Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 13067, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158600

RESUMO

The plasticity and proliferative capacity of stem cells decrease with aging, compromising their tissue regenerative potential and therapeutic applications. This decline is directly linked to mitochondrial dysfunction. Here, we present an effective strategy to reverse aging of mouse bone marrow mesenchymal stem cells (BM-MSCs) by restoring their mitochondrial functionality using photobiomodulation (PBM) therapy. Following the characterization of young and aged MSCs, our results show that a near-infrared PBM treatment delivering 3 J/cm2 is the most effective modality for improving mitochondrial functionality and aging markers. Furthermore, our results unveil that young and aged MSCs respond differently to the same modality of PBM: whereas the beneficial effect of a single PBM treatment dissipates within 7 h in aged stem cells, it is lasting in young ones. Nevertheless, by applying three consecutive treatments at 24-h intervals, we were able to obtain a lasting rejuvenating effect on aged MSCs. Our findings are of particular significance for improving autologous stem cell transplantation in older individuals who need such therapies most.


Assuntos
Senescência Celular/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos da radiação , Envelhecimento/fisiologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular/efeitos da radiação , Linhagem da Célula/efeitos da radiação , Proliferação de Células/efeitos da radiação , Relação Dose-Resposta à Radiação , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação
2.
Lasers Med Sci ; 36(1): 139-146, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32607713

RESUMO

Phototherapy is an effective therapeutic option in the treatment of vitiligo; however, responses varied among the different types. The underlying mechanism has scarcely been investigated. To investigate and compare the effects of phototherapy on the mutation of melanocyte lineage differentiated from human scalp-derived neural crest stem cells (HS-NCSCs) with p75 neurotrophin receptor expression positive and p75 neurotrophin receptor expression negative group in vitro, the HS-NCSCs were isolated from fetal scalp tissue, which is identified by immunofluorescent staining. The p75(+) and p75(-) cells from HS-NCSCs were isolated by magnetic cell sorting, respectively. The embryonic neural crest stem cell biomarkers were detected by RT-PCR. Narrow-band UVB (NB-UVB) was used to irradiate the cells. Cell proliferation was evaluated by cell count. Tyrosinase, Tyrp1, and Tyrp2 gene expression were measured by quantitative RT-PCR. Tyrosinase and GRCR protein levels were investigated by Western blot analysis. The electrophoretic strip showed that Sox2, Oct4, Sox10, and Nestin of p75(+) HS-NCSCs were brighter than the p75(-) HS-NCSCs. After the same dose radiation with NB-UVB, the cell proliferation of p75(+) group showed less inhibitory rate compared with the p75(-) HS-NCSCs. The tyrosinase mRNA and protein expression of differentiated melanocytes increased significantly in the group of p75(+) HS-NCSCs compared with the p75(-) group. The melanocytic mutation of p75(+) HS-NCSCs increased significantly compared with the p75(-) HS-NCSCs under NB-UVB, which indicated there were more melanocyte precursors in the differentiated cells from p75(+) HS-NCSCs. This may provide new insights for the different repigmentation efficacy of segmental and non-segmental vitiligo.


Assuntos
Linhagem da Célula/efeitos da radiação , Melanócitos/citologia , Melanócitos/efeitos da radiação , Crista Neural/citologia , Fototerapia , Receptor de Fator de Crescimento Neural/metabolismo , Couro Cabeludo/citologia , Células-Tronco/citologia , Biomarcadores/metabolismo , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Humanos , Melanócitos/metabolismo , Mutação/genética , Células-Tronco/efeitos da radiação , Terapia Ultravioleta
3.
J Photochem Photobiol B ; 203: 111738, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31954290

RESUMO

This study aimed to compare the synthesis and secretion of VEGF-A, VEGF-C, VEGF-D, VEGFR1, VEGFR2, and FGF-2 between pulp fibroblasts from human primary teeth (HPF) and stem cell from human deciduous teeth (SHED) before and after photobiomodulation. HPF were obtained from explant technique and characterized by immunohistochemistry, while SHED were obtained from digestion technique and characterized by flow cytometry. HPF (control group) and SHED were plated, let to adhere, and put on serum starvation to synchronize the cell cycles prior to photobiomodulation. Then, both cell lineages were irradiated with 660-nm laser according to the following groups: 2.5 and 3.7 J/cm2. MTT and crystal violet assays respectively verified viability and proliferation. ELISA Multiplex Assay assessed the following proteins: VEGF-A, VEGF-C, VEGF-D, VEGFR1, VEGFR2, FGF-2, at 6, 12, and 24 h after photobiomodulation, in supernatant and lysate. Two-way ANOVA/Tukey test evaluated cell viability and proliferation, while angiogenic production and secretion values were analyzed by one-way ANOVA (P < .05). Statistically similar HPF and SHED viability and proliferation patterns occurred before and after photobiomodulation (P > .05). HPF exhibited statistically greater values of all angiogenic proteins than did SHED, at all study periods, except for FGF-2 (supernatant; 12 h); VEGFR1 (lysate; non-irradiated; 12 h); and VEGFR1 (lysate; non-irradiated; 24 h). Photobiomodulation changed the synthesis and secretion of angiogenic proteins by HPF. HPF produced and secreted greater values of all tested angiogenic proteins than did SHED before and after irradiation with both energy densities of 2.5 and 3.7 J/cm2.


Assuntos
Fibroblastos/efeitos da radiação , Lasers , Células-Tronco/efeitos da radiação , Linhagem da Célula/efeitos da radiação , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Células-Tronco/citologia , Células-Tronco/metabolismo , Dente Decíduo/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
4.
Lasers Med Sci ; 34(1): 115-126, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30264177

RESUMO

Tissue engineering aims to take advantage of the ability of undifferentiated stem cells to differentiate into multiple cell types to repair damaged tissue. Photobiomodulation uses either lasers or light-emitting diodes to promote stem cell proliferation and differentiation. The present study aimed to investigate single and dual combinations of laser wavelengths on mesenchymal stem cells (MSCs). MSCs were derived from rabbit iliac bone marrow. One control and eight laser irradiated groups were designated as Infrared (IR, 810 nm), Red (R, 660 nm), Green (G, 532 nm), Blue (B, 485 nm), IR-R, IR-B, R-G, and B-G. Irradiation was repeated daily for 21 days and cell proliferation, osseous, or cartilaginous differentiation was then measured. RT-PCR biomarkers were SOX9, aggrecan, COL 2, and COL 10 expression for cartilage and ALP, COL 1, and osteocalcin expression for bone. Cellular proliferation was increased in all irradiated groups except G. All cartilage markers were significantly increased by IR and IR-B except COL 10 which was suppressed by IR-B combination. ALP expression was highest in R and IR groups during osseous differentiation. ALP was decreased by combinations of IR with B and with R, and also by G alone. R and B-G groups showed stimulated COL 1 expression; however, COL 1 was suppressed in IR-B, IR-R, and G groups. IR significantly increased osteocalcin expression, but in B, B-G, and G groups it was reduced. Cartilage differentiation was stimulated by IR and IR-B laser irradiation. The effects of single or combined laser irradiation were not clear-cut on osseous differentiation. Stimulatory effects on osteogenesis were seen for R and IR lasers, while G laser had inhibitory effects.


Assuntos
Osso e Ossos/citologia , Cartilagem/citologia , Diferenciação Celular/efeitos da radiação , Lasers , Terapia com Luz de Baixa Intensidade , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos da radiação , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Linhagem da Célula/efeitos da radiação , Proliferação de Células/efeitos da radiação , Forma Celular/efeitos da radiação , Células Cultivadas , Condrogênese/genética , Condrogênese/efeitos da radiação , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Regulação da Expressão Gênica/efeitos da radiação , Osteogênese/genética , Osteogênese/efeitos da radiação , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA