Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 884
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 128: 155341, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518636

RESUMO

BACKGROUND: Atherosclerosis (AS) is a chronic disease characterized by lipid accumulation in the aortic wall and the formation of foam cells overloaded with large lipids inclusions. Currently, Western medicine is primarily used to improve lipid metabolism disorders and reduce inflammatory reactions to delay AS progression, but these medicines come with serious side effects and drug resistance. Gualou-Xiebai (GLXB) is a renowned herb pair that has been proven effective against AS. However, the potential molecular mechanism through which GLXB exerts the anti-atherosclerotic effects of increasing lipophagy in vascular smooth muscle cells (VSMCs) remains unknown. PURPOSE: This study aims to explore the role of lipophagy and the therapeutic mechanism of GLXB in AS. METHODS: UPLC-Q-TOF-MS for the determination of the main components of GLXB-containing serum. An AS mouse model was established by feeding a high-fat diet (HFD) to ApoE-/- mice for 12 weeks. Ultrasonography monitoring was used to confirm the successful establishment of the AS model. Plaque areas and lipid deposition were evaluated using HE staining and aorta imagingafter GLXB treatment. Immunofluorescence staining and Western blotting were utilized to observe the P2RY12 and lipophagy levels in AS mice. VSMCs were stimulated with oxidized low-density lipoprotein (ox-LDL) to induce foam cell formation. The degree of lipophagy and the related molecular mechanisms were assessed after treating the VSMCs with GLXB-containing serum or si-P2RY12 transfection. The active components of GLXB-containing serum that act on P2RY12 were screened and verified by molecular docking and dual-luciferase reporter assays. RESULTS: Seventeen components of GLXB were identified in rat serum by UPLC-Q-TOF-MS. GLXB significantly reduced lipid deposition in HFD-fed ApoE-/- mice and ox-LDL-induced VSMCs. GLXB strikingly increased lipophagy levels by downregulating P2RY12, p62, and plin2, upregulating LC3Ⅱ protein expression, and increasing the number of autophagosomes. Notably, the lipophagy inhibitor CQ and the P2RY12 receptor agonist ADPß abolished the GLXB-induced increase in lipophagy. Last, we confirmed that albiflorin, apigenin, luteolin, kaempferol, 7,8-dihydroxyflavone, and hesperetin from GLXB significantly inhibited P2RY12. CONCLUSION: GLXB activates lipophagy and inhibits lipid accumulation-associated VSMC-derived foam cell formation through suppressing P2RY12 activation, resulting in anti-atherosclerotic effects. The GLXB components albiflorin, apigenin, luteolin, kaempferol, 7,8-dihydroxyflavone, and hesperetin are the potential active effectors against P2RY12.


Assuntos
Aterosclerose , Medicamentos de Ervas Chinesas , Células Espumosas , Músculo Liso Vascular , Receptores Purinérgicos P2Y12 , Animais , Aterosclerose/tratamento farmacológico , Células Espumosas/efeitos dos fármacos , Células Espumosas/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Masculino , Camundongos , Medicamentos de Ervas Chinesas/farmacologia , Receptores Purinérgicos P2Y12/metabolismo , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Ratos , Modelos Animais de Doenças , Autofagia/efeitos dos fármacos , Ratos Sprague-Dawley , Metabolismo dos Lipídeos/efeitos dos fármacos , Aorta/efeitos dos fármacos , Lipoproteínas LDL/metabolismo
2.
J Ethnopharmacol ; 327: 118006, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442806

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hawthorn leaves are a combination of the dried leaves of the Rosaceae plants, i.e., Crataegus pinnatifida Bge. or Crataegus pinnatifida Bge. var. major N. E. Br., is primarily cultivated in East Asia, North America, and Europe. hawthorn leaf flavonoids (HLF) are the main part of extraction. The HLF have demonstrated potential in preventing hypertension, inflammation, hyperlipidemia, and atherosclerosis. However, the potential pharmacological mechanism behind its anti-atherosclerotic effect has yet to be explored. AIM OF THE STUDY: The in vivo and in vitro effects of HLF on lipid-mediated foam cell formation were investigated, with a specific focus on the levels of secreted phospholipase A2 type IIA (sPLA2-II A) in macrophage cells. MATERIALS AND METHODS: The primary constituents of HLF were analyzed using ultra-high performance liquid chromatography and liquid chromatography-tandem mass spectrometry. In vivo, HLF, at concentrations of 5 mg/kg, 20 mg/kg, and 40 mg/kg, were administered to apolipoprotein E knockout mice (ApoE-/-) fed by high-fat diet (HFD) for 16 weeks. Aorta and serum samples were collected to identify lesion areas and lipids through mass spectrometry analysis to dissect the pathological process. RAW264.7 cells were incubated with oxidized low-density lipoprotein (ox-LDL) alone, or ox-LDL combined with different doses of HLF (100, 50, and 25 µg/ml), or ox-LDL plus 24-h sPLA2-IIA inhibitors, for cell biology analysis. Lipids and inflammatory cytokines were detected using biochemical analyzers and ELISA, while plaque size and collagen content of plaque were assessed by HE and the Masson staining of the aorta. The lipid deposition in macrophages was observed by Oil Red O staining. The expression of sPLA2-IIA and SCAP-SREBP2-LDLR was determined by RT-qPCR and Western blot analysis. RESULTS: The chemical profile of HLF was studied using UPLC-Q-TOF-MS/MS, allowing the tentative identification of 20 compounds, comprising 1 phenolic acid, 9 flavonols and 10 flavones, including isovitexin, vitexin-4″-O-glucoside, quercetin-3-O-robibioside, rutin, vitexin-2″-O-rhamnoside, quercetin, etc. HLF decreased total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and non-high-density lipoprotein cholesterol (non-HDL-C) levels in ApoE-/- mice (P < 0.05), reduced ox-LDL uptake, inhibited level of inflammatory factors, such as IL-6, IL-8, TNF-α, and IL-1ꞵ (P < 0.001), and alleviated aortic plaques with a thicker fibrous cap. HLF effectively attenuated foam cell formation in ox-LDL-treated RAW264.7 macrophages, and reduced levels of intracellular TC, free cholesterol (FC), cholesteryl ester (CE), IL-6, TNF-α, and IL-1ß (P < 0.001). In both in vivo and in vitro experiments, HLF significantly downregulated the expression of sPLA2-IIA, SCAP, SREBP2, LDLR, HMGCR, and LOX-1 (P < 0.05). Furthermore, sPLA2-IIA inhibitor effectively mitigated inflammatory release in RAW264.7 macrophages and regulated SCAP-SREBP2-LDLR signaling pathway by inhibiting sPLA2-IIA secretion (P < 0.05). CONCLUSION: HLF exerted a protective effect against atherosclerosis through inhibiting sPLA2-IIA to diminish SCAP-SREBP2-LDLR signaling pathway, to reduce LDL uptake caused foam cell formation, and to slow down the progression of atherosclerosis in mice.


Assuntos
Aterosclerose , Crataegus , Fosfolipases A2 Secretórias , Placa Aterosclerótica , Camundongos , Animais , Crataegus/química , Quercetina/uso terapêutico , Fosfolipases A2 Secretórias/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Espectrometria de Massas em Tandem , Aterosclerose/metabolismo , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo , Flavonoides/uso terapêutico , Lipoproteínas LDL/metabolismo , Transdução de Sinais , Colesterol/metabolismo , Camundongos Knockout , Apolipoproteínas E/genética
3.
Sci Rep ; 14(1): 3547, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347122

RESUMO

Cholesterol deposition in intimal macrophages leads to foam cell formation and atherosclerosis. Reverse cholesterol transport (RCT), initiated by efflux of excess cholesterol from foam cells, counteracts atherosclerosis. However, targeting RCT by enhancing cholesterol efflux was so far accompanied by adverse hepatic lipogenesis. Here, we aimed to identify novel natural enhancers of macrophage cholesterol efflux suitable for the prevention of atherosclerosis. Plant extracts of an open-access library were screened for their capacity to increase cholesterol efflux in RAW264.7 macrophages trace-labeled with fluorescent BODIPY-cholesterol. Incremental functional validation of hits yielded two final extracts, elder (Sambucus nigra) and bitter orange (Citrus aurantium L.) that induced ATP binding cassette transporter A1 (ABCA1) expression and reduced cholesteryl ester accumulation in aggregated LDL-induced foam cells. Aqueous elder extracts were subsequently prepared in-house and both, flower and leaf extracts increased ABCA1 mRNA and protein expression in human THP-1 macrophages, while lipogenic gene expression in hepatocyte-derived cells was not induced. Chlorogenic acid isomers and the quercetin glycoside rutin were identified as the main polyphenols in elder extracts with putative biological action. In summary, elder flower and leaf extracts increase macrophage ABCA1 expression and reduce foam cell formation without adversely affecting hepatic lipogenesis.


Assuntos
Aterosclerose , Extratos Vegetais , Sambucus nigra , Sambucus , Humanos , Células Espumosas/metabolismo , Lipoproteínas LDL/metabolismo , Lipogênese , Colesterol/metabolismo , Aterosclerose/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo
4.
J Ethnopharmacol ; 325: 117768, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38253275

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Atherosclerosis (AS), a lipid-induced inflammatory condition of the arteries, is a primary contributor to atherosclerotic cardiovascular diseases including stroke. Arctium lappa L. leaf (ALL), an edible and medicinal herb in China, has been documented and commonly used for treating stroke since the ancient times. However, the elucidations on its anti-AS effects and molecular mechanism remain insufficient. AIM OF THE STUDY: To investigate the AS-ameliorating effects and the underlying mechanism of action of an ethanolic extract of leaves of Arctium lappa L. (ALLE). MATERIALS AND METHODS: ALLE was reflux extracted using with 70% ethanol. An HPLC method was established to monitor the quality of ALLE. High fat diet (HFD) and vitamin D3-induced experimental AS in rats were used to determine the in vivo effects; and oxidized low-density lipoprotein-induced RAW264.7 macrophage foam cells were used for in vitro assays. Simvatatin was used as positive control. Biochemical assays were implemented to ascertain the secretions of lipids and pro-inflammatory mediators. Haematoxylin-eosin (H&E) and Oil red O stains were employed to assess histopathological alterations and lipid accumulation conditions, respectively. CCK-8 assays were used to measure cytotoxicity. Immunoblotting assay was conducted to measure protein levels. RESULTS: ALLE treatment significantly ameliorated lipid deposition and histological abnormalities of aortas and livers in AS rats; improved the imbalances of serum lipids including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C); notably attenuated serum concentrations of inflammation-associated cytokines/molecules including TNF-α, IL-6, IL-1ß, VCAM-1, ICAM-1and MMP-9. Mechanistic studies demonstrated that ALLE suppressed the phosphorylation/activation of PI3K, Akt and NF-κB in AS rat aortas and in cultured foam cells. Additionally, the PI3K agonist 740Y-P notably reversed the in vitro inhibitory effects of ALLE on lipid deposition, productions of TC, TNF-α and IL-6, and protein levels of molecules of PI3K/Akt and NF-κB singnaling pathways. CONCLUSIONS: ALLE ameliorates HFD- and vitamin D3-induced experimental AS by modulating lipid metabolism and inflammatory responses, and underlying mechanisms involves inhibition of the PI3K/Akt and NF-κB singnaling pathways. The findings of this study provide scientific justifications for the traditional application of ALL in managing atherosclerotic diseases.


Assuntos
Arctium , Aterosclerose , Fragmentos de Peptídeos , Receptores do Fator de Crescimento Derivado de Plaquetas , Acidente Vascular Cerebral , Ratos , Animais , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fosfatidilinositol 3-Quinases/metabolismo , Metabolismo dos Lipídeos , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Aterosclerose/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Lipídeos , Colesterol/farmacologia , Etanol/farmacologia , Lipoproteínas LDL/metabolismo , Colecalciferol/farmacologia , Colecalciferol/uso terapêutico
5.
J Nat Med ; 78(1): 180-190, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37973705

RESUMO

An acylated flavonol glycoside, trans-tiliroside (1), is found in certain parts of different herbs, including the seeds of Rosa canina (Rosaceae). Previous studies on compound 1 have focused on triglyceride (TG) metabolism, including its anti-obesity and intracellular TG reduction effects. In the present study, the effects of compound 1 on cholesterol (CHO) metabolism were investigated using human hepatocellular carcinoma-derived HepG2 cells and mice. Compound 1 decreased CHO secretion in HepG2 cells, which was enhanced by mevalonate in a concentration-dependent manner and decreased the secretion of apoprotein B (apoB)-100, a marker of very low-density lipoprotein (VLDL). Compound 1 also inhibited the activity of microsomal triglyceride transfer proteins, which mediate VLDL formation from cholesterol and triglycerides in the liver. In vivo, compound 1 inhibited the accumulation of Triton WR-1339-induced TG in the blood of fasted mice and maintained low levels of apoB-100. These results suggest that compound 1 inhibits the secretion of CHO as VLDL from the liver and has the potential for use for the prevention of dyslipidemia.


Assuntos
Lipoproteínas VLDL , Neoplasias Hepáticas , Camundongos , Humanos , Animais , Lipoproteínas VLDL/metabolismo , Lipoproteínas VLDL/farmacologia , Apolipoproteínas B/metabolismo , Células Hep G2 , Fígado/metabolismo , Triglicerídeos , Colesterol , Lipoproteínas LDL/metabolismo
6.
J Ethnopharmacol ; 323: 117669, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38159828

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Thrombus generation is one of the leading causes of death in human, and vascular endothelial dysfunction is a major contributor to thrombosis. Pheretima guillemi (Michaelsen), a traditional medicinal animal known as "Dilong", has been utilized to cure thrombotic disorders for many years. DPf3, a group of functional proteins extracted from P. guillemi, has been characterized and identified to possess antithrombotic bioactivity via in vitro and ex vivo experiments. AIM OF THE STUDY: This study is aimed to investigate the vascular-protection activity and related mechanism of antithrombotic protein DPf3 purified from Pheretima guillelmi systematically. MATERIALS AND METHODS: The antithrombotic activity and vascular endothelium protection effect of DPf3 was explored in vivo using ponatinib-induced vascular endothelial injury zebrafish thrombus model. Then, (hi) ox-LDL-induced HUVECs was applied to investigate the protection mechanism of DPf3 against the injury of vascular endothelium. In addition, TMT-based proteomics analysis was used to study the biomarkers, biological processes and signal pathways involved in the antithrombotic and vascular protective effects of DPf3 holistically. RESULTS: DPf3 exerted robust in vivo antithrombosis and vascular endothelial protection ability. DPf3 was identified to prevent HUVECs from damage by reducing ROS production, and to reduce monocyte adhesion by decreasing the protein content of adhesion factor VCAM 1. DPf3 was also observed to weaken the migration ability of injured cells and inhibit abnormal angiogenesis. The mechanism of DPf3's antithrombotic and vascular protective activity was mainly related to the regulation of lipid metabolism, energy metabolism, complement and coagulation system, ECM receptor interaction, MAPK signal pathway, etc. CONCLUSIONS: This study demonstrates that DPf3 has strong antithrombotic and endothelial protective effects. The endothelial protective ability and related mechanisms of DPf3 provide a scientific reference for the traditional use of earthworms in the treatment of thrombosis.


Assuntos
Imidazóis , Oligoquetos , Piridazinas , Trombose , Doenças Vasculares , Animais , Humanos , Peixe-Zebra , Células Endoteliais da Veia Umbilical Humana , Oligoquetos/metabolismo , Proteômica , Fibrinolíticos/farmacologia , Lipoproteínas LDL/metabolismo , Doenças Vasculares/metabolismo , Fatores de Transcrição/metabolismo , Trombose/induzido quimicamente , Trombose/tratamento farmacológico , Trombose/prevenção & controle
7.
Zhongguo Zhong Yao Za Zhi ; 48(16): 4438-4445, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37802870

RESUMO

This study aimed to investigate the effect and mechanism of Zuogui Jiangtang Qinggan Formula(ZGJTQG) on the glucolipid metabolism of type 2 diabetes mellitus(T2DM) complicated with non-alcoholic fatty liver disease(NAFLD). NAFLD was induced by a high-fat diet(HFD) in MKR mice(T2DM mice), and a model of T2DM combined with NAFLD was established. Forty mice were randomly divided into a model group, a metformin group(0.067 g·kg~(-1)), and high-and low-dose ZGJTQG groups(29.64 and 14.82 g·kg~(-1)), with 10 mice in each group. Ten FVB mice of the same age were assigned to the normal group. Serum and liver tissue specimens were collected from mice except for those in the normal and model groups after four weeks of drug administration by gavage, and fasting blood glucose(FBG) and fasting insulin(FINS) levels were measured. The levels of total cholesterol(TC), triglyceride(TG), and low-density lipoprotein(LDL) were detected by the single reagent GPO-PAP method. Very low-density lipoprotein(VLDL) was detected by enzyme-linked immunosorbent assay(ELISA). Alanine aminotransferase(ALT) and aspartate ami-notransferase(AST) were determined by the Reitman-Frankel assay. The pathological changes in the liver were observed by hematoxylin-eosin(HE) staining and oil red O staining. Real-time fluorescence-based quantitative polymerase chain reaction(real-time PCR) and Western blot were adopted to detect the mRNA and protein expression of forkhead transcription factor O1(FoxO1), microsomal triglyceride transfer protein(MTP), and apolipoprotein B(APOB) in the liver. The results showed that high-dose ZGJTQG could signi-ficantly reduce the FBG and FINS levels(P<0.05, P<0.01), improve glucose tolerance and insulin resistance(P<0.05, P<0.01), alleviate the liver damage caused by HFD which was reflected in improving liver steatosis, and reduce the serum levels of TC, TG, LDL, VLDL, ALT, and AST(P<0.05, P<0.01) in T2DM mice combined with NAFLD. The findings also revealed that the mRNA and protein expression of FoxO1, MTP, and APOB in the liver was significantly down-regulated after the intervention of high-dose ZGJTQG(P<0.05, P<0.01). The above study showed that ZGJTQG could effectively improve glucolipid metabolism in T2DM combined with NAFLD, and the mechanism was closely related to the regulation of the FoxO1/MTP/APOB signaling pathway.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Fígado , Lipoproteínas LDL/metabolismo , Transdução de Sinais , Dieta Hiperlipídica/efeitos adversos , RNA Mensageiro/metabolismo
8.
Redox Biol ; 64: 102762, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37302344

RESUMO

Maintenance peritoneal dialysis (PD) is commonly associated with cardiovascular diseases (CVDs), whose risk is assessed via LDL-C. Nonetheless, oxidized LDL (oxLDL), as being a key component of atherosclerotic lesions, could be also associated with atherosclerosis and related CVDs. However, its predictive value for CVDs risk assessment is subject of research studies due to the lack of specific methods to measure oxLDL status from its individual lipid/protein components. In the present study, six novel oxLDL markers, representative of certain oxidative modifications on the LDL protein and lipid components, are measured in atherosclerosis-prone PD patients (39) versus those in chronic kidney disease patients (61) under hemodialysis (HD) and healthy controls (40). LDL from serum of PD, HD and control subjects were isolated and fractionated into cholesteryl esters, triglycerides, free cholesterol, phospholipids and apolipoprotein B100 (apoB100). Subsequently the oxLDL markers cholesteryl ester hydroperoxides (-OOH), triglyceride-OOH, free cholesterol-OOH, phospholipid-OOH, apoB100 malondialdehyde and apoB100 dityrosines were measured. LDL carotenoid levels and LDL particle serum concentration were also measured. The levels of all oxLDL lipid-OOH markers were significantly elevated in PD patients versus control, while the levels of cholesteryl ester-/triglyceride-/free cholesterol-OOH were significantly elevated in PD versus HD patients, regardless of patients' underlying medical conditions, sex, age, PD type, clinical biochemical markers and medication. It should be noted that all fractionated lipid-OOH levels were inversely correlated with LDL-P concentration, while LDL-P concentration was not correlated with LDL-C in PD patients. Moreover, LDL carotenoids were significantly lower in PD patients versus control. The increased levels of oxLDL status specific markers in both PD and HD patients (compared to control), support a potential prognostic value of oxLDL regarding CVD risk assessment in both patient groups. Lastly, the study introduces the oxLDL peroxidation markers free cholesterol-OOH and cholesteryl ester-OOH as complementary to LDL-P number, and as possible alternatives to LDL-C.


Assuntos
Aterosclerose , Diálise Peritoneal , Humanos , Ésteres do Colesterol , LDL-Colesterol , Lipoproteínas LDL/metabolismo , Diálise Peritoneal/efeitos adversos , Biomarcadores , Colesterol , Aterosclerose/etiologia , Medição de Risco , Fosfolipídeos , Triglicerídeos
9.
J Ethnopharmacol ; 317: 116721, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37315648

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shenlian (SL) extract is consisted of extracts from Salvia miltiorrhiza Bunge and Andrographis paniculata (Burm.f.) Nees, two herbs commonly used in Chinese clinical formula to treat atherosclerosis by removing blood stasis and clearing away heat. Pharmacologically, the anti-atherosclerotic effects of these two herbs are related to unresolved inflammation and the macrophage anergy or apoptosis in lesions led by the lipid flux blockage and ER stress. However, the deeper understanding of SL extract in protecting macrophage in plaques remains unknown. AIM OF THE STUDY: This study aimed to investigate the underlying mechanism of SL extract in protecting ER-stressed macrophages from apoptosis in atherosclerosis. METHODS: The ApoE-/- atherosclerotic mice model and ox-LDL loaded macrophages model were established to assess the effect of SL extract on ER stress in vivo and in vitro. Key markers related to ER stress in plaque were determined by immunohistochemical staining. Proteins involved in apoptosis and ER stress in macrophages loaded by ox-LDL were assessed by Western blot. ER morphology was observed by electron microscope. Lipid flux was temporally and quantitatively depicted by Oil red staining. The LAL and LXRα were blocked by lalistat and Gsk 2033 respectively to investigate whether SL extract protected the function of macrophages by the activation of LAL-LXRα axis. RESULTS: Our study reported that, in ApoE-/- atherosclerotic mice, SL extract effectively relieved ER stress of carotid artery plaque. In lipid-overloaded macrophage models, SL extract significantly alleviated ER stress by promoting cholesterol degradation and efflux, which finally prevented apoptosis of foam cells induced by ox-LDL. Blockage of ER stress by 4-Phenylbutyric acid (4-PBA), an inhibitor of Endoplasmic Reticulum (ER) stress, largely attenuated the protective effects of SL extract on macrophage. By utilizing the selective antagonists against both LAL and LXRα, this study further revealed that the beneficial effects of SL extract in macrophages was dependent on the proper functionalization of LAL-LXRα axis. CONCLUSIONS: By highlighting the therapeutic significance of macrophage protection in resolving atherosclerosis inflammation, our study pharmacologically provided convincing mechanistic evidence of SL extract in the activation LAL-LXRα axis and revealed its promising potential in the promotion of cholesterol turnover and prevention of ER stress induced apoptosis in lipid-loaded macrophages.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Macrófagos , Lipoproteínas LDL/metabolismo , Colesterol/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Placa Aterosclerótica/patologia , Apolipoproteínas E/genética
10.
J Ethnopharmacol ; 309: 116283, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-36898449

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jieduquyuziyin prescription (JP), as a traditional Chinese medicine formula, is extensively applied to treat systemic lupus erythematosus (SLE). Its prescription is based on clinical practice and an evidence-based application of traditional medicines. It is approved by use in Chinese hospitals as a clinical prescription that can be directly used. AIM OF THE STUDY: The study aims to elucidate JP's efficacy on lupus-like disease combined with atherosclerosis and to explore its mechanism. MATERIALS AND METHODS: To conduct in vivo experiments, we established a model of lupus-like disease with atherosclerosis in ApoE-/- mice fed a high-fat diet and injected intraperitoneally with pristane. In addition, oxidized low-density lipoprotein (ox-LDL) and a TLR9 agonist (CpG-ODN2395) were utilized to examine the mechanism of JP on SLE combined with AS in RAW264.7 macrophages in vitro. RESULTS: Results indicated that JP reduced hair loss and levels of the spleen index, maintained stable body weight, alleviated kidney damage in mice, and reduced the expression levels of urinary protein, autoantibodies, and inflammatory factors in serum. Furthermore, JP is effective at alleviating the lupus-like symptoms observed in mice. In mice, JP inhibited aortic plaque deposition, stimulated lipid metabolism, and increased the expression of genes that regulate cholesterol efflux, including ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette subfamily G member 1 (ABCG1), scavenger receptor class B type I (SR-BI), and peroxisome proliferator-activated receptor γ (PPAR-γ). In vivo, JP inhibited the expression of the Toll-like receptor 9 (TLR9)-induced signaling pathway, which links TLR9/MyD88/NF-kB to the expression of subsequent inflammatory factors. Furthermore, JP inhibited the expression of TLR9 and MyD88 in vitro. In addition, the JP treatment effectively reduced foam cell formation in RAW264.7 macrophages by increasing the expression of ABCA1/G1, PPAR-γ and SR-BI. CONCLUSIONS: JP played a therapeutic role in ApoE-/- mice with pristane-induced lupus-like diseases and AS, possibly through inhibition of TLR9/MyD88 signaling and promotion of cholesterol efflux.


Assuntos
Aterosclerose , Lúpus Eritematoso Sistêmico , Camundongos , Animais , Receptor Toll-Like 9/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Colesterol/metabolismo , Lipoproteínas LDL/metabolismo , Células Espumosas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aterosclerose/genética , PPAR gama/metabolismo , Apolipoproteínas E/genética , Lúpus Eritematoso Sistêmico/tratamento farmacológico
11.
Molecules ; 28(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36903257

RESUMO

Rapeseed polyphenols have cardiovascular protective effects. Sinapine, one main rapeseed polyphenol, possesses antioxidative, anti-inflammatory, and antitumor properties. However, no research has been published about the role of sinapine in alleviating macrophage foaming. This study aimed to reveal the macrophage foaming alleviation mechanism of sinapine by applying quantitative proteomics and bioinformatics analyses. A new approach was developed to retrieve sinapine from rapeseed meals by using hot-alcohol-reflux-assisted sonication combined with anti-solvent precipitation. The sinapine yield of the new approach was significantly higher than in traditional methods. Proteomics was performed to investigate the effects of sinapine on foam cells, and it showed that sinapine can alleviate foam cell formation. Moreover, sinapine suppressed CD36 expression, enhanced the CDC42 expression, and activated the JAK2 and the STAT3 in the foam cells. These findings suggest that the action of sinapine on foam cells inhibits cholesterol uptake, activates cholesterol efflux, and converts macrophages from pro-inflammatory M1 to anti-inflammatory M2. This study confirms the abundance of sinapine in rapeseed oil by-products and elucidates the biochemical mechanisms of sinapine that alleviates macrophage foaming, which may provide new perspectives for reprocessing rapeseed oil by-products.


Assuntos
Brassica napus , Brassica rapa , Óleo de Brassica napus/metabolismo , Proteômica , Macrófagos/metabolismo , Células Espumosas/metabolismo , Brassica napus/metabolismo , Brassica rapa/química , Anti-Inflamatórios/metabolismo , Colesterol/metabolismo , Lipoproteínas LDL/metabolismo
12.
Zhongguo Zhong Yao Za Zhi ; 48(2): 311-320, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36725220

RESUMO

Atherosclerosis(AS) is the common pathological basis of many ischemic cardiovascular diseases, and its formation process involves various aspects such as vascular endothelial injury and platelet activation. Vascular endothelial injury is the initiating factor of AS plaque. Monocytes are recruited to differentiate into macrophages at the damaged endothelial cells, which absorb oxidized low-density lipoprotein(ox-LDL) and slowly transform into foam cells. Smooth muscle cells(SMCs) proliferate and migrate continuously. As the only cell producing interstitial collagen fibers in the fibrous cap, SMCs largely determine whether the plaque ruptured or not. The amplifying inflammatory response during the formation of AS recruits platelets to adhere to the damaged area of vascular endothelium and stimulates excessive platelet aggregation. Autophagy activity is associated with vascular lesions and abnormal platelet activation, and excessive autophagy is considered to be a negative factor for plaque stability. Therefore, precise regulation of different types of vascular autophagy and platelet autophagy to treat AS may provide a new therapeutic perspective for the prevention and treatment of atherosclerotic ischemic cardiovascular disease. Currently, treatment strategies for AS still focus on lowering lipid levels with high-intensity statins, which often cause significant side effects. Therefore, the development of safer and more effective drugs and treatment modes is the focus of current research. Traditional Chinese medicine and natural compounds have the potential to treat AS by targeted autophagy, and have been playing an increasingly important role in the prevention and treatment of cardiovascular diseases in China. This paper summarizes the experimental studies on different vascular cell types and platelet autophagy in AS, and sums up the published research results on targeted autophagy of traditional Chinese medicine and natural plant compounds to regulate AS, providing new ideas for further research.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Placa Aterosclerótica , Humanos , Células Endoteliais/metabolismo , Medicina Tradicional Chinesa , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Lipoproteínas LDL/metabolismo , Endotélio Vascular , Autofagia
13.
J Pharm Pharmacol ; 75(5): 625-634, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36805251

RESUMO

OBJECTIVES: Cyclophosphamide is a chemotherapeutic agent and immunosuppressant drug; however, it damages the liver. This study investigates the protective effect of ethanolic extract of Allium scorodoprasum (ASE) on cyclophosphamide-induced liver injury. METHODS: Twenty-eight Wistar albino rats were randomly divided into four groups (n = 7 per group): healthy rats, cyclophosphamide (200 mg/kg), cyclophosphamide (200 mg/kg) + ASE (100 mg/kg) and cyclophosphamide (200 mg/kg) + ASE (200 mg/kg). ASE was administered for 14 days, and the rats were euthanized 24 h after cyclophosphamide administration. KEY FINDINGS: Cyclophosphamide treatment leads to an increase in serum levels of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, total cholesterol, triglycerides, low-density lipoprotein and very low-density lipoprotein, as well as an increase in the liver levels of malondialdehyde, tumour necrosis factor, interleukin (IL)-1ß and IL-6, while high-density lipoprotein levels decrease. Treatment with cyclophosphamide caused liver necrosis and postnecrotic cell infiltration; however, pathological changes were prevented by ASE. 8-Hydroxy-2'-deoxyguanosine, anti-4-hydroxynenal antibody and anti-dityrosine levels increased in rats treated with cyclophosphamide and decreased in the groups treated with ASE. These changes were dose dependent in the ASE-treated groups. CONCLUSIONS: Treatment with cyclophosphamide caused liver damage due to oxidative stress and inflammation. ASE regulated the damage at high doses because it has potent antioxidant and anti-inflammatory ingredients. In future studies, it may be beneficial to administer ASE in higher doses or for longer periods of time.


Assuntos
Allium , Doença Hepática Induzida por Substâncias e Drogas , Animais , Ratos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Ratos Wistar , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Ciclofosfamida/toxicidade , Fígado , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Lipoproteínas LDL/metabolismo
14.
Biomolecules ; 13(1)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36671520

RESUMO

Alcohol abuse, a global health problem, is closely associated with many pathological processes, such as dyslipidemia and cardiovascular disease. In particular, excessive alcohol consumption promotes dyslipidemia and liver damage, such as hepatic steatosis, fibrosis, and cirrhosis. Beeswax alcohol (BWA) is a natural product used for its antioxidant properties that has not been evaluated for its efficacy in alcohol-induced liver injury. In the present study, zebrafish were exposed to 1% ethanol with supplementation of 10% fermented black rice bran (BRB-F), 10% BWA, or 10% mixtures of BWA+BRB-F (MIX). The BRB-F, BWA, and MIX supplementation increased the survival rate dramatically without affecting the body weight changes. In histology of hepatic tissue, alcoholic foamy degeneration was ameliorated by the BWA or MIX supplements. Moreover, dihydroethidium (DHE) and immunohistochemistry staining suggested that the MIX supplement decreased the hepatic ROS production and interleukin-6 expression significantly owing to the enhanced antioxidant properties, such as paraoxonase. Furthermore, the MIX supplement improved alcohol-induced dyslipidemia and oxidative stress. The BWA and MIX groups showed lower blood total cholesterol (TC) and triglyceride (TG) levels with higher high-density lipoprotein-cholesterol (HDL-C) than the alcohol-alone group. The MIX group showed the highest HDL-C/TC ratio and HDL-C/TG ratio with the lowest low-density lipoprotein (LDL)-C/HDL-C ratio. In conclusion, BWA and BRB-F showed efficacy to treat alcohol-related metabolic disorders, but the MIX supplement was more effective in ameliorating the liver damage and dyslipidemia, which agrees with an enhanced antioxidant and anti-inflammatory activity exhibited by BWA/BRB-F in a synergistic manner.


Assuntos
Dislipidemias , Oryza , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Etanol/metabolismo , Peixe-Zebra/metabolismo , Oryza/metabolismo , Fígado/metabolismo , Lipoproteínas LDL/metabolismo , Dislipidemias/metabolismo , Colesterol/metabolismo , HDL-Colesterol/metabolismo , Suplementos Nutricionais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Triglicerídeos/metabolismo
15.
Artigo em Chinês | WPRIM | ID: wpr-970467

RESUMO

Atherosclerosis(AS) is the common pathological basis of many ischemic cardiovascular diseases, and its formation process involves various aspects such as vascular endothelial injury and platelet activation. Vascular endothelial injury is the initiating factor of AS plaque. Monocytes are recruited to differentiate into macrophages at the damaged endothelial cells, which absorb oxidized low-density lipoprotein(ox-LDL) and slowly transform into foam cells. Smooth muscle cells(SMCs) proliferate and migrate continuously. As the only cell producing interstitial collagen fibers in the fibrous cap, SMCs largely determine whether the plaque ruptured or not. The amplifying inflammatory response during the formation of AS recruits platelets to adhere to the damaged area of vascular endothelium and stimulates excessive platelet aggregation. Autophagy activity is associated with vascular lesions and abnormal platelet activation, and excessive autophagy is considered to be a negative factor for plaque stability. Therefore, precise regulation of different types of vascular autophagy and platelet autophagy to treat AS may provide a new therapeutic perspective for the prevention and treatment of atherosclerotic ischemic cardiovascular disease. Currently, treatment strategies for AS still focus on lowering lipid levels with high-intensity statins, which often cause significant side effects. Therefore, the development of safer and more effective drugs and treatment modes is the focus of current research. Traditional Chinese medicine and natural compounds have the potential to treat AS by targeted autophagy, and have been playing an increasingly important role in the prevention and treatment of cardiovascular diseases in China. This paper summarizes the experimental studies on different vascular cell types and platelet autophagy in AS, and sums up the published research results on targeted autophagy of traditional Chinese medicine and natural plant compounds to regulate AS, providing new ideas for further research.


Assuntos
Humanos , Células Endoteliais/metabolismo , Doenças Cardiovasculares , Medicina Tradicional Chinesa , Aterosclerose/prevenção & controle , Lipoproteínas LDL/metabolismo , Endotélio Vascular , Placa Aterosclerótica , Autofagia
16.
Molecules ; 27(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36557935

RESUMO

Short-chain fatty acids (SCFAs) are important anti-inflammatory metabolites of intestinal flora. Oxidized low-density lipoprotein (ox-LDL)-induced macrophage activation is critical for the formation of atherosclerosis plaque. However, the association between SCFAs and ox-LDL-induced macrophage activation with respect to the formation of atherosclerosis plaque has not yet been elucidated. The present study investigated whether SCFAs (sodium acetate, sodium propionate, and sodium butyrate) can affect ox-LDL-induced macrophage activation and potential signaling pathways via regulation of the expression of the NLRP3/Caspase-1 pathway. Using human monocyte-macrophage (THP-1) cells as a model system, it was observed that ox-LDL not only induced cell inflammatory injury but also activated the NLRP3/Caspase-1 pathway. The exogenous supplementation of three SCFAs could significantly inhibit cell inflammatory injury induced by ox-LDL. Moreover, three SCFAs decreased the expression of IL-1ß and TNF-α via the inactivation of the NLRP3/Caspase-1 pathway induced by ox-LDL. Furthermore, three SCFAs affected cellular metabolism in ox-LDL-induced macrophages, as detected by untargeted metabolomics analysis. The results of the present study indicated that three SCFAs inhibited ox-LDL-induced cell inflammatory injury by blocking the NLRP3/Caspase-1 pathway, thereby improving cellular metabolism. These findings may provide novel insights into the role of SCFA intervention in the progression of atherosclerotic plaque formation.


Assuntos
Aterosclerose , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Caspase 1 , Células THP-1 , Lipoproteínas LDL/metabolismo , Aterosclerose/metabolismo , Ácidos Graxos Voláteis
17.
J Microbiol Biotechnol ; 32(11): 1406-1415, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36330745

RESUMO

The formation of macrophage foam cells stimulated by oxidized low-density lipoprotein (ox-LDL) is deemed an important cause of atherosclerosis. Transcription factor Yin Yang 1 (YY1), which is a universally expressed multifunctional protein, is closely related to cell metabolism disorders such as lipid metabolism, sugar metabolism, and bile acid metabolism. However, whether YY1 is involved in macrophage inflammation and lipid accumulation still remains unknown. After mouse macrophage cell line RAW264.7 cells were induced by ox-LDL, YY1 and proprotein convertase subtilisin/kexin type 9 (PCSK9) expressions were found to be increased while low-density lipoprotein receptor (LDLR) expression was lowly expressed. Subsequently, through reverse transcription-quantitative polymerase chain reaction (RT-qPCR), Western blot analysis, Oil Red O staining and cholesterol quantification, it turned out that silencing of YY1 attenuated the inflammatory response and lipid accumulation in RAW264.7 cells caused by ox-LDL. Moreover, results from the JASPAR database, chromatin immunoprecipitation (ChIP) assay, luciferase reporter assay and Western blot analysis suggested that YY1 activated PCSK9 by binding to PCSK9 promoter and modulated the expression of LDLR in the downstream of PCSK9. In addition, the results of functional experiments demonstrated that the inhibitory effects of YY1 interference on ox-LDL-mediated macrophage inflammation and lipid accumulation were reversed by PCSK9 overexpression. To sum up, YY1 depletion inhibited its activation of PCSK9, thereby reducing cellular inflammatory response, cholesterol homeostasis imbalance, and lipid accumulation caused by ox-LDL.


Assuntos
Aterosclerose , Pró-Proteína Convertase 9 , Animais , Camundongos , Aterosclerose/metabolismo , Inflamação , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/metabolismo
18.
Physiol Genomics ; 54(12): 471-485, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36250558

RESUMO

Oxidized low-density lipoprotein (ox-LDL) stimulation impairs the oxidation-reduction equilibrium in vascular endothelial cells (VECs) and contributes to atherosclerosis (AS). This study probed the mechanisms of extracellular vesicle (EV)-mediated transfer of lncRNA CLDN10 antisense RNA 1 (CLDN10-AS1) in ox-LDL-induced VEC injury. Initially, VEC injury models were established by treating human umbilical vein endothelial cells (HUVECs) with ox-LDL. EVs were isolated from HUVECs (HUVECs-EVs) and identified. CLDN10-AS1, microRNA (miR)-186, and Yin Yang 1 (YY1) expressions in ox-LDL-treated HUVECs and EVs derived from these cells (ox-EVs) were measured. HUVECs were incubated with EVs, after which the cell viability, apoptosis, and concentrations of proinflammatory cytokines and oxidative stress markers were measured. We discovered that CLDN10-AS1 and YY1 were upregulated in ox-LDL-treated HUVECs, whereas miR-186 was downregulated. ox-EVs treatment elevated CLDN10-AS1 expression in HUVECs and ox-EVs overexpressing CLDN10-AS1 promoted VEC injury. Besides, CLDN10-AS1 is competitively bound to miR-186 and promoted YY1 expression. Rescue experiments revealed that miR-186 overexpression or YY1 suppression partially reversed the roles of ox-EVs overexpressing CLDN10-AS1 in ox-LDL-induced VEC injury. Lastly, clinical serum samples were collected for verification. Overall, CLDN10-AS1 carried by HUVECs-EVs into HUVECs competitively bound to miR-186 to elevate YY1 expression, thereby aggravating ox-LDL-induced VEC injury.


Assuntos
Vesículas Extracelulares , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Vesículas Extracelulares/metabolismo , Apoptose
19.
Pharm Biol ; 60(1): 1960-1968, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36205548

RESUMO

CONTEXT: Swertia mussotii Franch. (Gentianaceae) is a source of the traditional Tibetan medicine, ZangYinChen, and is used to treat chronic hepatitis and many types of jaundice. OBJECTIVE: This study explored the therapeutic effects and mechanism of S. mussotii on non-alcoholic fatty liver disease in diet-induced hypercholesterolaemia. MATERIALS AND METHODS: After a week of adaptive feeding, 32 Sprague-Dawley rats were divided into four groups: (1) Control, (2) Control-S, (3) Model, and (4) Model-S. During the 12 experimental weeks, we established the Model using a high-fat diet. Control-S and Model-S were given 1.0 g/kg S. mussotii water extract via gavage starting in the fifth week until the end of experiment. RESULTS: When compared with Model rats, the S. mussotii water extract led to a reduction in high-density lipoproteins (43.9%) and albumin (13.9%) and a decrease in total cholesterol (54.0%), triglyceride (45.6%), low-density lipoproteins (8.6%), aspartate aminotransferase (11.0%), alanine aminotransferase (15.5%), alkaline phosphatase (19.1%), total protein (6.4%), and glucose (20.8%) in serum. A reduction in three cytokines (IL-1ß, IL-6, and TNFα) was detected. Histopathological examination showed that liver steatosis was significantly relieved in S. mussotii-treated high-fat diet rats. S. mussotii also caused a downregulation in the expression of TLR4 (43.2%), MyD88 (33.3%), and a decrease in phosphorylation of NF-κB. DISCUSSION AND CONCLUSIONS: Our findings indicate that S. mussotii may act as a potential anti-inflammation drug via inhibition of the TLR4/MyD88/NF-κB pathway. Further in vivo and in vitro studies are needed to validate its potential in clinical medicine.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Swertia , Alanina Transaminase/metabolismo , Albuminas/metabolismo , Albuminas/farmacologia , Fosfatase Alcalina , Animais , Aspartato Aminotransferases , Colesterol/metabolismo , Dieta Hiperlipídica , Glucose/metabolismo , Interleucina-6/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/farmacologia , Lipoproteínas LDL/metabolismo , Fígado , Fator 88 de Diferenciação Mieloide , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Fosforilação , Ratos , Ratos Sprague-Dawley , Swertia/metabolismo , Receptor 4 Toll-Like/metabolismo , Triglicerídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Água/farmacologia
20.
Drug Des Devel Ther ; 16: 3145-3168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36148321

RESUMO

Background: Atherosclerosis (AS) is the leading cause of cardiovascular diseases, such as myocardial infarction and stroke. Guanmaitong granule (GMTG) is a TCM (Traditional Chinese medicine) prescribed to treat AS. However, its mechanism remains unclear. Methods: We obtained reliable ingredients and targets of GMTG using the HERB database. AS-related targets were obtained from HERB and GeneCards databases. The target database was constructed by intersecting the ingredients of GMTG with the AS-related targets. STRING and Cytoscape were used to create protein-protein interaction (PPI) network and screen core targets. GO enrichment analysis and KEGG pathway analyses were performed using R. Finally, the ApoE-/- mice AS model was induced by a high-fat diet (HFD) for in vivo validation of core pathways and targets. Results: A total of 124 ingredients and 418 potential targets of GMTG for treating AS were obtained. Numerous ingredients and targets were related to Panax notoginseng, Salvia miltiorrhiza, and Astragalus. Most core targets and pathways were involved in the inflammatory immune response. GMTG could decrease serum triglycerides, total cholesterol, low-density lipoprotein-cholesterol, and oxidized low-density lipoprotein level and increase the serum high-density lipoprotein-cholesterol level. Furthermore, GMTG reduced the plaque burden and promoted plaque remodeling by reducing plaque area, lipid deposition, foam cell content, and collagen fiber content in the plaque in the aortic root of ApoE-/- mice. GMTG inhibited systemic and plaque inflammatory immune response and increased plaque stability by inhibiting the excessive release of the TLR4/MyD88/NF-κB pathway-induced inflammatory cytokines, tumor necrosis factor, interleukin-6, and interleukin-1 beta. Conclusion: Radix notoginseng, Radix salviae liguliobae, and Radix astragali are the main ingredients of GMTG for treating AS. Further, GMTG could regulate the level of serum lipids and inhibit inflammatory immune response, which resulted in anti-AS effects such as plaque stabilization, reduction of plaque burden, and plaque remodeling. GMTG is a promising multi-target treatment for AS.


Assuntos
Aterosclerose , Medicamentos de Ervas Chinesas , Placa Aterosclerótica , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Colesterol/metabolismo , Colágeno , Citocinas/metabolismo , Dieta Hiperlipídica , Medicamentos de Ervas Chinesas/farmacologia , Imunidade , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/patologia , Receptor 4 Toll-Like/metabolismo , Triglicerídeos , Fatores de Necrose Tumoral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA