO

This research paper presents a novel approach to the green synthesis of silver nanoparticles (AgNPs) using viticultural waste, allowing to obtain NP dispersions with distinct properties and morphologies (monodisperse and polydisperse AgNPs, referred to as mAgNPs and pAgNPs) and to compare their biological activities. Our synthesis method utilized the ethanolic extract of Vitis vinifera pruning residues, resulting in the production of mAgNPs and pAgNPs with average sizes of 12 ± 5 nm and 19 ± 14 nm, respectively. Both these AgNPs preparations demonstrated an exceptional stability in terms of size distribution, which was maintained for one year. Antimicrobial testing revealed that both types of AgNPs inhibited either the growth of planktonic cells or the metabolic activity of biofilm sessile cells in Gram-negative bacteria and yeasts. No comparable activity was found towards Gram-positives. Overall, pAgNPs exhibited a higher antimicrobial efficacy compared to their monodisperse counterparts, suggesting that their size and shape may provide a broader spectrum of interactions with target cells. Both AgNP preparations showed no cytotoxicity towards a human keratinocyte cell line. Furthermore, in vivo tests using a silkworm animal model indicated the biocompatibility of the phytosynthesized AgNPs, as they had no adverse effects on insect larvae viability. These findings emphasize the potential of targeted AgNPs synthesized from viticultural waste as environmentally friendly antimicrobial agents with minimal impact on higher organisms.


Assuntos
Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Prata , Vitis , Prata/farmacologia , Prata/química , Prata/metabolismo , Nanopartículas Metálicas/química , Animais , Humanos , Vitis/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Tamanho da Partícula , Química Verde , Bactérias Gram-Negativas/efeitos dos fármacos , Bombyx , Biofilmes/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Larva/efeitos dos fármacos , Leveduras/efeitos dos fármacos
7.
Microb Cell Fact ; 23(1): 20, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218907

RESUMO

The increasing interest in environmental protection laws has compelled companies to regulate the disposal of waste organic materials. Despite efforts to explore alternative energy sources, the world remains heavily dependent on crude petroleum oil and its derivatives. The expansion of the petroleum industry has significant implications for human and environmental well-being. Bioremediation, employing living microorganisms, presents a promising approach to mitigate the harmful effects of organic hydrocarbons derived from petroleum. This study aimed to isolate and purify local yeast strains from oil-contaminated marine water samples capable of aerobically degrading crude petroleum oils and utilizing them as sole carbon and energy sources. One yeast strain (isolate B) identified as Candida tropicalis demonstrated high potential for biodegrading petroleum oil in seawater. Physiological characterization revealed the strain's ability to thrive across a wide pH range (4-11) with optimal growth at pH 4, as well as tolerate salt concentrations ranging from 1 to 12%. The presence of glucose and yeast extract in the growth medium significantly enhanced the strain's biomass formation and biodegradation capacity. Scanning electron microscopy indicated that the yeast cell diameter varied based on the medium composition, further emphasizing the importance of organic nitrogenous sources for initial growth. Furthermore, the yeast strain exhibited remarkable capabilities in degrading various aliphatic and aromatic hydrocarbons, with a notable preference for naphthalene and phenol at 500 and 1000 mg/l, naphthalene removal reached 97.4% and 98.6%, and phenol removal reached 79.48% and 52.79%, respectively. Optimization experiments using multi-factorial sequential designs highlighted the influential role of oil concentration on the bioremediation efficiency of Candida tropicalis strain B. Moreover, immobilized yeast cells on thin wood chips demonstrated enhanced crude oil degradation compared to thick wood chips, likely due to increased surface area for cell attachment. These findings contribute to our understanding of the potential of Candida tropicalis for petroleum oil bioremediation in marine environments, paving the way for sustainable approaches to address oil pollution.


Assuntos
Candida tropicalis , Petróleo , Humanos , Candida tropicalis/metabolismo , Biodegradação Ambiental , Leveduras/metabolismo , Petróleo/metabolismo , Hidrocarbonetos/metabolismo , Fenol/metabolismo , Naftalenos/metabolismo
8.
Microb Biotechnol ; 17(1): e14301, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37351580

RESUMO

Palmitoleic acid (POA; C16:1) is an essential high-value ω-7-conjugated fatty acid with beneficial bioactivities and potential applications in the nutraceutical and pharmaceutical industries. Previously, the oleaginous yeast Scheffersomyces segobiensis DSM27193 has been identified as a promising production host as an alternative for POA extraction from plant or animal sources. Here, the POA-producing capacity of this host was further expanded by optimizing the fermentation process and molecular strain engineering. Specifically, a dual fermentation strategy (O-S dynamic regulation strategy) focused on the substrate and dissolved oxygen concentration was designed to eliminate ethanol and pyruvate accumulation during fermentation. Key genes influencing POA production, such as jen, dgat, ole were identified on the transcriptional level and were subsequently over-expressed. Furthermore, the phosphoketolase (Xpk)/phosphotransacetylase (Pta) pathway was introduced to improve the yield of the precursor acetyl-CoA from glucose. The resulting cell factory SS-12 produced 7.3 g/L of POA, corresponding to an 11-fold increase compared to the wild type, presenting the highest POA titre reported using oleaginous yeast to date. An economic evaluation based on the raw materials, utilities and facility-dependent costs showed that microbial POA production using S. segobiensis can supersede the current extraction method from plant oil and marine fish. This study reports the construction of a promising cell factory and an effective microbial fermentation strategy for commercial POA production.


Assuntos
Ácidos Graxos Monoinsaturados , Engenharia Metabólica , Saccharomycetales , Engenharia Metabólica/métodos , Leveduras
9.
Microb Biotechnol ; 17(1): e14374, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38019136

RESUMO

Several gut microbial species within the Faecalibacterium genus have emerged as promising next-generation probiotics (NGP) due to their multifunctional protective effects against gastrointestinal and systemic disorders. To enable clinical studies and further applications, improved methods for cultivating Faecalibacterium must be developed in compliance with current Good Manufacturing Practice regulations, which is complicated by its oxygen sensitivity and complex nutritional requirements. Different yeast-based nutrients (YBNs), including yeast extracts (YEs) and yeast peptones (YPs), are ubiquitously used when cultivating microbes to supply a broad range of macro- and micronutrients. In this study, we evaluated six experimental YBNs, namely three YEs, two YPs and a yeast cell wall product (YCW), and eight B-vitamins in the cultivation of Faecalibacterium duncaniae A2-165, former Faecalibacterium prausnitzii, using growth assays in microtitre plates, dose-effect studies in Hungate tube fermentations and fully controlled bioreactor experiments. We demonstrated that YEs promote F. duncaniae A2-165 growth in a nutritionally limited medium, while YPs and YCW lacked essential growth factors for enabling cell propagation. High cell density was obtained in controlled bioreactors using a medium containing 2-4% of a selected YE and 1% casein peptone (3.4 ± 1.7 × 109 -5.1 ± 1.3 × 109 cells mL-1 ). Among all tested B-vitamins, we identified B5 as a strong growth promoter. Replacing casein peptone with YP and supplementing with vitamin B5 further increased biomass by approximately 50% (6.8 ± 1.7 × 109 cells mL-1 ). Hence, empirical selection of YE, YP and B5 allowed formulation of a high-yielding animal allergen-free nutritive medium to produce F. duncaniae A2-165. Selecting nutritionally suitable YBNs and combining these with other key nutrients are important steps for optimizing production of NGP with high yields and lower cost.


Assuntos
Ácido Pantotênico , Vitaminas , Animais , Reatores Biológicos , Fermentação , Leveduras , Faecalibacterium
10.
Biosci Rep ; 44(2)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38063133

RESUMO

Sophorolipids (SLs) are surface active compounds that have excellent surface-lowering properties. SLs were produced by Starmerella bombicola (CGMCC1576) yeast with sunflower seed oil, fried waste oil, cooked tung oil and raw tung oil used as hydrophobic carbon sources. The results showed that the strain could use sunflower seed oil and fried waste oil as hydrophobic carbon sources to produce SLs, and the yields were 44.52 and 39.09 gl-1. It could not be used as cooked tung oil and raw tung oil. The analysis by high-performance liquid chromatography/high resolution mass spectrometry (HPLC-MS/MS) showed that the main composition and structure of SLs produced by fermentation using fried waste oil were similar to that of sunflower seed oil as hydrophobic carbon source. The yield of SLs was the highest when the fried waste oil was used as hydrophobic carbon source, glucose (8%), waste oil (6%) and yeast (0.3%). When fried waste oil was used as a hydrophobic carbon source in a parallel 4-strand fermentation tank (FT), the combination with the largest yield and the most cost saving was that 3% of fried waste oil was added into the initial medium, and another 3% was again added after 72 h of fermentation. The total yield of SLs was 121.28 gl-1, and the yield of lactone SLs was 48.07 gl-1.


Assuntos
Ácidos Oleicos , Saccharomycetales , Espectrometria de Massas em Tandem , Leveduras , Fermentação , Óleo de Girassol , Carbono
11.
Nat Prod Res ; 38(5): 789-795, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37086471

RESUMO

One new indol, N-methoxymethyltryptophol (1), one new phenolic, (2 R)-2-(4-hydroxyphenyl)ethyl 2-hydroxy-3-phenylpropanoate (2) and fifteen known compounds (3-17) were isolated from the methanol extract of the fermentation of marine microalgae Aurantiochytrium sp. SC145. Their structures were elucidated by 1D-, 2D-NMR spectroscopic analysis, HR-ESI-MS, quantum chemical calculation methods and by comparing their NMR data with those reported in the literature. All compounds were evaluated for their antimicrobial activities against microorganisms. Compounds 2, 3 and 11 significantly exhibited antimicrobial activities on all tested Gram-(+), Gram-(-) bacteria and the yeast C. albicans with MIC values ranging from 32 to 256 µg/mL.


Assuntos
Anti-Infecciosos , Microalgas , Anti-Infecciosos/química , Bactérias , Extratos Vegetais/química , Leveduras , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química
12.
Int. j. morphol ; 41(6): 1816-1823, dic. 2023. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1528777

RESUMO

SUMMARY: To evaluate the anti-cancer effects of yeast extract on resistant cells, autophagy and necroptosis were investigated in 5-fluorouracil (5-FU)-resistant colorectal cancer cells. Further underlying characteristics on drug resistance were evaluated, focused on ERK-RSK-ABCG2 linkage. SNU-C5 and 5-FU resistant SNU-C5 (SNU-C5/5-FUR) colorectal cancer cells were adopted for cell viability assay and Western blotting to examine the anti-cancer effects of yeast extract. Yeast extract induced autophagy in SNU-C5 cells with increased Atg7, Atg12-5 complex, Atg16L1, and LC3 activation (LC3-II/LC3-I), but little effects in SNU-C5/5-FUR cells with increased Atg12-5 complex and Atg16L1. Both colorectal cancer cells did not show necroptosis after yeast extract treatment. Based on increased ABCG2 and RSK expression after yeast extract treatment, drug resistance mechanisms were further evaluated. As compared to wild type, SNU-C5/5-FUR cells showed more ABCG2 expression, less RSK expression, and less phosphorylation of ERK. ABCG2 inhibitor, Ko143, treatment induces following changes: 1) more sensitivity at 500 mM 5-FU, 2) augmented proliferation, and 3) less phosphorylation of ERK. These results suggest that protective autophagy in SNU-C5/5-FUR cells with increased ABCG2 expression might be candidate mechanisms for drug resistance. As the ERK responses were different from each stimulus, the feasible mechanisms among ERK-RSK-ABCG2 should be further investigated in 5-FU-resistant CRC cells.


Para evaluar los efectos anticancerígenos del extracto de levadura en células resistentes, se investigaron la autofagia y la necroptosis en células de cáncer colorrectal resistentes al 5-fluorouracilo (5-FU). Además se evaluaron otras características subyacentes de la resistencia a los medicamentos centrándose en el enlace ERK-RSK-ABCG2. Se usaron células de cáncer colorrectal SNU-C5 (SNU-C5/5-FUR) resistentes a SNU-C5 y 5- FU para el ensayo de viabilidad celular y la transferencia Western para examinar los efectos anticancerígenos del extracto de levadura. El extracto de levadura indujo autofagia en células SNU-C5 con mayor activación de Atg7, complejo Atg12-5, Atg16L1 y LC3 (LC3-II/LC3-I), pero pocos efectos en células SNU-C5/5-FUR con aumento de Atg12-5 complejo y Atg16L1. Ambas células de cáncer colorrectal no mostraron necroptosis después del tratamiento con extracto de levadura. Se evaluaron los mecanismos de resistencia a los medicamentos. en base al aumento de la expresión de ABCG2 y RSK después del tratamiento con extracto de levadura.En comparación con las de tipo salvaje, las células SNU-C5/5-FUR mostraron más expresión de ABCG2, menos expresión de RSK y menos fosforilación de ERK. El tratamiento con inhibidor de ABCG2, Ko143, induce los siguientes cambios: 1) más sensibilidad a 5-FU 500 mM, 2) proliferación aumentada y 3) menos fosforilación de ERK. Estos resultados sugieren que la autofagia protectora en células SNU-C5/5-FUR con mayor expresión de ABCG2 podría ser un mecanismo candidato para la resistencia a los medicamentos. Como las respuestas de ERK fueron diferentes de cada estímulo, los mecanismos factibles entre ERK-RSK- ABCG2 deberían investigarse más a fondo en células CCR resistentes a 5-FU.


Assuntos
Autofagia , Extratos Vegetais/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Antineoplásicos/farmacologia , Leveduras , Células Tumorais Cultivadas , Sobrevivência Celular/efeitos dos fármacos , Western Blotting , Resistencia a Medicamentos Antineoplásicos , Proteínas Quinases S6 Ribossômicas 90-kDa , Eletroforese , Fluoruracila , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Necroptose
13.
PeerJ ; 11: e16386, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025755

RESUMO

This study aimed to examine the impact of nitrogen (N) fertilization on phyllosphere microorganisms in silage maize (Zea mays) to enhance the production of high-quality silage. The effects of different N application rates (160, 240, and 320 kg ha-1) and maturity stages (flowering and dough stages) on microbial diversity, abundance and physiochemical properties of the leaf surfaces were evaluated in a field experiment. The results showed that N application rates did not significantly impact the abundance of lactic acid bacteria (LAB), aerobic bacteria (AB), yeasts, or molds on the leaf surfaces. However, these microbes were more abundant during the flowering stage compared to the dough stage. Furthermore, the N application rate had no significant impact on inorganic phosphorus, soluble sugar, free amino acids, total phenolic content, and soluble protein concentrations, or pH levels on the leaf surfaces. Notably, these chemical indices were lower during the dough stage. The abundance of Pantoea decreased with higher N application rates, while that of other microorganisms did not changes significantly. The abundance of AB, LAB, yeasts, and molds were positively correlated with soluble sugar, soluble protein, inorganic phosphorus, free amino acids, and total phenolic concentrations on leaf surfaces. Moreover, water loss was negatively correlated with the abundance of AB, LAB, yeasts, and molds, whereas water retention capacity and stomatal density were positively correlated with microbial abundance. We recommend applying an optimal N rate of 160 kg ha-1 to silage maize and harvesting at the flowering stage is recommended.


Assuntos
Microbiota , Silagem , Silagem/análise , Zea mays/metabolismo , Nitrogênio/farmacologia , Folhas de Planta , Carboidratos , Fungos , Leveduras , Açúcares/metabolismo , Aminoácidos/metabolismo , Fósforo/metabolismo , Água/metabolismo
14.
Biomolecules ; 13(10)2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37892168

RESUMO

Extracellular vesicles (EVs) are membranous vesicular organelles that perform a variety of biological functions including cell communication across different biological kingdoms. EVs of mammals and, to a lesser extent, bacteria have been deeply studied over the years, whereas investigations of fungal EVs are still in their infancy. Fungi, encompassing both yeast and filamentous forms, are increasingly recognized for their production of extracellular vesicles (EVs) containing a wealth of proteins, lipids, and nucleic acids. These EVs play pivotal roles in orchestrating fungal communities, bolstering pathogenicity, and mediating interactions with the environment. Fungal EVs have emerged as promising candidates for innovative applications, not only in the management of mycoses but also as carriers for therapeutic molecules. Yet, numerous questions persist regarding fungal EVs, including their mechanisms of generation, release, cargo regulation, and discharge. This comprehensive review delves into the present state of knowledge regarding fungal EVs and provides fresh insights into the most recent hypotheses on the mechanisms driving their immunomodulatory properties. Furthermore, we explore the considerable potential of fungal EVs in the realms of medicine and biotechnology. In the foreseeable future, engineered fungal cells may serve as vehicles for tailoring cargo- and antigen-specific EVs, positioning them as invaluable biotechnological tools for diverse medical applications, such as vaccines and drug delivery.


Assuntos
Vesículas Extracelulares , Proteínas Fúngicas , Animais , Proteínas Fúngicas/metabolismo , Vesículas Extracelulares/metabolismo , Leveduras/metabolismo , Sistemas de Liberação de Medicamentos , Virulência , Mamíferos/metabolismo
15.
World J Microbiol Biotechnol ; 39(10): 265, 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37515645

RESUMO

Tea is one of the most popular beverages worldwide, with several health benefits attributed for its rich chemical composition and further associated with fermentation process to improve its quality attributes. Most tea types originate from the leaves of Camellia sinensis with differences in fermentation levels yielding black tea, green tea, pouchong tea, oolong tea. Teas like pu-erh or kombucha to encompass both green and red types are further post-fermented. Tea fermentation is a traditional process involving physical, biochemical, and microbial changes which are associated with improved organoleptic characters, nutritive value, and health outcomes. The production of fermented tea relies on naturally occurring enzymes and microbial metabolic activities. This review focuses on presenting a holistic overview on the effect of different microorganisms including bacteria, yeast, and fungi on the biochemical changes and sensory attributes of fermented tea products reported in research articles along the last 15 years. Moreover, production conditions and major biochemical changes are dissected to present the best factors influencing fermented tea quality. This review presents an evidence-based reference for specialists in tea industry to optimize tea fermentation process for targeted attributes.


Assuntos
Camellia sinensis , Chá , Fermentação , Chá/química , Fungos , Leveduras
16.
Sci Rep ; 13(1): 9367, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296164

RESUMO

A kombucha is a tea and sugar fermented by over sixty kinds of yeasts and bacteria. This symbiotic community produces kombucha mats, which are cellulose-based hydrogels. The kombucha mats can be used as an alternative to animal leather in industry and fashion once they have been dried and cured. Prior to this study, we demonstrated that living kombucha mats display dynamic electrical activity and distinct stimulating responses. For use in organic textiles, cured mats of kombucha are inert. To make kombucha wearables functional, it is necessary to incorporate electrical circuits. We demonstrate that creating electrical conductors on kombucha mats is possible. After repeated bending and stretching, the circuits maintain their functionality. In addition, the abilities and electronic properties of the proposed kombucha, such as being lighter, less expensive, and more flexible than conventional electronic systems, pave the way for their use in a diverse range of applications.


Assuntos
Bactérias , Leveduras , Animais , Fermentação , Chá/microbiologia
17.
Sci Rep ; 13(1): 7859, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188725

RESUMO

Several raw materials have been used as partial supplements or entire replacements for the main ingredients of kombucha to improve the biological properties of the resulting kombucha beverage. This study used pineapple peels and cores (PPC), byproducts of pineapple processing, as alternative raw materials instead of sugar for kombucha production. Kombuchas were produced from fusions of black tea and PPC at different ratios, and their chemical profiles and biological properties, including antioxidant and antimicrobial activities, were determined and compared with the control kombucha without PPC supplementation. The results showed that PPC contained high amounts of beneficial substances, including sugars, polyphenols, organic acids, vitamins, and minerals. An analysis of the microbial community in a kombucha SCOBY (Symbiotic Cultures of Bacteria and Yeasts) using next-generation sequencing revealed that Acetobacter and Komagataeibacter were the most predominant acetic acid bacteria. Furthermore, Dekkera and Bacillus were also the prominent yeast and bacteria in the kombucha SCOBY. A comparative analysis was performed for kombucha products fermented using black tea and a fusion of black tea and PPC, and the results revealed that the kombucha made from the black tea and PPC infusion exhibited a higher total phenolic content and antioxidant activity than the control kombucha. The antimicrobial properties of the kombucha products made from black tea and the PPC infusion were also greater than those of the control. Several volatile compounds that contributed to the flavor, aroma, and beneficial health properties, such as esters, carboxylic acids, phenols, alcohols, aldehydes, and ketones, were detected in kombucha products made from a fusion of black tea and PPC. This study shows that PPC exhibits high potential as a supplement to the raw material infusion used with black tea for functional kombucha production.


Assuntos
Acetobacteraceae , Ananas , Anti-Infecciosos , Camellia sinensis , Chá/química , Bebidas/análise , Leveduras , Antioxidantes/análise , Fenóis/análise , Anti-Infecciosos/análise , Fermentação
18.
Molecules ; 28(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37049772

RESUMO

Plum has long been cultivated in northern Thailand and evolved into products having long shelf lives. In this study, plum processing was analyzed by comparing the production of plum wine using three types of yeast, Saccharomyces cerevisiae var. burgundy, Hanseniaspora thailandica Zal1, and S. cerevisiae Lalvin EC1118. EC1118 exhibited the highest alcohol content (9.31%), similar to that of burgundy (9.21%), and H. thailandica Zal1 had the lowest alcohol content (8.07%) after 14 days of fermentation. Plum wine fermented by S. cerevisiae var. burgundy had the highest total phenolic (TP) content and antioxidant activity of 469.84 ± 6.95 mg GAE/L and 304.36 ± 6.24 µg TE/g, respectively, similar to that fermented by EC1118 (418.27 ± 3.40 mg GAE/L 288.2 ± 7.9 µg TE/g). H. thailandica Zal1 exhibited the least amount of TP content and antioxidant activity; however, the volatility produced by H. thailandica Zal1 resulted in a plum wine with a distinct aroma.


Assuntos
Prunus domestica , Vinho , Vinho/análise , Saccharomyces cerevisiae , Fermentação , Antioxidantes , Leveduras
19.
Poult Sci ; 102(6): 102660, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37043955

RESUMO

This study was conducted to determine the effects of dietary yeast cell wall (YCW) on growth performance, intestinal health, and immune responses of broiler chickens. In a randomized completely block design (block: initial body weight), a total of 800 broilers (Ross 308; 45.18 ± 3.13 g of initial body weight) were assigned to 2 dietary treatments (40 birds/pen; 10 replicates/treatment) and fed for 5 wk: 1) a basal broiler diet based on corn-soybean meal (CON) and 2) CON + 0.05% dietary YCW. Growth performance was measured at intervals in 3 phase feed program. On the final day of the study, one bird per pen was randomly selected and euthanized for sample collection. Broilers fed YCW had decreased (P < 0.05) feed conversion ratio during the grower phase compared with those fed CON. The YCW increased (P < 0.05) villus height to crypt depth ratio in the duodenum, jejunum, and ileum compared with the CON. In addition, the YCW tended to higher (P < 0.10) number of goblet cells in the duodenum than in the CON. Broilers fed YCW had increased (P < 0.05) serum TGF- ß1, ileal gene expression of the claudin family, and relative abundance of Lactobacillus, Prevotella, and Enterococcus compared with the CON, but decreased serum TNF-α (P < 0.05), IL-1ß (P < 0.05), and IL-6 (P < 0.10), ileal gene expression of IL-6 (P < 0.05), and relative abundance of Clostridium (P < 0.05). The present study demonstrated that the addition of dietary YCW in broiler diets enhanced the intestinal health of broiler chickens and may be associated with modulated intestinal morphology and integrity by upregulating tight junction-related protein gene expression and modifying the ileal microbiota. In addition, dietary YCW modulated immune responses and inflammatory cytokine gene expression in the ileum.


Assuntos
Galinhas , Interleucina-6 , Animais , Galinhas/fisiologia , Dieta/veterinária , Leveduras , Peso Corporal , Imunidade , Parede Celular , Suplementos Nutricionais , Ração Animal/análise
20.
Biol Trace Elem Res ; 201(12): 5839-5847, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36934195

RESUMO

Seleno-Yeasts (SY) used as feed additives are known to contain different Selenium (Se) species. Seleno-Yeasts has been shown, on previous analytical methods, to contain selenomethionine (SeMet), selenocysteine (SeCys), selenate (SeIV) and selenite (SeVI), and various other organic and inorganic Se forms identified but rarely quantified. A new advanced method has allowed elemental Se (Se0), an inorganic Se species, to be quantified, thereby obtaining better insight into the proportion of inorganic Se in SY products. The study aimed to quantify the Se0 in SY products and assess the proportion of inorganic Se in SY. The Se speciation of 13 fresh commercials SY from different suppliers and batches, was assayed for the total Se, inorganic Se species (SeIV, SeVI and Se0), and organic Se species (SeMet and SeCys). Results on total Se were in line with the expected Se concentrations for all evaluated samples. The proportion of Se present as Se0 ranged from 3.6% to 51.8%. The quantity of Se0 in the SY products, added to SeIV and SeVI, indicated an average proportion of inorganic Se of 14.2% for the 13 analyzed SY products. The proportion of Se as SeMet ranged from 19.0% to 71.8%, (average of 55.8%), and a large variability in the SeMet content was observed. The SeCys content was also variable, with an average of 3.8%, relative to the total Se. In conclusion, advances in the analytical characterization have revealed that SY products can have a significantly high proportion of inorganic Se, which could affect the bioavailability of Se from SY supplements and explain their variable and lower bio-efficacy than pure SeMet supplements, such as hydroxy-selenomethionine.


Assuntos
Compostos de Selênio , Selênio , Selenometionina , Suplementos Nutricionais , Leveduras , Selenocisteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA