Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Altern Ther Health Med ; 30(8): 144-151, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38294744

RESUMO

Objective: Observe the changes in clinical indicators of patients with early diabetic nephropathy treated with liraglutide or dapagliflozin, evaluate their clinical efficacy, and provide new ideas for the treatment of diabetic patients. Methods: In this study, from January 2020 to January 2022, a total of 120 patients with early-stage type 2 diabetic nephropathy who met the inclusion criteria were selected. According to the order of treatment, the patients were randomly divided into traditional group, liraglutide group and dapagliflozin group, with 40 cases in each group. All patients continued their previous conventional hypoglycemic treatment, and the traditional group did not need to adjust the treatment plan; the liraglutide group: added liraglutide (average dose was 1.2 mg daily); the dapagliflozin group: added dapagliflozin (average dose was 10 mg daily). At the same time, all patients received dietary guidance and appropriate exercise intervention for a total of 12 weeks. The changes in blood sugar, blood lipids, pancreatic islet function, liver function, weight, body mass index (BMI) and other indicators before and after treatment were compared, and the adverse reactions that occurred during the medication of the three groups of patients were recorded. Standard doses of liraglutide and dapagliflozin were used in the treatment groups, 0.6 mg daily and 10 mg daily, respectively. These standard doses have been shown to be effective in a wide range of clinical practices and were therefore chosen in this study to ensure consistency and comparability. This helps readers better understand the study methods and results to evaluate these specific dosing options. Results: Prior to treatment, there were no significant differences in the general data and indicators among the three groups, including FPG, 2hPG, HbA1c, TC, TG, HDL-C, LDL-C, ALT, AST, HOMA-IR, FINS, and HOMA-ß (all P > .05). In the conventional group, significant changes were observed in FPG, 2hPG, HbA1c, body weight, BMI, HDL-C, LDL-C, ALT, AST, HOMA-IR, FINS, and HOMA-ß compared to the pre-treatment period, and these differences were statistically significant (all P < .05).Both the liraglutide and dagliflozin groups exhibited significant changes in FPG, 2hPG, HbA1c, TC, TG, LDL-C, HOMA-IR, FINS, HOMA-ß, body weight, BMI, HDL-C, ALT, and AST when compared to the post-treatment period, and these changes were statistically significant (all P < .05). Post-treatment analysis revealed that in terms of blood glucose, FPG, 2hPG, and HbA1c decreased more significantly in the liraglutide and dagliflozin groups compared to the conventional group (all P < .05). Regarding lipids, TC, TG, and LDL-C decreased more significantly in the liraglutide and dagliflozin groups compared to the conventional group (all P < .05). For pancreatic islet function, HOMA-IR and HOMA-ß decreased more significantly compared to the conventional group (all P < .05). Weight and BMI decreased more significantly in the liraglutide and dagliflozin groups compared to the conventional group (all P < .05). However, there were no significant differences in hepatic function among the three groups after treatment.Post-treatment comparisons between the liraglutide and dagliflozin groups revealed significant differences in FPG, HbA1c, body weight, and BMI (all P < .05). No adverse events occurred during the treatment period in any of the three groups, and there were no reported deaths. Conclusion: The addition of liraglutide or dagliflozin to conventional hypoglycaemic drug therapy in early diabetic patients can not only bring blood glucose to a safe and faster standard, but also regulate blood lipids and glucose, and the therapeutic effect of liraglutide is obvious than that of dagliflozin in terms of blood glucose regulation. Study limitations include small sample size, short study duration, unspecified exclusion criteria, unclear randomization method, and the impact of patient compliance.


Assuntos
Compostos Benzidrílicos , Glicemia , Diabetes Mellitus Tipo 2 , Glucosídeos , Hipoglicemiantes , Metabolismo dos Lipídeos , Liraglutida , Humanos , Liraglutida/uso terapêutico , Liraglutida/farmacologia , Compostos Benzidrílicos/uso terapêutico , Glucosídeos/uso terapêutico , Glucosídeos/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/farmacologia , Glicemia/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Idoso , Insulina , Lipídeos/sangue , Nefropatias Diabéticas/tratamento farmacológico
2.
Am J Physiol Gastrointest Liver Physiol ; 326(2): G120-G132, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38014444

RESUMO

Seladelpar, a selective peroxisome proliferator-activated receptor δ (PPARδ) agonist, improves markers of hepatic injury in human liver diseases, but histological improvement of nonalcoholic steatohepatitis (NASH) and liver fibrosis has been challenging with any single agent. To discover how complementary agents could work with seladelpar to achieve optimal outcomes, this study evaluated a variety of therapeutics (alone and in combination) in a mouse model of NASH. Mice on a high-fat amylin liver NASH (AMLN) diet were treated for 12 wk with seladelpar, GLP-1-R (glucagon-like peptide-1 receptor) agonist liraglutide, apoptosis signal-regulating kinase 1 (ASK1) inhibitor selonsertib, farnesoid X receptor (FXR) agonist obeticholic acid, and with seladelpar in combination with liraglutide or selonsertib. Seladelpar treatment markedly improved plasma markers of liver function. Seladelpar alone or in combination resulted in stark reductions in liver fibrosis (hydroxyproline, new collagen synthesis rate, mRNA indices of fibrosis, and fibrosis staining) compared with vehicle and the other single agents. Robust reductions in liver steatosis were also observed. Seladelpar produced a reorganization of metabolic gene expression, particularly for those genes promoting peroxisomal and mitochondrial lipid oxidation. In summary, substantial improvements in NASH and NASH-induced fibrosis were observed with seladelpar alone and in combination with liraglutide in this model. Broad gene expression analysis suggests seladelpar should be effective in concert with diverse mechanisms of action.NEW & NOTEWORTHY NASH is a chronic, progressive, and increasingly problematic liver disease that has been resistant to treatment with individual therapeutics. In this study using a diet-induced mouse model of NASH, we found that the PPARδ agonist seladelpar reduced fibrosis and NASH pathology alone and in combinations with a GLP-1-R agonist (liraglutide) or an ASK1 inhibitor (selonsertib). Liver transcriptome analysis comparing each agent and coadministration suggests seladelpar should be effective in combination with a variety of therapeutics.


Assuntos
Acetatos , Benzamidas , Terapias Complementares , Imidazóis , Hepatopatia Gordurosa não Alcoólica , PPAR delta , Piridinas , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Liraglutida/farmacologia , Liraglutida/uso terapêutico , PPAR delta/metabolismo , PPAR delta/farmacologia , Fígado/metabolismo , Cirrose Hepática/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL
3.
Mol Metab ; 70: 101692, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36773648

RESUMO

OBJECTIVES: The excessive release of the antidiuretic hormone vasopressin is implicated in many diseases including cardiovascular disease, diabetes, obesity, and metabolic syndrome. Once thought to be elevated as a consequence of diseases, data now supports a more causative role. We have previously identified CREB3L1 as a transcription factor that co-ordinates vasopressin synthesis and release in the hypothalamus. The objective here was to identify mechanisms orchestrated by CREB3L1 that co-ordinate vasopressin release. METHODS: We mined Creb3l1 knockdown SON RNA-seq data to identify downstream target genes. We proceeded to investigate the expression of these genes and associated pathways in the supraoptic nucleus of the hypothalamus in response to physiological and pharmacological stimulation. We used viruses to selectively knockdown gene expression in the supraoptic nucleus and assessed physiological and metabolic parameters. We adopted a phosphoproteomics strategy to investigate mechanisms that facilitate hormone release by the pituitary gland. RESULTS: We discovered glucagon like peptide 1 receptor (Glp1r) as a downstream target gene and found increased expression in stimulated vasopressin neurones. Selective knockdown of supraoptic nucleus Glp1rs resulted in decreased food intake and body weight. Treatment with GLP-1R agonist liraglutide decreased vasopressin synthesis and release. Quantitative phosphoproteomics of the pituitary neurointermediate lobe revealed that liraglutide initiates hyperphosphorylation of presynapse active zone proteins that control vasopressin exocytosis. CONCLUSION: In summary, we show that GLP-1R signalling inhibits the vasopressin system. Our data advises that hydration status may influence the pharmacodynamics of GLP-1R agonists so should be considered in current therapeutic strategies.


Assuntos
Hipotálamo , Liraglutida , Liraglutida/farmacologia , Hipotálamo/metabolismo , Neurônios/metabolismo , Vasopressinas/genética , Vasopressinas/metabolismo
4.
Biochem Biophys Res Commun ; 629: 112-120, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36116373

RESUMO

OBJECTIVE: This study intended to explore the hypoglycemic and cardioprotective effects of 8-week aerobic interval training combined with liraglutide and elucidate the underlying mechanisms. METHOD: Male Wistar rats were randomly divided into 5 groups - normal control group (CON), diabetic cardiomyopathy group (DCM), high-dose liraglutide group (DH), low-dose liraglutide group (DL), and aerobic interval training combined with liraglutide group (DLE). High-fat diet and streptozotocin (STZ) were used to induce the DCM model, and both the liraglutide administration group and combination therapy group allocated to 8 weeks of either liraglutide or liraglutide and exercise intervention. Cardiac functions were analyzed by electrocardiography. Blood biochemical parameters were measured to judge glycemic control conditions. Hematoxylin and eosin (HE) staining and Sirus red staining was used to identify cardiac morphology and collagen accumulation, respectively. Advanced glycation end products (AGEs) were determined by enzymatic methods. The mRNA expression of myocardial remodeling genes (BNP, GSK3ß, α-MHC, ß-MHC and PPARα) and the protein expression of GLP-1, GLP-1R were analyzed. RESULTS: DCM rats developed hyperglycemia, impaired cardiac function with accumulation of AGEs and collagen (P < 0.05). The development of hyperglycemia and cardiac dysfunction was significantly attenuated with all interventions, as reduced cardiac fibrosis and improved cardiac function (P < 0.05). Cardiac remodeling genes were normalized after all interventions, these positive modifications were due to increased GLP-1 and GLP-1R expression in DCM heart (P < 0.05). Liraglutide combined with AIT significantly increased the diameters of cardiomyocytes, increased the α-MHC expressionx, reduced PPARαexpression and reduced the fluctuation of blood glucose level, which showed the safety and effective of medicine combined with exercise. CONCLUSION: Liraglutide combined with AIT intervention normalized blood glucose alleviates myocardial fibrosis and improves cardiac contractile function in DCM rats, supporting the efficacy and safety of the combination therapy.


Assuntos
Cardiomiopatias Diabéticas , Hiperglicemia , Animais , Glicemia/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Amarelo de Eosina-(YS)/metabolismo , Amarelo de Eosina-(YS)/farmacologia , Amarelo de Eosina-(YS)/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Controle Glicêmico , Glicogênio Sintase Quinase 3 beta/metabolismo , Hematoxilina/metabolismo , Hematoxilina/farmacologia , Hematoxilina/uso terapêutico , Hiperglicemia/tratamento farmacológico , Hiperglicemia/terapia , Hipoglicemiantes/farmacologia , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Masculino , Miócitos Cardíacos/metabolismo , PPAR alfa/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Estreptozocina
5.
Eur J Pharmacol ; 928: 175098, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35700834

RESUMO

Glucagon-like peptide-1 (GLP-1) is a hormone that can regulate several neuronal functions. The modulation of GLP-1 receptors emerged as a potential target to treat several neurological diseases, such as epilepsy. Here, we studied the effects of acute and chronic treatment with liraglutide (LIRA), in genetically epilepsy prone rats (GEPR-9s). We have also investigated the possible development of tolerance to antiseizure effects of diazepam, and how LIRA could affect this phenomenon over the same period of treatment. The present data indicate that an acute treatment with LIRA did not diminish the severity score of audiogenic seizures (AGS) in GEPR-9s. By contrast, a chronic treatment with LIRA has shown only a modest antiseizure effect that was maintained until the end of treatment, in GEPR-9s. Not surprisingly, acute administration of diazepam reduced, in a dose dependent manner, the severity of the AGS in GEPR-9s. However, when diazepam was chronically administered, an evident development of tolerance to its antiseizure effects was detected. Interestingly, following an add-on treatment with LIRA, a reduced development of tolerance and an enhanced diazepam antiseizure effect was observed in GEPR-9s. Overall, an add-on therapy with LIRA demonstrate benefits superior to single antiseizure medications and could be utilized to treat epilepsy as well as associated issues. Therefore, the potential use of GLP1 analogs for the treatment of epilepsy in combination with existing antiseizure medications could thus add a new and long-awaited dimension to its management.


Assuntos
Epilepsia Reflexa , Liraglutida , Estimulação Acústica , Animais , Diazepam/farmacologia , Diazepam/uso terapêutico , Tolerância a Medicamentos , Epilepsia Reflexa/tratamento farmacológico , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Ratos
6.
Cell Metab ; 34(7): 1054-1063.e7, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35716660

RESUMO

Liraglutide, an anti-diabetic drug and agonist of the glucagon-like peptide one receptor (GLP1R), has recently been approved to treat obesity in individuals with or without type 2 diabetes. Despite its extensive metabolic benefits, the mechanism and site of action of liraglutide remain unclear. Here, we demonstrate that liraglutide is shuttled to target cells in the mouse hypothalamus by specialized ependymoglial cells called tanycytes, bypassing the blood-brain barrier. Selectively silencing GLP1R in tanycytes or inhibiting tanycytic transcytosis by botulinum neurotoxin expression not only hampers liraglutide transport into the brain and its activation of target hypothalamic neurons, but also blocks its anti-obesity effects on food intake, body weight and fat mass, and fatty acid oxidation. Collectively, these striking data indicate that the liraglutide-induced activation of hypothalamic neurons and its downstream metabolic effects are mediated by its tanycytic transport into the mediobasal hypothalamus, strengthening the notion of tanycytes as key regulators of metabolic homeostasis.


Assuntos
Diabetes Mellitus Tipo 2 , Liraglutida , Animais , Barreira Hematoencefálica , Diabetes Mellitus Tipo 2/metabolismo , Células Ependimogliais , Hipotálamo/metabolismo , Liraglutida/farmacologia , Camundongos , Obesidade/tratamento farmacológico , Obesidade/metabolismo
7.
Altern Ther Health Med ; 28(6): 22-28, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35751893

RESUMO

Background: Lower limb ischemia due to arterial stenosis is a major complication in patients with diabetes mellitus (DM). Liraglutide is a long-acting analogue of a glucagon-like peptide 1 (GLP-1) receptor agonist used for lowering blood glucose in patients with DM, and is believed to possess cardiovascular protective effects. The aim of this study was to investigate whether liraglutide has a protective effect on blood vessels and alleviates vascular intimal hyperplasia in streptozotocin (STZ)-induced rabbits with DM and its molecular mechanism. Methods: Rabbits with DM were induced by STZ, and a lower limb ischemia model was established. The animals were divided into a control group, DM-injury group and liraglutide treatment group. Pathological staining was used to observe the intimal growth, analyze the oxidation levels of malondialdehyde (MDA), superoxide dismutase (SOD) and plasma glutathione peroxidase (GSH-Px), and analyze the changes in expression of marker proteins and signaling pathway proteins by Western blotting. A hyperglycemia (HG)-injured vascular smooth muscle cells (VSMCs) model was established to analyze reactive oxygen species (ROS) levels, Cell-Counting Kit-8 (CCK-8) was used to analyze cell proliferation, scratch assay and Transwell Migration Assay to analyze cell migration, flow cytometry to analyze apoptosis and Western blotting was used to analyze changes in the expression of marker and signaling pathway proteins. Results: The results of pathological staining showed that intimal hyperplasia was severe after diabetes-induced lower limb ischemia in rabbits at 4 weeks, and liraglutide treatment reduced symptoms. Liraglutide treatment significantly decreased MDA content, increased SOD, GSH-Px content, and augmented total antioxidant capacity levels in tissues. The results of Western blotting analysis showed that E-cadherin, mitochondrial membrane potential 9 (MMP-9), proliferating cell nuclear antigen (PCNA), and type I collagen protein expression levels were significantly decreased after liraglutide treatment compared with the DM injury group. The results indicated that liraglutide inhibited epithelial-mesenchymal transition (EMT) progression, vascular cell proliferation and migration and collagen production. Liraglutide inhibits transforming growth factor beta 1 (TGF-ß1)/Smad3 signaling pathway protein expression. In vitro assays have shown that liraglutide reduces cellular ROS levels, inhibits cell proliferation and migration and promotes apoptosis. Liraglutide down-regulated the expression of E-cadherin, MMP-9, PCNA, type I collagen protein as well as the TGF-ß1/Smad3 signaling pathway, but this effect could be reversed by tumor necrosis factor alpha (TNF-α). Conclusion: Liraglutide can significantly improve tissue antioxidant capacity, reduce vascular cell proliferation and migration via the TGF-ß1/Smad3 signaling pathway, inhibit the EMT and collagen production processes, and alleviate hyperglycemia(HG)-induced lower limb ischemia and intimal hyperplasia.


Assuntos
Diabetes Mellitus , Hiperglicemia , Lesões do Sistema Vascular , Animais , Antioxidantes/farmacologia , Caderinas/farmacologia , Colágeno Tipo I/farmacologia , Constrição Patológica , Hiperplasia/tratamento farmacológico , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/farmacologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/farmacologia , Coelhos , Espécies Reativas de Oxigênio/farmacologia , Transdução de Sinais , Superóxido Dismutase , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
8.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614074

RESUMO

One feature of high-fat diet-induced neurodegeneration in the hypothalamus is an increased level of palmitate, which is associated with endoplasmic reticulum (ER) stress, loss of CoxIV, mitochondrial fragmentation, and decreased abundance of MC4R. To determine whether antidiabetic drugs protect against ER and/or mitochondrial dysfunction by lipid stress, hypothalamic neurons derived from pre-adult mice and neuronal Neuro2A cells were exposed to elevated palmitate. In the hypothalamic neurons, palmitate exposure increased expression of ER resident proteins, including that of SERCA2, indicating ER stress. Liraglutide reverted such altered ER proteostasis, while metformin only normalized SERCA2 expression. In Neuro2A cells liraglutide, but not metformin, also blunted dilation of the ER induced by palmitate treatment, and enhanced abundance and expression of MC4R at the cell surface. Thus, liraglutide counteracts, more effectively than metformin, altered ER proteostasis, morphology, and folding capacity in neurons exposed to fat. In palmitate-treated hypothalamic neurons, mitochondrial fragmentation took place together with loss of CoxIV and decreased mitochondrial membrane potential (MMP). Metformin, but not liraglutide, reverted mitochondrial fragmentation, and both liraglutide and metformin did not protect against either loss of CoxIV abundance or MMP. Thus, ER recovery from lipid stress can take place in hypothalamic neurons in the absence of recovered mitochondrial homeostasis.


Assuntos
Liraglutida , Metformina , Animais , Camundongos , Liraglutida/farmacologia , Palmitatos/farmacologia , Palmitatos/metabolismo , Estresse do Retículo Endoplasmático , Hipotálamo/metabolismo , Neurônios/metabolismo , Metformina/farmacologia , Metformina/metabolismo , Mitocôndrias/metabolismo
9.
Nutrients ; 14(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35010991

RESUMO

BACKGROUND: The hypothalamus is an important brain region for the regulation of energy balance. Roux-en-Y gastric bypass (RYGB) surgery and gut hormone-based treatments are known to reduce body weight, but their effects on hypothalamic gene expression and signaling pathways are poorly studied. METHODS: Diet-induced obese male Wistar rats were randomized into the following groups: RYGB, sham operation, sham + body weight-matched (BWM) to the RYGB group, osmotic minipump delivering PYY3-36 (0.1 mg/kg/day), liraglutide s.c. (0.4 mg/kg/day), PYY3-36 + liraglutide, and saline. All groups (except BWM) were kept on a free choice of high- and low-fat diets. Four weeks after interventions, hypothalami were collected for RNA sequencing. RESULTS: While rats in the RYGB, BWM, and PYY3-36 + liraglutide groups had comparable reductions in body weight, only RYGB and BWM treatment had a major impact on hypothalamic gene expression. In these groups, hypothalamic leptin receptor expression as well as the JAK-STAT, PI3K-Akt, and AMPK signaling pathways were upregulated. No significant changes could be detected in PYY3-36 + liraglutide-, liraglutide-, and PYY-treated groups. CONCLUSIONS: Despite causing similar body weight changes compared to RYGB and BWM, PYY3-36 + liraglutide treatment does not impact hypothalamic gene expression. Whether this striking difference is favorable or unfavorable to metabolic health in the long term requires further investigation.


Assuntos
Hormônios Gastrointestinais/farmacologia , Hipotálamo/metabolismo , Liraglutida/farmacologia , Fragmentos de Peptídeos/farmacologia , Peptídeo YY/farmacologia , Transcriptoma/efeitos dos fármacos , Animais , Peso Corporal , Restrição Calórica , Modelos Animais de Doenças , Metabolismo Energético , Derivação Gástrica , Expressão Gênica/efeitos dos fármacos , Masculino , Obesidade , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
10.
Drug Res (Stuttg) ; 71(1): 43-50, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33022720

RESUMO

Glucagon-like peptide-2 (GLP-2) is a peptide hormone that belongs to the glucagon-derived peptide family. We have previously shown that analogues of the sister hormone Glucagon-like peptide-1 (GLP-1) showed neuroprotective effects. Here we investigated the effect of a GLP-2 agonist in a cell model of Parkinson's disease (PD) created by treating SH-SY5Y or Neuro-2a cells with 1-Methyl-4-phenyl-pyridine ion (MPP+). Cell viability and cell cytotoxicity was detected by MTT and LDH assays, respectively. The protein expression levels of mitochondrial, autophagy and apoptotic biomarkers including PGC-1α, Mfn2, IRE1, ATG7, LC3B, Beclin1 and Bcl-2 were detected by western blot. Mitochondrial superoxide was detected by MitoSOX Red. In addition, mitochondrial morphology, autophagosome and apoptotic corpuscles were observed by transmission electron microscope (TEM). We found that the GLP-1 and the GLP-2 agonists both protect cells against mitochondrial damage, autophagy impairments and apoptosis induced by MPP+both in SH-SY5Y and Neuro-2a cells. Cell signaling for mitogenesis was enhanced, and oxidative stress levels much reduced by the drugs. This demonstrates for the first time the neuroprotective effects of a GLP-2 analogue in PD cellular models, in which oxidative stress, autophagy and apoptosis play crucial roles. The protective effects were comparable to those seen with the GLP-1 analogue liraglutide. The results suggest that not only GLP-1, but also GLP-2 has neuroprotective properties and may be useful as a novel treatment of PD.


Assuntos
Peptídeo 2 Semelhante ao Glucagon/agonistas , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Apoptose/efeitos dos fármacos , Autofagossomos/efeitos dos fármacos , Autofagossomos/ultraestrutura , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Peptídeo 1 Semelhante ao Glucagon/agonistas , Humanos , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/patologia , Transdução de Sinais/efeitos dos fármacos
11.
Cardiovasc Drugs Ther ; 35(1): 87-101, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33057968

RESUMO

PURPOSE: This study aimed to investigate whether inhibition of glucagon-like peptide-1 (GLP-1) on pressure overload induced cardiac hypertrophy and apoptosis is related to activation of ATP sensitive potassium (KATP) channels. METHODS: Male SD rats were randomly divided into five groups: sham, control (abdominal aortic constriction), GLP-1 analog liraglutide (0.3 mg/kg/twice day), KATP channel blocker glibenclamide (5 mg/kg/day), and liraglutide plus glibenclamide. RESULTS: Relative to the control on week 16, liraglutide upregulated protein and mRNA levels of KATP channel subunits Kir6.2/SUR2 and their expression in the myocardium, vascular smooth muscle, aortic endothelium, and cardiac microvasculature. Consistent with a reduction in aortic wall thickness (61.4 ± 7.6 vs. 75.0 ± 7.6 µm, p < 0.05), liraglutide enhanced maximal aortic endothelium-dependent relaxation in response to acetylcholine (71.9 ± 8.7 vs. 38.6 ± 4.8%, p < 0.05). Along with a reduction in heart to body weight ratio (2.6 ± 0.1 vs. 3.4 ± 0.4, mg/g, p < 0.05) by liraglutide, hypertrophied cardiomyocytes (371.0 ± 34.4 vs. 933.6 ± 156.6 µm2, p < 0.05) and apoptotic cells (17.5 ± 8.2 vs. 44.7 ± 7.9%, p < 0.05) were reduced. Expression of anti-apoptotic protein BCL-2 and contents of myocardial ATP were augmented, and expression of cleaved-caspase 3 and levels of serum Tn-I/-T were reduced. Echocardiography and hemodynamic measurement showed that cardiac systolic function was enhanced as evidenced by increased ejection fraction (88.4 ± 4.8 vs. 73.8 ± 5.1%, p < 0.05) and left ventricular systolic pressure (105.2 ± 10.8 vs. 82.7 ± 7.9 mmHg, p < 0.05), and diastolic function was preserved as shown by a reduction of ventricular end-diastolic pressure (-3.1 ± 2.9 vs. 6.7 ± 2.8 mmHg, p < 0.05). Furthermore, left ventricular internal diameter at end-diastole (5.8 ± 0.5 vs. 7.7 ± 0.6 mm, p < 0.05) and left ventricular internal diameter at end-systole (3.0 ± 0.6 vs. 4.7 ± 0.4 mm, p < 0.05) were improved. Dietary administration of glibenclamide alone did not alter all the parameters measured but significantly blocked liraglutide-exerted cardioprotection. CONCLUSION: Liraglutide ameliorates cardiac hypertrophy and apoptosis, potentially via activating KATP channel-mediated signaling pathway. These data suggest that liraglutide might be considered as an adjuvant therapy to treat patients with heart failure.


Assuntos
Apoptose/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Glibureto/farmacologia , Canais KATP/efeitos dos fármacos , Liraglutida/farmacologia , Animais , Cardiomegalia , Quimioterapia Combinada , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
12.
Obesity (Silver Spring) ; 28(1): 122-131, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31773909

RESUMO

OBJECTIVE: This study aimed to investigate the effects of liraglutide on the body weight set point (BWSP) in diet-induced obese rats and to determine the relationship between BWSP and hypothalamic arcuate nucleus (ARC) microglial activation. METHODS: Diet-induced obesity (DIO) rats were divided into three groups: continuous high-fat diet (HFD) plus saline, HFD with liraglutide, and HFD with liraglutide pair feeding. Body weight, BWSP, inflammatory cytokines, suppressor of cytokine signaling 3, orexigenic/anorexigenic proteins, apoptosis, and microglia in the ARC were assessed. The effect of liraglutide on the Notch-1 signaling pathway and its relationships with  nuclear factor-κB and p38 mitogen-activated protein kinase were also investigated in a lipopolysaccharide (LPS)-induced microglia activation model. RESULTS: Liraglutide reduced BWSP; reversed adverse changes in hypothalamic inflammation, suppressor of cytokine signaling 3, and apoptosis; and diminished microgliosis in DIO rats. The BWSP showed a linear correlation with ARC microglial density. Liraglutide inhibited LPS-induced M1 microglial polarization and promoted microglial polarization to the M2 phenotype, diminishing inflammatory cytokine expression. Liraglutide inhibited Notch-1 signaling pathway activation and decreased nuclear factor-κB and p38 mitogen-activated protein kinase pathway activation in LPS-stimulated microglia. CONCLUSIONS: Liraglutide can reduce BWSP in DIO rats. There is a linear correlation between hypothalamic microgliosis and BWSP. Liraglutide reduces excessive microglial activation and inflammation, which may contribute to BWSP reduction.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Hipoglicemiantes/uso terapêutico , Hipotálamo/efeitos dos fármacos , Liraglutida/uso terapêutico , Microglia/efeitos dos fármacos , Obesidade/tratamento farmacológico , Animais , Humanos , Hipoglicemiantes/farmacologia , Hipotálamo/patologia , Liraglutida/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley
13.
Endocrinology ; 160(12): 2787-2799, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31593246

RESUMO

Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism and ovulatory dysfunction. Women with PCOS have an elevated prevalence of cardiometabolic risk factors that worsen after menopause. Liraglutide (Lira), a glucagon-like peptide-1 receptor agonist, has shown beneficial metabolic effects in small clinic trials in reproductive-age women with PCOS. We have shown that chronic hyperandrogenemia in an experimental model of postmenopausal PCOS is associated with an adverse cardiometabolic profile and upregulation of the intrarenal renin-angiotensin system (RAS). We analyzed the effect of Lira in the cardiometabolic profile, intrarenal RAS, and blood pressure (BP) in postmenopausal PCOS. Four-week-old female Sprague Dawley rats were treated with DHT or placebo for 17 months. Lira administration during the last 3 weeks caused a bigger reduction in food intake, body weight, fat mass, and homeostasis model assessment of insulin resistance index in PCOS than in control rats. Moreover, Lira improved dyslipidemia and elevated leptin levels in PCOS. In contrast, Lira decreased intrarenal expression of RAS components only in the control group. Lira transiently increased heart rate and decreased BP in control rats. However, Lira did not modify BP but increased heart rate in PCOS. The angiotensin-converting-enzyme inhibitor enalapril abolished the BP differences between PCOS and control rats. However, Lira coadministration with enalapril further reduced BP only in control rats. In summary, Lira has beneficial effects for several cardiometabolic risk factors in postmenopausal PCOS. However, hyperandrogenemia blunted the BP-lowering effect of Lira in postmenopausal PCOS. Androgen-induced activation of intrarenal RAS may play a major role mediating increases in BP in postmenopausal PCOS.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hiperandrogenismo/complicações , Liraglutida/uso terapêutico , Síndrome Metabólica/prevenção & controle , Síndrome do Ovário Policístico/complicações , Animais , Pressão Sanguínea/efeitos dos fármacos , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Frequência Cardíaca/efeitos dos fármacos , Resistência à Insulina , Leptina/sangue , Lipídeos/sangue , Liraglutida/farmacologia , Síndrome Metabólica/etiologia , Pós-Menopausa , Distribuição Aleatória , Ratos Sprague-Dawley , Sistema Renina-Angiotensina/efeitos dos fármacos
14.
Mol Metab ; 28: 120-134, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31446151

RESUMO

OBJECTIVE: The long-acting glucagon-like peptide-1 receptor (GLP-1R) agonist, liraglutide, stimulates insulin secretion and efficiently suppresses food intake to reduce body weight. As such, liraglutide is growing in popularity in the treatment of diabetes and chronic weight management. Within the brain, liraglutide has been shown to alter the activity of hypothalamic proopiomelanocortin (POMC) and Neuropeptide Y/Agouti-related peptide (NPY/AgRP) neurons. Moreover, the acute activities of POMC and NPY neurons have been directly linked to feeding behavior, body weight, and glucose metabolism. Despite the increased usage of liraglutide and other GLP-1 analogues as diabetic and obesity interventions, the cellular mechanisms by which liraglutide alters the activity of metabolically relevant neuronal populations are poorly understood. METHODS: In order to resolve this issue, we utilized neuron-specific transgenic mouse models to identify POMC and NPY neurons for patch-clamp electrophysiology experiments. RESULTS: We found that liraglutide directly activated arcuate POMC neurons via TrpC5 channels, sharing a similar mechanistic pathway to the adipose-derived peptide leptin. Liraglutide also indirectly increases excitatory tone to POMC neurons. In contrast, liraglutide inhibited NPY/AgRP neurons through post-synaptic GABAA receptors and enhanced activity of pre-synaptic GABAergic neurons, which required both TrpC5 subunits and K-ATP channels. In support of an additive role of leptin and liraglutide in suppressing food intake, leptin potentiated the acute effects of liraglutide to activate POMC neurons. TrpC5 subunits in POMC neurons were also required for the intact pharmacological effects of liraglutide on food intake and body weight. Thus, the current study adds to recent work from our group and others, which highlight potential mechanisms to amplify the effects of GLP-1 agonists in vivo. Moreover, these data highlight multiple sites of action (both pre- and post-synaptic) for GLP-1 agonists on this circuit. CONCLUSIONS: Taken together, our results identify critical molecular mechanisms linking GLP-1 analogues in arcuate POMC and NPY/AgRP neurons with metabolism.


Assuntos
Proteína Relacionada com Agouti/antagonistas & inibidores , Hipoglicemiantes/farmacologia , Hipotálamo/efeitos dos fármacos , Liraglutida/farmacologia , Neurônios/efeitos dos fármacos , Neuropeptídeo Y/antagonistas & inibidores , Pró-Opiomelanocortina/antagonistas & inibidores , Proteína Relacionada com Agouti/metabolismo , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Metabolismo Energético/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Pró-Opiomelanocortina/metabolismo
15.
Ann Hepatol ; 18(6): 918-928, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31151874

RESUMO

INTRODUCTION AND OBJECTIVES: Acute liver injury is a current health problem with few effective treatments. The present study investigated the hepatoprotective and curative potential of the glucagon-like peptide-1 analog liraglutide against carbon tetrachloride (CCl4)-induced hepatotoxicity. MATERIALS AND METHODS: Male Swiss mice were subjected to two protocols. The first protocol (Pretreatment) consisted of intraperitoneal (i.p.) treatment with liraglutide (0.057 and 0.118mgkg-1) or vehicle (distilled water) once daily for 7 days. On days 6 and 7, the animals were challenged with 2% CCl4 (5mgkg-1, i.p.). The second protocol (Late treatment) began with an injection of 5% CCl4 (5mgkg-1, i.p.) and subsequent treatment with liraglutide (0.057mgkg-1) or vehicle (distilled water) for 1 day. In both protocols, 24h after the last administration, blood and bile were collected from anesthetized animals, followed by euthanasia and liver collection. Plasma and bile underwent biochemical analyses, and histological, oxidative stress, and metabolic parameters were evaluated in the liver. RESULTS: Both liraglutide treatment protocols attenuated hepatotoxicity that was induced by CCl4, decreasing plasma levels of hepatic enzymes, stimulating the hepatic antioxidant system, and decreasing centrilobular necrosis, hepatic glycogen, and lipid accumulation. CCl4 tended to reduce bile lipid excretion, but liraglutide did not influence this parameter. CONCLUSIONS: The present results demonstrated the hepatoprotective and therapeutic effects of liraglutide, which may be attributable to a decrease in liver oxidative stress and the preservation of metabolism. Liraglutide may have potential as a complementary therapy for acute liver injury.


Assuntos
Tetracloreto de Carbono/toxicidade , Incretinas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Liraglutida/farmacologia , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Alanina Transaminase/efeitos dos fármacos , Alanina Transaminase/metabolismo , Fosfatase Alcalina/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Animais , Aspartato Aminotransferases/efeitos dos fármacos , Aspartato Aminotransferases/metabolismo , Ácidos e Sais Biliares/metabolismo , Catalase/efeitos dos fármacos , Catalase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas , Glutationa Transferase/efeitos dos fármacos , Glutationa Transferase/metabolismo , Glicogênio/metabolismo , Ácido Láctico/metabolismo , Fígado/metabolismo , Fígado/patologia , Camundongos , Ácido Pirúvico/metabolismo , Superóxido Dismutase/efeitos dos fármacos , Superóxido Dismutase/metabolismo
16.
J Periodontal Res ; 54(2): 106-114, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30207387

RESUMO

OBJECTIVE: Liraglutide (LIRA) is a novel antidiabetic therapy that may have anti-inflammatory and bone protective effects. Thus, we studied the potential therapeutic effect of LIRA on periodontitis by assessing the effects of LIRA on the proliferation, migration, inflammation, and osteogenic differentiation of human periodontal ligament cells (hPDLCs) after LPS stimulation. MATERIAL AND METHODS: The expression of glucagon like-peptide 1 receptor (GLP-1R) was measured using qRT-PCR. HPDLCs proliferation after LIRA were analyzed using MTT assays. Cell migration was quantified using a wound-healing assay. The expression of inflammatory (IL-6 and TNF-α) was measured by qRT-PCR and ELISA in hPDLCs. The effect of LIRA on the mineralization potential of hPDLCs was assessed by alizarin red S staining. Furthermore, the expression of Runx2 and ALP was measured by qRT-PCR and Western blot in hPDLCs. RESULTS: GLP-1R mRNA was present on hPDLCs, and LIRA increased the expression of GLP-1R mRNA. When cultured with 25, 50, 75, 100 and 125 nM LIRA for 24 h, hPDLCs proliferation was enhanced in a dose-dependent manner (P < 0.05), and 100 nM was optimal. LIRA promoted hPDLCs migration in a time-dependent manner. LPS significantly increased the expression of IL-6 and TNF-α (P < 0.01), decreased the formation of mineralization nodes (P < 0.01), and inhibited the expression of ALP and Runx2 (P < 0.05). LIRA treatment blocked the expression of IL-6 and TNF-α (P < 0.01), increased the formation of mineralization nodes (P < 0.01), and enhanced the expression of ALP and Runx2 (P < 0.05). CONCLUSION: LIRA can enhance the proliferation, migration, and osteogenic differentiation of hPDLCs and inhibit the inflammatory response. Thus, LIRA may have potential therapeutic use as an adjuvant treatment for human periodontitis, and this effect is independent of hypoglycemic activity.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Liraglutida/farmacologia , Osteogênese/efeitos dos fármacos , Ligamento Periodontal/citologia , Periodontite/patologia , Biomarcadores/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Expressão Gênica , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Inflamação , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Liraglutida/uso terapêutico , Periodontite/diagnóstico , Periodontite/tratamento farmacológico , Periodontite/genética , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
J Vet Med Sci ; 80(10): 1515-1523, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30175725

RESUMO

The incidence of metabolic syndrome is rapidly increasing worldwide, and adequate animal models are crucial for studies on its pathogenesis and therapy. In the search of an adequate experimental model to simulate human metabolic syndrome, the present study was performed to examine the pharmacological response of WBN/Kob-Leprfa (WBKDF) rats supplemented with a fructose-rich diet (FRD) to liraglutide, a GLP-1 receptor agonist. Male WBKDF rats fed FRD at 7 weeks of age were divided into 3 groups, and administered liraglutide (75, 300 µg/kg subcutaneously) or saline (control group), once daily for 4 weeks. All rats in the control group became overweight, and developed hyperglycemia, hypertension and dyslipidemia as they aged. The rats given liraglutide exhibited a dose-dependent reduction in body weight, visceral fat content and food intake compared with control rats. In addition, liraglutide suppressed the development of hyperglycemia, hypertension and dyslipidemia. An intravenous glucose tolerance test revealed that liraglutide improved glucose tolerance, insulin secretion and insulin resistance. On histological examination, decreased hepatic fatty degeneration was observed in the liraglutide groups. The present study demonstrated that liraglutide protected against obesity, hyperglycemia, hypertension, dyslipidemia, and hepatic steatosis in WBKDF rats fed FRD, suggesting that WBKDF rats fed FRD may be a useful model to investigate the etiology of human metabolic syndrome.


Assuntos
Dieta , Modelos Animais de Doenças , Frutose/administração & dosagem , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Liraglutida/farmacologia , Síndrome Metabólica , Tecido Adiposo/efeitos dos fármacos , Animais , Glicemia/efeitos dos fármacos , Pressão Sanguínea , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Síndrome Metabólica/tratamento farmacológico , Ratos
18.
Sci Rep ; 8(1): 10310, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29985439

RESUMO

Light Sheet Fluorescence Microscopy (LSFM) of whole organs, in particular the brain, offers a plethora of biological data imaged in 3D. This technique is however often hindered by cumbersome non-automated analysis methods. Here we describe an approach to fully automate the analysis by integrating with data from the Allen Institute of Brain Science (AIBS), to provide precise assessment of the distribution and action of peptide-based pharmaceuticals in the brain. To illustrate this approach, we examined the acute central nervous system effects of the glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide. Peripherally administered liraglutide accessed the hypothalamus and brainstem, and led to activation in several brain regions of which most were intersected by projections from neurons in the lateral parabrachial nucleus. Collectively, we provide a rapid and unbiased analytical framework for LSFM data which enables quantification and exploration based on data from AIBS to support basic and translational discovery.


Assuntos
Mapeamento Encefálico , Hipoglicemiantes/farmacologia , Liraglutida/farmacologia , Sistema Nervoso/efeitos dos fármacos , Animais , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Ingestão de Alimentos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipotálamo/metabolismo , Hipotálamo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Sistema Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo
19.
Mol Pharm ; 15(7): 2840-2856, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29799205

RESUMO

GLP-1 analogs suffer from the main disadvantage of a short in vivo half-life. Lithocholic acid (LCA), one of the four main bile acids in the human body, possesses a high albumin binding rate. We therefore envisioned that a LCA-based peptide delivery system could extend the half-life of GLP-1 analogs by facilitating the noncovalent binding of peptides to human serum albumin. On the basis of our previously identified Xenopus GLP-1 analogs (1-3), a series of LCA-modified Xenopus GLP-1 conjugates were designed (4a-4r), and the bioactivity studies of these conjugates were performed to identify compounds with balanced in vitro receptor activation potency and plasma stability. 4c, 4i, and 4r were selected, and their LCA side chains were optimized to further increase their stability, affording 5a-5c. Compound 5b showed a more increased albumin affinity and prolonged in vitro stability than that of 4i and liraglutide. In db/ db mice, 5b exhibited comparable hypoglycemic and insulinotropic activity to liraglutide and semaglutide. Importantly, the enhanced albumin affinity of 5b resulted in a prolonged in vivo antidiabetic duration. Finally, chronic treatment investigations of 5b demonstrated the therapeutic effects of 5b on HbA1c, body weight, blood glucose, and pancreatic endocrine deficiencies on db/ db mice. Our studies revealed 5b as a promising antidiabetic candidate. Furthermore, our study suggests the derivatization of Xenopus GLP-1 analogs with LCA represents an effective strategy to develop potent long-acting GLP-1 receptor agonists for the treatment of type 2 diabetes.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Hipoglicemiantes/farmacologia , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Tipo 2/sangue , Avaliação Pré-Clínica de Medicamentos , Estabilidade de Medicamentos , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Peptídeo 1 Semelhante ao Glucagon/química , Peptídeos Semelhantes ao Glucagon/farmacologia , Peptídeos Semelhantes ao Glucagon/uso terapêutico , Células HEK293 , Meia-Vida , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Ácido Litocólico/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Albumina Sérica Humana/metabolismo , Resultado do Tratamento , Proteínas de Xenopus/química , Proteínas de Xenopus/farmacologia
20.
Biochem Biophys Res Commun ; 499(3): 618-625, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29601817

RESUMO

Endogenous GLP-1 and GLP-1 receptor agonists (GLP-1RAs) regulate glucose metabolism via common and distinct mechanisms. Postprandial release of GLP-1 is modest and it is degraded by DPP-4 within 2 min, and hence it cannot enter the brain in substantial amount. In contrast, DPP-4-resistant GLP-1RAs are administered at 10 times higher concentration than endogenous GLP-1 level, which enables them to reach several brain regions including ARC and AP, the areas implicated in glucose metabolism. Hence, some of the effects of GLP-1RAs observed clinically and experimentally, including pancreatic ß-cell proliferation, are thought to involve the brain. However, the effects of centrally acting GLP-1/GLP-1RAs on glucose metabolism and underlying neural mechanism are unclear. This study aimed to establish the link of central GLP-1/GLP-1RA action to pancreatic ß-cell proliferation. Both subcutaneous (SC) and intracerebroventricular (ICV) injections of liraglutide increased the number of pancreatic ß-cells expressing Ki67 and PCNA, proliferation markers, in C57BL/6J mice. This effect was induced by single ICV administration of liraglutide at relatively low dose that was incapable of suppressing food intake. These SC and ICV liraglutide-induced effects were inhibited by 50% and 70%, respectively, by pretreatment with atropine, a muscarinic receptor blocker. ICV liraglutide induced c-Fos expression in the area postrema (AP), nucleus tractus solitaries (NTS), and dorsal motor nucleus of the vagus (DMX) of the brain stem. These results demonstrate that central action of liraglutide induces pancreatic ß-cell proliferation via the pathway involving the brain stem AP/NTS/DMX area and vagus nerve. This route is highly sensitive to GLP-1/GLP-1RA. Hence, this brain-pancreatic ß-cell pathway may operate in type 2 diabetic patients treated with GLP-RAs and serve to counteract the reduction of ß-cell mass.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Células Secretoras de Insulina/citologia , Liraglutida/farmacologia , Bulbo/metabolismo , Nervo Vago/metabolismo , Animais , Atropina/farmacologia , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/metabolismo , Proliferação de Células/efeitos dos fármacos , Comportamento Alimentar , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Glucose/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Injeções Intraventriculares , Injeções Subcutâneas , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Liraglutida/administração & dosagem , Masculino , Bulbo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fos/metabolismo , Nervo Vago/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA