Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 40(4): 134, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38480613

RESUMO

Lignan, a beneficial constituent of Flaxseed (Linum usitatissimum L.) showed great interest in researchers because of its multiple functional properties. Nonetheless, a challenge arises due to the glycosidic structure of lignans, which the gut epithelium cannot readily absorb. Therefore, we screened 18 strains of Lactiplantibacillus plantarum, Lacticaseibacillus casei, Lactobacillus acidophilus, Lacticaseibacillus rhamnosus, Pediococcus pentosaceus, Pediococcus acidilactici, and Enterococcus durans to remove glycosides from flaxseed lignan extract enzymatically. Among our findings, Lactiplantibacillus plantarum SCB0151 showed the highest activity of ß-glucosidase (8.91 ± 0.04 U/mL) and higher transformed efficiency of Secoisolariciresinol (SECO) (8.21 ± 0.13%). The conversion rate of Secoisolariciresinol diglucoside (SDG) and the generation rate of SECO was 58.30 ± 3.78% and 32.13 ± 2.78%, respectively, under the optimized conditions. According to the LC-HRMSMS analysis, SECO (68.55 ± 6.57 µM), Ferulic acid (FA) (32.12 ± 2.50 µM), and Coumaric acid (CA) (79.60 ± 6.21 µM) were identified in the biotransformation products (TP) of flaxseed lignan extract. Results revealed that the TP exhibited a more pronounced anti-inflammatory effect than the flaxseed lignan extract. SECO, FA, and CA demonstrated a more inhibitory effect on NO than that of SDG. The expression of iNOS and COX-2 was significantly suppressed by TP treatment in LPS-induced Raw264.7 cells. The secretion of IL-6, IL-2, and IL-1ß decreased by 87.09 ± 0.99%, 45.40 ± 0.87%, and 53.18 ± 0.83%, respectively, at 60 µg/mL of TP treatment. Given these data, the bioavailability of flaxseed lignan extract and its anti-inflammatory effect were significantly enhanced by Lactiplantibacillus plantarum SCB0151, which provided a novel approach to commercializing flaxseed lignan extract for functional food.


Assuntos
Linho , Glucosídeos , Lignanas , Linho/química , Linho/metabolismo , Fermentação , Lignanas/farmacologia , Lignanas/química , Lignanas/metabolismo , Glicosídeos , Butileno Glicóis/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia
2.
PeerJ ; 12: e17137, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529310

RESUMO

Gleditsia sinensis, commonly known as Chinese Zaojiao, has important economic value and medicinal compounds in its fruits and thorns, making it widely cultivated artificially in China. However, the available literature on the impact of waterlogging on the growth of G. sinensis seedlings and the accumulation of metabolite compounds in its thorns is limited. To address this knowledge gap, G. sinensis seedlings were planted in soil supplemented with pindstrup substrate, which enhances the water-holding capacity of the soil. The analyses of morphological traits and nutrient elements in one-year-old G. sinensis seedlings grown naturally under ambient conditions and metabolite accumulation in its thorns were conducted. The results showed that the waterlogged soil significantly diminished the height, fresh weight, and dry weight of seedling roots and stems (P < 0.05). Furthermore, waterlogging hindered the uptake of iron (Fe) and manganese (Mn), as well as the transport of potassium (K). The identified metabolites within the thorns were categorized into 16 distinct groups. Relative to the control soil, fatty acids and derivatives were the most down-regulated metabolites in the waterlogged soil, accounting for 40.58% of the total metabolites, followed by lignans (38.71%), phenolic acids (34.48%), saccharides and alcohols (34.15%), steroids (16.67%), alkaloids (12.24%), flavonoids (9.28%), and glycerophospholipids (7.41%). Conversely, nucleotides and derivatives experienced the greatest up-regulation in the waterlogged soil, accounting for 50.00% of the total metabolites. In conclusion, waterlogging negatively impacted the growth of G. sinensis seedlings and inhibited the accumulation of metabolites. Hence, when considering the accumulation of secondary metabolites such as lignans and phenolic acids, appropriate management of soil moisture levels should be taken into account.


Assuntos
Gleditsia , Lignanas , Plântula , Lignanas/metabolismo , Gleditsia/química , Extratos Vegetais/metabolismo , Raízes de Plantas
3.
Biosci Biotechnol Biochem ; 88(3): 270-275, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38169014

RESUMO

Secondary metabolites are specialized metabolic products synthesized by plants, insects, and bacteria, some of which exhibit significant physiological activities against other organisms. Plants containing bioactive secondary metabolites have been used in traditional medicine for centuries. In developed countries, one-fourth of medicines directly contain plant-derived compounds or indirectly contain them via semi-synthesis. These compounds have contributed considerably to the development of not only medicine but also molecular biology. Moreover, the biosynthesis of these physiologically active secondary metabolites has attracted substantial interest and has been extensively studied. However, in many cases, the degradation mechanisms of these secondary metabolites remain unclear. In this review, some unique microbial degradation pathways for lignans and C-glycosides are explored.


Assuntos
Bactérias , Fungos , Glicosídeos , Lignanas , Lignanas/metabolismo , Glicosídeos/metabolismo , Bactérias/metabolismo , Redes e Vias Metabólicas , Fungos/metabolismo
4.
J Appl Toxicol ; 44(4): 501-509, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37873635

RESUMO

Dictamnine (DIC), as the most abundant furoquinoline alkaloid ingredient of the herbal medicine Cortex Dictamni (CD), can induce severe liver injury. A previous study found that DIC-induced liver injury was initiated by cytochrome P4503A (CYP3A)-mediated metabolic activation and subsequent formation of adducts with cellular proteins. Schisantherin A (SchA) is the major lignan component of the herbal medicine Schisandra chinensis (SC). SC is frequently combined with CD used in numerous Chinese medicinal formulas for the treatment of eczema and urticaria. Furthermore, SC could protect against CD-induced hepatotoxicity. The objective of the study was to investigate the protective effect of SchA on DIC-induced hepatotoxicity based on pharmacokinetic interactions. The studies found that SchA exerted a protective effect on DIC-induced hepatotoxicity in a dose-dependent manner. Pharmacokinetic studies showed that pretreatment with SchA enhanced the area under concentration-time curve (AUC) and maximal concentration (Cmax ) values of DIC in the serum and liver tissue of mice, indicating that SchA could augment the accumulation of DIC in the circulation. In vitro metabolism assays with mouse liver microsomes (MLMs) showed that SchA reduced the production of DIC-glutathione (GSH) conjugate. In addition, SchA significantly reduced the excretion of DIC-GSH conjugate in the urine of mice and relieved hepatic GSH depletion induced by DIC. These results suggested that SchA could inhibit the metabolic activation of DIC in vitro and in vivo. In summary, our findings showed that the observed pharmacokinetic interactions might be attributable to the inhibition of the metabolism of DIC by SchA, which might be responsible for the protection of SchA against DIC-induced hepatotoxicity. Therefore, the development of a standardized combination of DIC and SchA may protect patients from DIC-induced liver injury.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Ciclo-Octanos , Dioxóis , Lignanas , Quinolinas , Humanos , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Lignanas/farmacologia , Lignanas/uso terapêutico , Lignanas/metabolismo , Fígado , Extratos Vegetais/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
5.
Chem Biodivers ; 20(3): e202200840, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36662670

RESUMO

Inhibiting nitric oxide (NO) or its production is found to be of therapeutic benefit. To discover natural small molecule inhibitors of NO production, a bioassay- and LC/MS-guided chemical investigation was done on the metabolites of endophytic fungus isolated from fresh Piper nigrum fruits. The isolated pure strain was identified as Penicillium polonicum by 16S rDNA sequence comparison. The culture broth extract of P. polonicum (EEPP) exhibited a significant reduction of NO production (Griess method) in LPS-stimulated RAW 264.7 cells (P<0.0001). To understand the chemical constituents of bioactive EEPP, column chromatography and p-TLC studies were carried out, which yielded eight pure compounds. They were characterised as botryosphaeridione (1), 3-(3,5-di-tert-butyl-4-hydroxy)phenylpropionic acid (2), variabilone (3), 2,4-di-tert-butylphenol (4), indole-3-carboxylic acid (5), tyrosol (6), ethyl ferulate (7) and a new lignan (8) based on the spectral analysis. The structure elucidation of the new lignan, named polonilignan (8), was based on HR-MS, 1 H- & 13 C-NMR, H-H COSY, HSQC and HMBC spectra. Compounds 2, 4, 5 and 6 showed a significant decrease (P<0.0001) in the production of NO in LPS-induced RAW 264.7 cells. Tyrosol (6) and indole-3-carboxylic acid (5) controlled nitrite release with IC50 values of 22.84 and 55.01 µM, respectively. This is the first report of (i) P. polonicum as an endophytic fungus of pepper fruits, (ii) isolation of compounds 1-8 except 6 from P. polonicum culture broth extract and (iii) NO inhibition effect of 2, 4, 5 and 6.


Assuntos
Lignanas , Penicillium , Piper nigrum , Fungos , Lignanas/farmacologia , Lignanas/metabolismo , Lipopolissacarídeos/farmacologia , Óxido Nítrico/metabolismo , Penicillium/química , Extratos Vegetais/metabolismo
6.
Phytochemistry ; 206: 113520, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36544302

RESUMO

Forest operations and wood industry generate large amounts of residues that are discarded in the field and cause environmental pollution. However, these biomass residues are still raw materials to obtain value-added products, such as essential oils, organic/aqueous extracts and resins that are among the great natural sources of bioactive metabolites. Thus, in recent years, the scientific community is giving special attention to their valorization. To date, different uses of biomass residues have been proposed, such as a source of renewable energy, fertilizers, animal feed and bioactive molecules. In this context, Cryptomeria japonica biomass residues (e.g., bark and its exudate, heartwood, sapwood, leaves, cones and roots) represent a source of diverse specialized metabolites (e.g., sesqui-, di-, tri- and sesquarterpenes, flavonoids, lignans and norlignans) with potential application in different fields, particularly in the agrochemical, food, cosmeceutical, pharmaceutical, phytomedicine and esthetic, due to their valuable multi-bioactivities determined over the last decades. Thus, this review provides an overview of the reported biological activities of organic extracts/fractions and their specialized metabolites obtained from different parts of C. japonica, in order to encourage the alternative uses of C. japonica wastes/byproducts, and implement a sustainable and circular bioeconomy.


Assuntos
Cryptomeria , Cupressaceae , Lignanas , Óleos Voláteis , Animais , Cupressaceae/química , Cryptomeria/química , Cryptomeria/metabolismo , Lignanas/metabolismo , Óleos Voláteis/química , Madeira/metabolismo
7.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36555124

RESUMO

Since chronic inflammation can be seen in severe, long-lasting diseases such as cancer, there is a high demand for effective methods to modulate inflammatory responses. Among many therapeutic candidates, lignans, absorbed from various plant sources, represent a type of phytoestrogen classified into secoisolariciresionol (Seco), pinoresinol (Pino), matairesinol (Mat), medioresinol (Med), sesamin (Ses), syringaresinol (Syr), and lariciresinol (Lari). Lignans consumed by humans can be further modified into END or ENL by the activities of gut microbiota. Lignans are known to exert antioxidant and anti-inflammatory activities, together with activity in estrogen receptor-dependent pathways. Lignans may have therapeutic potential for postmenopausal symptoms, including cardiovascular disease, osteoporosis, and psychological disorders. Moreover, the antitumor efficacy of lignans has been demonstrated in various cancer cell lines, including hormone-dependent breast cancer and prostate cancer, as well as colorectal cancer. Interestingly, the molecular mechanisms of lignans in these diseases involve the inhibition of inflammatory signals, including the nuclear factor (NF)-κB pathway. Therefore, we summarize the recent in vitro and in vivo studies evaluating the biological effects of various lignans, focusing on their values as effective anti-inflammatory agents.


Assuntos
Doenças Cardiovasculares , Lignanas , Neoplasias , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Lignanas/farmacologia , Lignanas/uso terapêutico , Lignanas/metabolismo , NF-kappa B , Fitoestrógenos
8.
Molecules ; 27(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36296420

RESUMO

Flavonoids, stilbenes, lignans, and phenolic acids, classes of polyphenols found in grape pomace (GP), were investigated as an important alternative source for active substances that could be used in the management of oxidative stress and inflammation. The benefic antioxidant and anti-inflammatory actions of GP are presented in the literature, but they are derived from a large variety of experimental in vitro and in vivo settings. In these in vitro works, the decrease in reactive oxygen species, malondialdehyde, and thiobarbituric acid reactive substances levels and the increase in glutathione levels show the antioxidant effects. The inhibition of nuclear factor kappa B and prostaglandin E2 inflammatory pathways and the decrease of some inflammatory markers such as interleukin-8 (IL-8) demonstrate the anti-inflammatory actions of GP polyphenols. The in vivo studies further confirmed the antioxidant (increase in catalase, superoxide dismutase and glutathione peroxidase levels and a stimulation of endothelial nitric oxide synthase -eNOS gene expression) and anti-inflammatory (inhibition of IL-1𝛼, IL-1ß, IL-6, interferon-𝛾, TNF-α and C-reactive protein release) activities. Grape pomace as a whole extract, but also different individual polyphenols that are contained in GP can modulate the endogenous pathway responsible in reducing oxidative stress and chronic inflammation. The present review analyzed the effects of GP in oxidative stress and inflammation, suggesting that it could become a valuable therapeutic candidate capable to reduce the aforementioned pathological processes. Grape pomace extract could become an adjuvant treatment in the attempt to reduce the side effects of the classical anti-inflammatory medication like non-steroidal anti-inflammatory drugs (NSAIDs).


Assuntos
Lignanas , Estilbenos , Vitis , Polifenóis/farmacologia , Polifenóis/metabolismo , Vitis/metabolismo , Interleucina-8/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Catalase/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Glutationa Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , NF-kappa B/metabolismo , Proteína C-Reativa/metabolismo , Dinoprostona/metabolismo , Interleucina-6/metabolismo , Estresse Oxidativo , Flavonoides/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Inflamação/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Superóxido Dismutase/metabolismo , Estilbenos/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/metabolismo , Lignanas/metabolismo , Glutationa/metabolismo , Interferons
9.
Zhongguo Zhong Yao Za Zhi ; 47(15): 4074-4083, 2022 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-36046897

RESUMO

The lignan glycosyltransferase UGT236(belonging to the UGT71 B family) from Isatis indigotica can catalyze the production of phloridzin from phloretin in vitro. UGT236 shares high identity with P2'GT from apple. In this study, the recombinant plasmid pET28 a-MBP-UGT236 was transferred into Escherichia coli Rosetta(DE3) cells and induced by isopropyl-ß-D-thiogalactoside(IPTG). The purified UGT236 protein was used for enzymatic characterization with phloretin as substrate. The results showed that UGT236 had the optimal reaction temperature of 40 ℃ and the optimal pH 8(Na_2HPO_4-NaH_2PO_4 system). The UGT236 activity was inhibited by Ni~(2+) and Al~(3+), enhanced by Fe~(2+), Co~(2+), and Mn~(2+), and did not affected by Mg~(2+), Ca~(2+), Li~+, Na~+, or K~+. The K_m, K_(cat), and K_(cat)/K_m of phloretin were 61.03 µmol·L~(-1), 0.01 s~(-1), and 157.11 mol~(-1)·s~(-1)·L, and those of UDPG were 183.6 µmol·L~(-1), 0.01 s~(-1), and 51.91 mol~(-1)·s~(-1)·L, respectively. The possible active sites were predicted by homologous modeling and molecular docking. By mutagenisis and catalytic activity detection, three key active sites, Glu391, His15, and Thr141, were identified, while Phe146 was related to product diversity. In summary, we found that the lignan glycosyltransferase UGT236 from I.indigotica could catalyze the reaction of phloretin into phloridzin. Several key amino acid residues were identified by structure prediction, molecular docking, and site-mutagenesis, which provided a basis for studying the specificity and diversity of phloretin glycoside products. This study can provide a reference for artificially producing glycosyltransferase elements with high efficiency and specific catalysis.


Assuntos
Isatis , Lignanas , Glucosiltransferases/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Lignanas/metabolismo , Simulação de Acoplamento Molecular , Floretina/metabolismo , Florizina/metabolismo
10.
Food Funct ; 13(18): 9243-9253, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36000543

RESUMO

As a type of phytoestrogen, lignans have attracted attention in recent years for their nutritional functions. To investigate the effects of lignans on the structural and nutritional functions of starch, honokiol (HK) and arctiin (AC) were complexed with rice starch respectively under high-pressure homogenization (UHPH) (UHPHRS/HK and UHPHRS/AC). The results showed that both HK and AC could form inclusive complexes with rice starch via non-covalent bonding (hydrophobic interaction and hydrogen bonds), and these complexes could further form V-type crystals and aggregates, which reduced the starch digestibility as well as endowing them with the ability to retard glucose release and bind sodium cholate. Interestingly, due to its smaller molecular size, HK could induce starch to form a more compact structure than AC, leading to better nutritional functions. When the addition of HK/AC reached 8%, the resistant starch content could reach 26% and 19.8%, respectively. Meanwhile, the glucose dialysis retardation index could increase to 17.2% and 14.8%, respectively, and the sodium cholate-binding capacity could increase to 33.1 mg g-1 and 21.8 mg g-1, respectively. These results demonstrated that UHPH with lignans' molecular interaction could be beneficial for controlling the nutritional functions of starch products with the desired digestibility.


Assuntos
Lignanas , Oryza , Compostos Alílicos , Compostos de Bifenilo , Glucose/metabolismo , Lignanas/metabolismo , Oryza/química , Fenóis , Fitoestrógenos/metabolismo , Amido Resistente , Colato de Sódio , Amido/química
11.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3765-3772, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-35850833

RESUMO

Lignan is the main medicinal component of Eucommia ulmoides, and lignin is involved in the defense of plants against diseases and insect pests.They are synthesized from coniferyl alcohol with the help of dirigent(DIR) and peroxidase(POD), respectively.In this study, transcriptome assembly of stems and leaves of E.ulmoides was performed, yielding 112 578 unigenes.Among them, 70 459 were annotated in seven databases.A total of 59 unigenes encodes 11 key enzymes in the biosynthesis pathways of lignin and lignin, of which 11 encode POD and 8 encode DIR.A total of 13 unigenes encoding transcription factors are involved in phenylpropanoid metabolism. Compared with leaves of E.ulmoides, 7 575 unigenes were more highly expressed in stems, of which 462 were involved in phenylpropanoid biosynthesis.Our results extend the public transcriptome dataset of E.ulmoides, which provide valuable information for the analysis of biosynthesis pathways of lignan and lignin in E.ulmoides and lay a foundation for further study on the functions and regulation mechanism of key enzymes in lignan and lignin biosynthesis pathways.


Assuntos
Eucommiaceae , Lignanas , Vias Biossintéticas , Eucommiaceae/genética , Lignanas/metabolismo , Lignina/metabolismo , Transcriptoma
12.
Nutrients ; 14(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35745107

RESUMO

High-fiber plant foods contain lignans that are converted to bioactive enterolignans, enterolactone (ENL) and enterodiol (END) by gut bacteria. Previously, we conducted an intervention study to gain mechanistic insight into the potential chemoprotective effects of flaxseed lignan supplementation (secoisolariciresinol diglucoside; SDG) compared to a placebo in 42 men and women. Here, we expand on these analyses to further probe the impact of the microbial metabolite phenotype on host gene expression in response to lignan exposure. We defined metabolic phenotypes as high- or low-ENL excretion based on the microbial metabolism of SDG. RNA-seq was used to assess host gene expression in fecal exfoliated cells. Stratified by microbial ENL excretion, differentially expressed (DE) genes in high- and low-ENL excreter groups were compared. Linear discriminant analysis using the ENL phenotypes identified putative biomarker combinations of genes capable of discriminating the lignan treatment from the placebo. Following lignan intervention, a total of 165 DE genes in high-ENL excreters and 1450 DE genes in low-ENL excreters were detected. Functional analysis identified four common upstream regulators (master genes): CD3, IFNG, IGF1 and TNFRSF1A. Our findings suggest that the enhanced conversion of flaxseed lignan to ENL is associated with a suppressed inflammatory status.


Assuntos
Linho , Lignanas , 4-Butirolactona , Estudos Cross-Over , Suplementos Nutricionais , Feminino , Linho/metabolismo , Humanos , Lignanas/metabolismo , Lignanas/farmacologia , Masculino , Fenótipo
13.
Int J Biol Macromol ; 210: 182-195, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35545137

RESUMO

Lignins and lignans are important for plant resistance to pathogens. Dirigent (DIR) proteins control the regio- and stereo-selectivity of coniferyl alcohol in lignan and lignin biosynthesis. DIR genes have been implicated in defense-related responses in several plant species, but their role in poplar immunity is unclear. We cloned PtDIR11 from Populus trichocarpa; we found that overexpression of PtDIR11 in poplar improved the lignan biosynthesis and enhanced the resistance of poplar to Septotis populiperda. PtDIR11 has a typical DIR domain; it belongs to the DIR-b/d family and is expressed in the cell membrane. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis showed that PtDIR11 expression was highest in stems, followed by leaves and roots. Furthermore, PtDIR11 expression was induced by S. populiperda, salicylic acid (SA), jasmonate (JA), and ethylene (ET) stresses. The recombinant PtDIR11 protein inhibited the growth of S. populiperda in vitro. Overexpressing (OE) PtDIR11 in "Nanlin 895" poplar enhanced growth. The OE lines exhibited minimal changes in lignin content, but their total lignan and flavonoid contents were significantly greater than in the wild-type (WT) lines. Overexpression of PtDIR11 affected multiple biological pathways of poplar, such as phenylpropanoid biosynthesis. The methanol extracts of OE-PtDIR11 lines showed greater anti-S. populiperda activity than did lignin extracts from the WT lines. Furthermore, OE-PtDIR11 lines upregulated genes that were related to phenylpropanoid biosynthesis and genes associated with the JA and ET signal transduction pathways; it downregulated genes that were related to SA signal transduction compared with the WT line under S. populiperda stress. Therefore, the OE transgenic plants analysis revealed that PtDIR11 is a good candidate gene for breeding of disease resistant poplar.


Assuntos
Lignanas , Populus , Regulação da Expressão Gênica de Plantas , Lignanas/metabolismo , Lignina/genética , Lignina/metabolismo , Melhoramento Vegetal , Extratos Vegetais/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Ácido Salicílico/metabolismo
14.
J Food Biochem ; 46(8): e14180, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396857

RESUMO

Non-alcoholic fatty liver disease (NAFLD) can be attributed to the imbalance between lipogenesis and lipidolysis in the liver. Sesame lignans (sesamin, sesamolin, and sesamol) are unique bioactive compounds responsible for the nutritional function of sesame oils. However, the preventive effects of three lignans on oxidative stress and lipid metabolism in steatosis HepG2 cells have not been compared. In this study, we investigated the role of sesamin, sesamolin, and sesamol on hepatic lipid accumulation and explored the underlying mechanism via a well-established cell model. The results showed that 3 µg/ml of lignans could decrease the TG/TC contents and alleviate cellular oxidative stress, with an order of the lipid-lowering effect as sesamol > sesamin > sesamolin. The lignan-activated AMPK and PPAR signaling pathways enhanced gene and protein expressions related to fatty acid oxidation, cholesterol efflux, and catabolism. Meanwhile, treatment of the steatosis HepG2 cells with sesamin, sesamolin, and sesamol reduced lipid synthesis and cholesterol uptake, thus lowering intracellular lipogenesis in the process of NAFLD. Our data suggested that sesame lignans can attenuate oxidative stress and regulate lipid metabolism in liver cells, which may be potential therapeutic agents for treating the NAFLD. PRACTICAL APPLICATIONS: The present work demonstrated that sesame lignans can be used for dietary supplements or functional additives with excellent lipid-lowering effects. Furthermore, this study supplied potential molecular mechanisms involved in NAFLD treatment process, and also provided nutritional guidelines for sesame oil evaluation and selection.


Assuntos
Lignanas , Hepatopatia Gordurosa não Alcoólica , Sesamum , Benzodioxóis , Colesterol , Dioxóis , Células Hep G2 , Humanos , Lignanas/metabolismo , Lignanas/farmacologia , Lignanas/uso terapêutico , Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Estresse Oxidativo , Fenóis , Óleo de Gergelim/análise , Óleo de Gergelim/farmacologia , Sesamum/metabolismo
15.
Ecotoxicol Environ Saf ; 236: 113481, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35405527

RESUMO

Aflatoxin B1 (AFB1), a mycotoxin contaminating food and feed, can trigger liver immune toxicity and threaten the poultry industry. Phillygenin (PHI) is a natural lignan derived primarily from Forsythia suspensa with hepatoprotective pharmacological and medicinal properties. This research aimed to investigate the preventive effects of PHI on the toxicity of AFB1 in the liver of chickens. Chickens were administered with AFB1 (2.8 mg/kg) and/or treated with PHI (24 mg/kg) for 33 days. The histopathological changes, serum biochemical indices, oxidative damage, inflammatory mediators, apoptosis, and activation of the NF-κB and Nrf2 signaling pathways were measured. Results revealed that dietary PHI ameliorated liver function indicators, reduced the malondialdehyde and inflammatory mediator production and the apoptotic cell number, and increased the antioxidant enzyme contents and Bcl-2 level. The quantitative realtime PCR and Western blot results revealed that PHI reduced p53, cytochrome c, Bax, caspase-9, and caspase-3 levels, normalized the NF-κB p65 phosphorylation, and upregulated the Nrf2 and its downstream genes expression in chicken liver. These results indicated that PHI has beneficial effects on AFB1-induced liver damage, oxidative damage, inflammatory response, apoptosis, and immunotoxicity by inhibiting NF-κB and activating the Nrf2 signaling pathway in chickens. This study provides new insight into the therapeutic uses of PHI.


Assuntos
Aflatoxina B1 , Lignanas , Aflatoxina B1/toxicidade , Animais , Apoptose , Galinhas/metabolismo , Suplementos Nutricionais , Inflamação/metabolismo , Lignanas/metabolismo , Lignanas/farmacologia , Fígado , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo
16.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208941

RESUMO

The Piper species are a recognized botanical source of a broad structural diversity of lignans and its derivatives. For the first time, Piper tectoniifolium Kunth is presented as a promising natural source of the bioactive (-)-grandisin. Phytochemical analyses of extracts from its leaves, branches and inflorescences showed the presence of the target compound in large amounts, with leaf extracts found to contain up to 52.78% in its composition. A new HPLC-DAD-UV method was developed and validated to be selective for the identification of (-)-grandisin being sensitive, linear, precise, exact, robust and with a recovery above 90%. The absolute configuration of the molecule was determined by X-ray diffraction. Despite the identification of several enantiomers in plant extracts, the major isolated substance was characterized to be the (-)-grandisin enantiomer. In vascular reactivity tests, it was shown that the grandisin purified from botanical extracts presented an endothelium-dependent vasorelaxant effect with an IC50 of 9.8 ± 1.22 µM and around 80% relaxation at 30 µM. These results suggest that P. tectoniifolium has the potential to serve as a renewable source of grandisin on a large scale and the potential to serve as template for development of new drugs for vascular diseases with emphasis on disorders related to endothelial disfunction.


Assuntos
Furanos/química , Lignanas/química , Piper/química , Extratos Vegetais/química , Furanos/metabolismo , Lignanas/metabolismo , Piper/metabolismo
17.
Zhongguo Zhong Yao Za Zhi ; 47(24): 6587-6595, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36604907

RESUMO

Based on the transcriptome data of Isatis indigotica, a total of 110 putative glycosytransferases were identified. Through prokaryotic expression and enzymic activity assay in vitro, a novel lignan glycosyltransferase gene was screened out and named IiUGT349, which catalyzed lariciresinol into lariciresinol-4-O-ß-D-glucoside and lariciresinol-4'-O-ß-D-glucoside. Bioinformatics analysis suggested that IiUGT349 contained an open reading frame(ORF) of 1 401 bp encoding a protein of 467 amino acids. A protein analysis indicated that IiUGT349 have a predecited molecular weight of 52.77 kDa and pI of 5.96. Phylogenetic analysis showed that IiUGT349 belonging to UGT90 family shared low amino acid sequence identity with the reported lignan glycosyltransferases, which may represent a novel type of lignan glycosyltransferases. Quantitative real-time PCR(qRT-PCR) analysis showed that IiUGT349 was expressed in roots, stems, young leaves and leaves, with the highest expression level in stems. Further biochemical analysis showed that the optimal reaction time of IiUGT349 recombinant protein was 12 h and the optimal temperature was 45 ℃. Subcellular localization demonstrated that IiUGT349 was located in the cytoplasm and nucleus of plants. In this study, a new glucosyltransferase gene IiUGT349 from I. indigotica belonging to the UGT90 family was cloned, which laid a foundation to further investigate its' function and elucidate the lignan glycosides biosynthesis pathway and plays an important role for great significance for the synthetic biology of active lignan glycosides.


Assuntos
Isatis , Lignanas , Clonagem Molecular , Glucosídeos/metabolismo , Isatis/genética , Isatis/química , Lignanas/metabolismo , Filogenia , Glicosiltransferases/metabolismo
18.
Molecules ; 26(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34885972

RESUMO

Breast cancer resistance protein (BCRP), one of the ATP-binding cassette (ABC) transporters, was associated with the multidrug resistance (MDR) of chemotherapy. Magnolol (MN) and honokiol (HK) are major bioactive polyphenols of Magnolia officinalis. This study investigated the effects of MN and HK on the function and expression of BCRP for the purpose of developing BCRP inhibitor to overcome MDR. Cell lines including MDCKII-BCRP and MDCKII-WT were used for evaluating the function and expression of BCRP. The results showed that MN (100-12.5 µM) and HK (100-12.5 µM) significantly decreased the function of BCRP by 80~12% and 67~14%, respectively. In addition, MN and HK were verified as substrates of BCRP. Furthermore, MN and HK reduced the protein expression of BCRP, and inhibited the phosphorylation of epidermal growth factor receptor (EGFR) and phosphatidylinositol 3-kinase (PI3K). In conclusion, both MN and HK decreased the function and expression of BCRP via EGFR/PI3K signaling pathway. Therefore, both compounds were promising candidates for reversing the MDR of chemotherapy.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Compostos de Bifenilo/farmacologia , Lignanas/farmacologia , Magnolia/química , Proteínas de Neoplasias/metabolismo , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Compostos de Bifenilo/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cães , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/metabolismo , Lignanas/metabolismo , Células Madin Darby de Rim Canino , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/metabolismo , Polifenóis/metabolismo
19.
Molecules ; 26(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34684736

RESUMO

Podophyllotoxins are natural lignans with known cytotoxic activity on several cell lines. The structural basis for their actions is mainly by the aryltetralin-lignan skeleton. Authors have proposed a cytotoxic mechanism of podophyllotoxins through the topoisomerase-II inhibition activity; however, several studies have also suggested that podophyllotoxins can inhibit the microtubules polymerization. In this work, the two possible mechanisms of action of two previously isolated compounds from the stem bark of Bursera fagaroides var. fagaroides: acetylpodophyllotoxin (1) and 5'-desmethoxydeoxypodophyllotoxin (2), was analyzed. An in vitro anti-tubulin epifluorescence on the MCF10A cell line and enzymatic topoisomerase II assays were performed. The binding affinities of compounds 1 and 2 in the colchicine binding site of tubulin by using rigid- and semiflexible-residues were calculated and compared using in silico docking methods. The two lignans were active by the in vitro anti-tubulin assay but could not inhibit TOP2 activity. In the in silico analysis, the binding modes of compounds into both rigid- and semiflexible-residues of tubulin were predicted, and only for the semiflexible docking method, a linear correlation between the dissociation constant and IC50 previously reported was found. Our results suggest that a simple semiflexible-residues modification in docking methods could provide an in vitro correlation when analyzing very structurally similar compounds.


Assuntos
Lignanas/química , Podophyllum/toxicidade , Tubulina (Proteína)/metabolismo , Sítios de Ligação , Bursera/metabolismo , Bursera/fisiologia , Linhagem Celular Tumoral , Simulação por Computador , Humanos , Lignanas/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Podofilotoxina/farmacologia , Tubulina (Proteína)/efeitos dos fármacos
20.
Microb Cell Fact ; 20(1): 183, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34544406

RESUMO

BACKGROUND: The aryltetralin lignan (-)-podophyllotoxin is a potent antiviral and anti-neoplastic compound that is mainly found in Podophyllum plant species. Over the years, the commercial demand for this compound rose notably because of the high clinical importance of its semi-synthetic chemotherapeutic derivatives etoposide and teniposide. To satisfy this demand, (-)-podophyllotoxin is conventionally isolated from the roots and rhizomes of Sinopodophyllum hexandrum, which can only grow in few regions and is now endangered by overexploitation and environmental damage. For these reasons, targeting the biosynthesis of (-)-podophyllotoxin precursors or analogues is fundamental for the development of novel, more sustainable supply routes. RESULTS: We recently established a four-step multi-enzyme cascade to convert (+)-pinoresinol into (-)-matairesinol in E. coli. Herein, a five-step multi-enzyme biotransformation of (-)-matairesinol to (-)-deoxypodophyllotoxin was proven effective with 98 % yield at a concentration of 78 mg/L. Furthermore, the extension of this cascade to a sixth step leading to (-)-epipodophyllotoxin was evaluated. To this end, seven enzymes were combined in the reconstituted pathway involving inter alia three plant cytochrome P450 monooxygenases, with two of them being functionally expressed in E. coli for the first time. CONCLUSIONS: Both, (-)-deoxypodophyllotoxin and (-)-epipodophyllotoxin, are direct precursors to etoposide and teniposide. Thus, the reconstitution of biosynthetic reactions of Sinopodophyllum hexandrum as an effective multi-enzyme cascade in E. coli represents a solid step forward towards a more sustainable production of these essential pharmaceuticals.


Assuntos
Escherichia coli/enzimologia , Escherichia coli/metabolismo , Podofilotoxina/análogos & derivados , Podofilotoxina/biossíntese , Biocatálise , Biotransformação , Medicamentos de Ervas Chinesas , Escherichia coli/genética , Lignanas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA