Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Food Funct ; 15(9): 4818-4831, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38606579

RESUMO

Gamma-aminobutyric acid (GABA) is the predominant amino acid in litchi pulp, known for its neuroregulatory effects and anti-inflammatory properties. Although previous research has highlighted the pro-inflammatory characteristics of litchi thaumatin-like protein (LcTLP), interplay between GABA and LcTLP in relation to inflammation remains unclear. This study aims to explore the hepatoprotective effects of the litchi pulp-derived GABA extract (LGE) against LcTLP-induced liver inflammation in mice and LO2 cells. In vivo experiments demonstrated that LGE significantly reduced the levels of aspartate transaminase and alanine transaminase, and protected the liver against infiltration of CD4+ and CD8+ T cells and histological injury induced by LcTLP. Pro-inflammatory cytokines including interleukin-6, interleukin-1ß, and tumor necrosis factor-α were also diminished by LGE. The LGE appeared to modulate the mitogen-activated protein kinase (MAPK) signaling pathway to exert its anti-inflammatory effects, as evidenced by a reduction of 47%, 35%, and 31% in phosphorylated p38, JNK, and ERK expressions, respectively, in the liver of the high-dose LGE group. Additionally, LGE effectively improved the translocation of gut microbiota by modulating its microbiological composition and abundance. In vitro studies have shown that LGE effectively counteracts the increase in reactive oxygen species, calcium ions, and pro-inflammatory cytokines induced by LcTLP. These findings may offer new perspectives on the health benefits and safety of litchi consumption.


Assuntos
Litchi , Extratos Vegetais , Ácido gama-Aminobutírico , Animais , Camundongos , Litchi/química , Extratos Vegetais/farmacologia , Masculino , Ácido gama-Aminobutírico/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Proteínas de Plantas/farmacologia , Inflamação/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Frutas/química , Aspartato Aminotransferases
2.
Artigo em Inglês | MEDLINE | ID: mdl-38431089

RESUMO

The agri-food industry generates substantial waste, leading to significant environmental impacts. Lychee (Litchi chinensis Sonnerat), which is rich in bioactive compounds in its peel, pulp, and seeds, offers an opportunity for waste use. This study aimed to evaluate the effects of supplementing a high-carbohydrate diet with varying levels of lychee peel flour on lipid metabolism biomarkers and oxidative stress in a zebrafish (Danio rerio) model. A total of 225 zebrafish, approximately four months old, were divided into five groups: control, high-carbohydrate (HC), HC2%, HC4%, and HC6%. The study did not find significant differences in the growth performance of zebrafish in any group. However, the HC6% group exhibited a significant decrease in glucose and triglyceride levels compared with the HC group. Furthermore, this group showed enhanced activities of the antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD), along with reduced levels of malondialdehyde (MDA). Increased antioxidant activity was also evidenced by DPPH-, ABTS+, and ß-carotene/Linoleic acid assays in the HC6% group. A positive correlation was identified between SOD/CAT activity and in vitro antioxidant assays. These findings suggest that dietary supplementation with 6% lychee peel flour can significantly modulate glucose homeostasis, lipid metabolism, and antioxidant activity in zebrafish.


Assuntos
Antioxidantes , Litchi , Animais , Antioxidantes/metabolismo , Peixe-Zebra/metabolismo , Litchi/metabolismo , Farinha , Estresse Oxidativo , Dieta , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Carboidratos/farmacologia , Glucose/farmacologia
3.
Int J Biol Macromol ; 260(Pt 2): 129613, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246440

RESUMO

The effects of pulsed electric field combined with ultrasound (PEF-US) on the recovery of polyphenols from litchi peels were investigated. In addition, the optimal purification parameters for polyphenol extracts and their biological activities were also explored in this study. Single-factor and orthogonal experiments were used to optimize the extraction conditions of polyphenols. After optimization, the total phenol content (TPC) of the sample extracted by PEF-US was 2.30 times higher than that of the sample extracted by traditional hot-water extraction. The mechanism of PEF-US enhancing polyphenol recovery was also revealed by morphological analysis of the powder surface. LX-7 was the best resin by comparing the purification effect of nine macroporous resins. The optimum conditions for purification of litchi peel polyphenols by LX-7 resin were also optimized through adsorption and desorption experiments. UHPLC-MS and HPLC results revealed that gentisic acid, catechin, procyanidin A2 and procyanidin B1 are four main substances in purified samples. The results of bioactivity experiments showed that the purified polyphenol samples had strong antioxidant and antibacterial activity. Overall, PEF-US is an efficient method for recovering polyphenols from litchi peels. Our study also provides a strategy for the comprehensive utilization of fruit processing waste.


Assuntos
Litchi , Polifenóis , Frutas/química , Extratos Vegetais , Antioxidantes/farmacologia
4.
J Ethnopharmacol ; 319(Pt 3): 117327, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37871755

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Litchi chinensis Sonn. (Litchi) seed, a traditional Chinese medicine, is habitually used in the clinical treatment of prostate cancer (PCa)-induced bone pain. In our previous study, flavonoids have been identified as the active ingredient of litchi seed against PCa. However, its anti-tumor activities in bone and associated molecular mechanisms are still unclear. AIM OF THE STUDY: To investigate the effects and underlying mechanisms of total flavonoids of litchi seed (TFLS) on the growth of PCa in bone. MATERIALS AND METHODS: The effect of TFLS on the growth of PCa in bone was observed using a mouse model constructed with tibial injection of luciferase-expressing RM1-luc cells. Conditioned medium (CM) from bone marrow stromal cells OP9 and CM treated with TFLS (T-CM) was used to investigate the effect on the proliferation, colony formation, and apoptosis of PCa cells (LNCaP, PC3, RM1). An antibody microarray was performed to detect cytokine expression in the supernatant fraction of OP9 cell cultures treated with TFLS or left untreated. Western blot assay was employed to determine the expression and activity of HGFR and its key downstream proteins, Akt, mTOR, NF-κB, and Erk, in PCa cells. The potential target was further verified using immunofluorescence and immunohistochemistry assays. RESULTS: Treatment with TFLS (80 mg/kg, 24 days) significantly suppressed the growth of RM1 cells in bone. CM from bone marrow stromal cells OP9 stimulated the proliferation and colony formation of the PCa cells as well as inhibited the apoptosis of PC3 cells, while T-CM reversed the effects mediated by OP9 cells in vitro. In an antibody array assay, TFLS regulated the majority of cytokines in OP9 cell culture supernatant, among which HGF, HGFR, IGF-1R, and PDGF-AA showed the greatest fold changes. Mechanistically, CM upregulated HGFR and promoted phosphorylation of NF-κB while T-CM induced reduction of HGFR and dephosphorylation of NF-κB in PC3 cells. Moreover, T-CM inhibited NF-κB entry into PC3 cell nuclei. Data from in vivo experiments further confirmed the inhibitory effects of TFLS on NF-κB. CONCLUSION: TFLS suppresses the growth of PCa in bone through regulating bone microenvironment and the underlying mechanism potentially involves attenuation of the HGFR/NF-κB signaling axis.


Assuntos
Litchi , Neoplasias da Próstata , Masculino , Humanos , NF-kappa B/metabolismo , Litchi/química , Litchi/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Transdução de Sinais , Neoplasias da Próstata/metabolismo , Citocinas/farmacologia , Linhagem Celular Tumoral , Microambiente Tumoral
5.
Int J Biol Macromol ; 253(Pt 4): 126886, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37709228

RESUMO

Zinc-based nanostructures are known for their numerous potential biomedical applications. In this context, the biosynthesis of nanostructures using plant extracts has become a more sustainable and promising alternative to effectively replace conventional chemical methods while avoiding their toxic impact. In this study, following a low-temperature calcination process, a green synthesis of Zn-hydroxide-based nanostructure has been performed using an aqueous extract derived from the leaves of Litchi chinensis, which is employed as a lignocellulose waste biomass known to possess a variety of phytocompounds. The biogenic preparation of Zn-hydroxide based nanostructures is enabled by bioactive compounds present in the leaf extract, which act as reducing and capping agents. In order to evaluate its physicochemical characteristics, the produced Zn-hydroxide-based nanostructure has been subjected to several characterization techniques. Further, the multifunctional properties of the prepared Zn-hydroxide-based nanostructure have been evaluated for antioxidant, antimicrobial, and anticancer activity. The prepared nanostructure showed antibacterial efficacy against Bacillus subtilis and demonstrated its anti-biofilm activity as evaluated through the Congo red method. In addition, the antioxidant activity of the prepared nanostructure has been found to be dose-dependent, wherein 91.52 % scavenging activity could be recorded at 200 µg/ml, with an IC50 value of 45.22 µg/ml, indicating the prepared nanostructure has a high radical scavenging activity. Besides, the in vitro cytotoxicity investigation against HepG2 cell lines explored that the as-prepared nanostructure exhibited a higher cytotoxic effect and 73.21 % cell inhibition could be noticed at 25.6 µg/ml with an IC50 of 2.58 µg/ml. On the contrary, it was found to be significantly lower in the case of HEK-293 cell lines, wherein ~47.64 % inhibition could be noticed at the same concentration. These findings might be further extended to develop unique biologically derived nanostructures that can be extensively evaluated for various biomedical purposes.


Assuntos
Litchi , Nanopartículas Metálicas , Nanoestruturas , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Litchi/química , Biomassa , Células HEK293 , Antibacterianos/farmacologia , Antibacterianos/química , Hidróxidos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Nanopartículas Metálicas/química
6.
J Pharm Pharmacol ; 75(7): 951-968, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37167442

RESUMO

OBJECTIVES: To explore the underlying mechanism of total flavonoids of Litchi seed (TFLS) in treating prostate cancer (PCa). METHODS: Cell Counting Kit-8 (CCK-8), EdU incorporation assay, trypan blue dye assay and colony formation assay were employed to evaluate the effect of TFLS on PCa in vitro. The xenograft mouse model was established to explore the anti-tumour effect of TFLS in vivo. Alterations in the metabolic profiles of the PC3 cells and mouse serum were obtained by untargeted metabolomics. Combination with metabolomics analysis and network pharmacology strategies, the potential targets were predicted and further validated by RT-qPCR. KEY FINDINGS: TFLS attenuated PCa progression both in vitro and in vivo. Metabolomics results yielded from cells and serum indicated that the anti-cancer effect of TFLS was correlated with synergistic modulation of five common metabolic pathways including glycerophospholipid metabolism, arginine and proline metabolism, glycine, serine and threonine metabolism, tryptophan metabolism and steroid biosynthesis. Using in silico prediction and RT-qPCR analysis, we further revealed that TFLS exerted anti-PCa activities via regulating the expressions of nine genes, including MAOA, ACHE, ALDH2, AMD1, ARG1, PLA2G10, PLA2G1B, FDFT1 and SQLE. CONCLUSIONS: TFLS suppressed tumour proliferation in PCa, which may be associated with regulating lipid and amino acid metabolisms.


Assuntos
Medicamentos de Ervas Chinesas , Litchi , Neoplasias da Próstata , Masculino , Humanos , Camundongos , Animais , Farmacologia em Rede , Metabolômica/métodos , Metaboloma , Neoplasias da Próstata/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Aldeído-Desidrogenase Mitocondrial
7.
Chemosphere ; 327: 138497, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37001759

RESUMO

In nanoscience and nanobiotechnology, using plant extracts in synthesizing metal nanoparticles (NPs) has recently come to light as an exciting opportunity with several benefits over traditional physicochemical methods. In the present work, zinc oxide (ZnO) based nanoparticles (NPs) were synthesized by green chemistry route using lychee peel extract to capture hazardous congo red dye from wastewater and illustrate their antimicrobial behavior. The X-Ray Diffraction (XRD) spectra confirm the wurtzite crystal structure, and Fourier Transform Infrared (FTIR) spectra confirm the functional group in ZnO, which is suitable for dye adsorption. It was found that the NPs were spherical and had a size of <10 nm. The synthesized ZnO NPs could effectively remove >98% of CR dye from wastewater within 120 min of contact time at a wide pH range from 2 to 10. The primary mechanism involved in removing dye was the electrostatic interaction between ZnO adsorbent and CR dye. The antimicrobial performance of synthesized ZnO NPs was found to show 34% inhibition against Bacillus subtilis (ATCC 6538), 52% against Escherichia coli (ATCC 11103), 58% against Pseudomonas aeruginosa (ATCC 25668) and 32% against Staphylococcus aureus (ATCC 25923) using well diffusion assay. ZnO demonstrates a suitable anti-bacterial property over both gram-positive and gram-negative pathogenic bacteria. Overall, the green synthesized method for developing ZnO NPs shows promising and significant anti-bacterial performance and is a highly potential adsorbent for removing CR dye from wastewater.


Assuntos
Anti-Infecciosos , Litchi , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Águas Residuárias , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Nanopartículas Metálicas/química , Anti-Infecciosos/farmacologia , Bactérias Gram-Negativas , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Testes de Sensibilidade Microbiana
8.
Ultrason Sonochem ; 95: 106355, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36898250

RESUMO

The pro-inflammation activity of litchi thaumatin-like protein (LcTLP) led to be responsible for the occurrence of adverse reactions after excessive consumption of litchi. This study aimed to characterize the changes in the structure and inflammatory activity of LcTLP induced by ultrasound treatment. Significant molecular structure of LcTLP changes occured at 15 min ultrasound treatment, and then tended to recover with subsequent treatment. Secondary structure (α-helices decreased from 17.3% to 6.3%), tertiary structure (the maximum endogenous fluorescence intensity decreased), and microstructure (mean hydrodynamic diameter reduced from 4 µm to 50 nm) of the LcTLP treated for 15 min (LT15) were significantly affected, which led to the inflammatory epitope of LcTLP (domain II and V-cleft) unfolded. In vitro, LT15 had a significant anti-inflammatory response, which inhibited NO production and had the best effect at 50 ng/mL in RAW264.7 macrophages (73.24%). Moreover, proinflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) secretion and mRNA expression levels were also significantly lower compared with untreated LcTLP (p < 0.05). Western blot further confirmed that the expressions of IκB-α, p65, p38, ERK and JNK reduced markedly (p < 0.05), which indicated LT15 inhibited the inflammatory response through NF-κB and MAPK transduction pathways. Overall, it can be hypothesized that LT15 exposed to low frequency ultrasonic fields have a direct effect on the protein surface structure and thus on the entry of LT15 into cells, making 15-minute ultrasound treatment potentially useful in reducing the pro-inflammatory properties of litchi or related liquid products.


Assuntos
Litchi , NF-kappa B , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Transdução de Sinais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Ultrassom , Macrófagos , Citocinas/metabolismo , Citocinas/farmacologia
9.
Braz J Biol ; 84: e264425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36722676

RESUMO

The ixodicidal activity of the methanolic extracts of Artemisia ludoviciana (Astereceae), Cordia boissieri (Boraginaceae) and Litchi chinensis (Sapindaceae) against two field populations of Rhipicephalus (Boophilus) microplus from the state of Nuevo Leon (NL) and Veracruz (VER) was evaluated. The extract of L. chinensis in the concentration of 150 mg/ml showed efficacies of 100% and 99% against engorged females and mortalities of 98% and 99% against larvae. C. boissieri in the same concentration showed efficacies of 71% and 37% against engorged adults and mortalities of 33.04% and 10.33% against larvae and A. ludoviciana had efficacies of 94% and 83% in adults and mortalities of 89.39% and 89.21% against larvae in both populations respectively. The enzymatic activity of Acetylcholinesterase (AChE), Carboxylesterase (CaE), Glutathione-S-Transferase (GST) and Alkaline Phosphatase (ALP) was measured in both populations of ticks. As a result, a significant difference between both populations was shown, being the VER population the one that exhibited a higher enzymatic activity (p ≤ 0.05). It can be concluded that the methanolic extract of the seed of L. chinensis shows potential ixodicidal activity and can be used as an alternative source of tick control, however, prior characterization, toxicity and formulation studies are necessary.


Assuntos
Artemisia , Cordia , Ixodidae , Litchi , Rhipicephalus , Feminino , Animais , Acetilcolinesterase , Glutationa Transferase , Larva , Metanol , Extratos Vegetais/farmacologia
10.
Cell Death Dis ; 14(2): 109, 2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774343

RESUMO

Litchi chinensis seed, as a valuable by-product of the subtropical fruit litchi (Litchi chinensis Sonn.), has been confirmed to be rich in procyanidins (LPC). The anticarcinogenic properties of procyanidins has been primarily attributed to their antioxidant and anti-inflammatory activities. However, there is a comparative paucity of information on if and how LPC inhibits colon cancer. Here, LPC significantly inhibited CT26 colon cancer cells proliferation and metastasis in vivo and in vitro. In CT26 lung metastatic mice, the anti-metastatic effect of LPC relied on its regulation of gut microbiota such as increase of Lachnospiraceae UCG-006, Ruminococcus, and their metabolites such as acetic acid, propionic acid and butyric acid. In addition, LPC significantly inhibited CT26 colon cancer cells metastasis through increasing CD8+ cytotoxic T lymphocytes infiltration and decreasing the number of macrophages. Antibiotics treatment demonstrated that the therapeutic effect of LPC depended on the gut microbiota, which regulated T cells immune response. Taken together, LPC had strong inhibitory effects on colon cancer pulmonary metastasis by triggering gut-lung axis to influence the T cells immune response. Our research provides a novel finding for the utilization of procyanidins in the future, that is, supplementing more fruits and vegetables rich in procyanidins is beneficial to the treatment of colon cancer, or it can be used as an adjuvant drug in clinical anti-tumor immunotherapy.


Assuntos
Neoplasias do Colo , Litchi , Proantocianidinas , Camundongos , Animais , Litchi/metabolismo , Frutas/metabolismo , Proantocianidinas/farmacologia , Proantocianidinas/uso terapêutico , Extratos Vegetais/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Proliferação de Células , Imunoterapia , Pulmão/metabolismo
11.
J Ethnopharmacol ; 305: 116133, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36603788

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Breast cancer has been the most commonly-diagnosed cancer worldwide, and the treatment and prognosis of which are often limited by breast cancer stem cells (BCSCs). Litchi seeds have shown good anti-cancer activity in various cancers including prostate cancer, lung cancer and breast cancer. However, the activity and underlying mechanism of Litchi seeds against BCSCs remain unknown. AIM OF THE STUDY: To investigate the activity and mechanism of total flavonoids of litchi seed (TFLS) against BCSCs in vitro and in vivo. MATERIALS AND METHODS: Two orthotopic xenograft mouse models were established using HCC1806 cells pretreated or untreated with TFLS to determine whether TFLS could target BCSCs in vivo. Mammosphere formation and flow cytometry assays were employed to evaluate the effect of TFLS on BCSCs in vitro. The underlying mechanism was investigated using RT-qPCR, Western blot, immunohistochemistry and immunofluorescence experiments. RESULTS: TFLS could significantly inhibit the viability of HCC1806, MCF-7 and HCC1937 cells in vitro and suppress the growth of HCC1806 cells in vivo. TFLS attenuated stem cell-like properties of breast cancer through reducing the percentage of CD44+CD24-/low cells, inhibiting the mammospheres formation and down-regulating the mRNA and protein levels of cancer stem cells related markers (Oct4, Nanog, Sox2) in MCF-7 and HCC1806 cells. Meanwhile, TFLS suppressed the tumor-initiating ability of BCSCs via reducing the percentage of CD44+CD24-/low cells in tumor and lowering tumor incidence rate in orthotopic xenograft mice. In addition, TFLS treatments restricted the expression and nuclear translocation of Notch3, subsequently down-regulated Hes1 and Runx2 expressions. CONCLUSIONS: TFLS could suppress the growth of breast cancer and eliminate breast cancer stem cells by inhibiting the Notch3 signaling pathway.


Assuntos
Neoplasias da Mama , Litchi , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonoides/metabolismo , Células-Tronco Neoplásicas , Receptor Notch3/metabolismo , Transdução de Sinais , Sementes
12.
Food Chem ; 405(Pt A): 134855, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36368102

RESUMO

Characterization and bioactivity of A-type procyanidins was investigated in litchi fruitlet (LF) at different stages and mature pericarp (MP) of 5 litchi cultivars. The content of total phenols in LFs was higher than that of MP and showed good antioxidant activity. Eleven procyanidins were identified in samples, including procyanidin A2, procyanidin A4, and 1 dimer, 2 trimers, and 1 tetramer of A-type procyanidin. Also, A-type procyanidin could stably exist in LFs stage, but declined substantially after maturity, which was about 1.45 - 3.56 times than mature pericarp. In addition, the second stage of LFs showed strong anti-inflammatory and anti-proliferative activities, in which monomer and A-type procyanidin trimers in LFs were significantly correlated with antioxidant (r > 0.72; p < 0.01) and anti-inflammatory (r = 0.53; p < 0.05) activities, respectively. Therefore, litchi in LF stage could be a good source of A-type oligomer procyanidins which had good application value.


Assuntos
Biflavonoides , Catequina , Litchi , Proantocianidinas , Extratos Vegetais/farmacologia , Frutas , Antioxidantes
13.
Int J Biol Macromol ; 226: 77-89, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36481333

RESUMO

The anthocyanin-rich litchi shell extract (LE) was mixed with the matrix to prepare active/intelligent food packaging composite films. The microstructure and properties of composite films were characterized. The results showed that the composite films incorporated with LE had texture-oriented layered, compact, uniform cross-sections. The composite films with LE showed different degrees of red. The composite films had similar water vapor transmission rates (1.62-1.65 × 10-12 g·cm/cm2·Pa·s). However, gelatin/chitosan/polyvinyl alcohol/litchi shell extract (Gel/Csa/PVA/LE) film had better UV blocking rates (0-20 %), the best tensile strength (18.6 MPa) and elongation at break (116%). When the composite films monitored for fish freshness at 4 °C (10 d) and 25 °C (3 d), the Gel/Csa/PVA/LE film had the pH sensitivity to show an obvious color change at 25 °C, 1th day. The results suggested that the Gel/Csa/PVA/LE film could be applied to intelligent food packaging film to indicate the freshness of fish.


Assuntos
Quitosana , Litchi , Animais , Embalagem de Alimentos , Extratos Vegetais/química , Concentração de Íons de Hidrogênio , Quitosana/química
14.
Biosci. j. (Online) ; 39: e39035, 2023. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1428170

RESUMO

The study was aimed at divulging an eco-friendly antimicrobial finish on 100 % silk woven fabric. The leaves' extract of Azadirachata indica, Butea monosperma and Litche chinensis were used as the development of eco-friendly antimicrobial finish. The antimicrobial property and comfort related property were checked before and after applying antimicrobial finish. In comfort related property absorbency & air permeability were checked. The ASTEM E2149 Shake Flask method was used to check antimicrobial finish and AATCC method was used for checking fabric property. One way ANOVA statistical test was applied for analysis of results. The FTIR and SEM results showed the presences of finish on fabrics. In comfort related property, absorbency and air permeability was increased. The results showed that antimicrobial finish made 100% reduction against microorganism up to 25 washes which can be used in making reusable masks fight against COVID- 19.


Assuntos
Extratos Vegetais , Butea , Azadirachta , Litchi , Seda , Anti-Infecciosos
15.
Pharm Biol ; 60(1): 1264-1277, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35787093

RESUMO

CONTEXT: The litchi semen are traditional medications for treating liver fibrosis (LF) in China. The mechanism remains unclear. OBJECTIVE: This study investigates the anti-liver fibrotic mechanism of the total flavonoids of litchi semen (TFL). MATERIALS AND METHODS: Sprague-Dawley rats with carbon tetrachloride-induced LF were treated with TFL (50 and 100 mg/kg) for 4 weeks. The anti-liver fibrotic effects of TFL were evaluated and the underlying mechanisms were investigated via histopathological analysis, proteomic analysis and molecular biology technology. RESULTS: Significant anti-LF effects were observed in the high-TFL-dose group (TFL-H, p < 0.05). Five hundred and eighty-five and 95 differentially expressed proteins (DEPs) were identified in the LF rat model (M group) and TFL-H group, respectively. The DEPs were significantly enriched in the retinol metabolism pathway (p < 0.0001). The content of 9-cis-retinoic acid (0.93 ± 0.13 vs. 0.66 ± 0.10, p < 0.05, vs. the M group) increased significantly in the TFL-H group. The upregulation of RXRα (0.50 ± 0.05 vs. 0.27 ± 0.13 protein, p < 0.05), ALDH2 (1.24 ± 0.09 vs. 1.04 ± 0.08 protein, p < 0.05), MMP3 (0.89 ± 0.02 vs. 0.61 ± 0.12 protein, p < 0.05), Aldh1a7 (0.20 ± 0.03 vs. 0.03 ± 0.00 mRNA, p < 0.05) and Aox3 (0.72 ± 0.14 vs. 0.05 ± 0.01 mRNA, p < 0.05) after TFL treatment was verified. CONCLUSIONS: TFL exhibited good anti-liver fibrotic effects, which may be related to the upregulation of the retinol metabolism pathway. TFL may be promising anti-LF agents with potential clinical application prospects.


Assuntos
Flavonoides , Litchi , Cirrose Hepática , Animais , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Litchi/química , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Proteômica , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Sementes/química , Regulação para Cima , Vitamina A/efeitos adversos
16.
Nutrients ; 14(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35215426

RESUMO

Certain foods are known as "heating" foods in Chinese medicine. Over-consumption of these foods can lead to symptoms known as "heating up". These symptoms have been shown to be symptoms of systemic low-grade inflammation. However, the mechanism by which these foods cause inflammation is not clear. In this preliminary study, we investigated dysbacteriosis of the gut microbiota as a possible cause of inflammation by litchi, a typical "heating" food. A human flora-associated (HFA) mouse model (donor: n = 1) was constructed. After gavaging the mice with litchi extract suspension at low, medium and high doses (400, 800, 1600 mg/kg·d-1, respectively) (n = 3) for 7 days, the serum levels of inflammatory cytokines, gut microbiota, the concentration of SCFAs and the integrity of the intestinal mucosal barrier were measured. The results revealed significant increases in the abundance of Prevotella and Bacteroides. A significant increase in the abundance of Bilophila and a decrease in Megasomonas was observed in the high-dose group. High-dose litchi intervention led to a decrease of most SCFA levels in the intestine. It also caused a more than two-fold increase in the serum TNF-α level and LPS level but a decrease in the IL-1ß and IL-6 levels. Medium- and high-dose litchi intervention caused widening of the intestinal epithelial cell junction complex and general weakening of the intestinal mucosal barrier as well as reduced energy conversion efficiency of the gut microbiota. These data suggest that litchi, when consumed excessively, can lead to a low degree of systematic inflammation and this is linked to its ability to cause dysbacteriosis of the gut microbiota, decrease SCFAs and weaken the intestinal mucosal tissues.


Assuntos
Microbioma Gastrointestinal , Litchi , Animais , Ácidos Graxos Voláteis , Inflamação , Mucosa Intestinal , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/farmacologia
17.
Food Funct ; 13(5): 2832-2845, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35179169

RESUMO

Obesity continues to be a global public health challenge. Litchi chinensis seed is rich in bioactive ingredients with pharmacological effects, such as hypoglycemic activity and anti-oxidation. This study aimed to assess the potential anti-obesity effects of L. chinensis seed and the changes of gut microbiota and mycobiota compositions in obese zebrafish induced by a high-fat diet. The anti-obesity effects were supplemented and validated in high-fat diet-induced obese mice. In this study, various chemical components of L. chinensis seed water and ethanol extracts were detected using UHPLC-QE-MS, and both extracts showed strong in vitro antioxidant activities. Network pharmacology analysis showed the potential of the extracts to improve obesity. Litchi chinensis seed powder, water and ethanol extracts decreased the weight of obese zebrafish, improved lipid accumulation and lipid metabolism, regulated appetite, and inhibited cell apoptosis and inflammation of the liver and intestine. They showed similar effects in obese mice, and also reduced the weight of fat tissues, regulated insulin resistance and glucose metabolism, and improved the intestinal barrier. Additionally, L. chinensis seed modulated the compositions of gut microbiota and mycobiota in zebrafish, with the regulation of the proportion of bacteria that produce short-chain fatty acids or affect intestine health, including Cetobacterium, Trichococcus, Aeromonas, Staphylococcus, and Micrococcaceae, and the proportion of fungi that produce mycotoxins or have special metabolic capacities, including Penicillium, Candida, Rhodotorula, and Trichoderma. Spearman's correlation analysis revealed the potential link between zebrafish obesity parameters, gut bacteria and fungi. Overall, these findings indicated that L. chinensis seed effectively improved obesity.


Assuntos
Fármacos Antiobesidade/farmacologia , Antioxidantes/farmacologia , Litchi , Extratos Vegetais/farmacologia , Animais , Fármacos Antiobesidade/química , Antioxidantes/química , Dieta Hiperlipídica , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/prevenção & controle , Extratos Vegetais/química , Sementes , Peixe-Zebra
18.
Int J Biol Macromol ; 201: 1-13, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34998867

RESUMO

The incorporation of bioactive extract from the food waste into biopolymers is a promising green approach to fabricate active films with antioxidant activity for food packaging. The present study developed bioactive antioxidant films based on guar gum/carboxymethyl cellulose incorporated with halloysite-nanotubes (HNT) and litchi shell extract (LSE). The effects of combining HNT and LSE on the physical, mechanical, and antioxidant properties of the films were analyzed. The results showed LSE caused a reduction in tensile strength; however, the elongation at break substantially improved from 29.93 to 62.12%. FTIR revealed covalent interaction and hydrogen bonding between guar gum/carboxymethyl cellulose and LSE. The XRD and SEM study confirmed interactions among the polymer matrix and LSE compounds. The addition of LSE to guar gum/carboxymethyl cellulose films notably increased the UV-light barrier properties. Moreover, the antioxidant activity of all GCH/LSE substantially improved from 9.46 to 91.52%, more than a ten-fold increase compared to composite neat GCH film. Finally, the oxidative stability of roasted peanuts packed in fabricated GCH/LSE sachets improved after 8 days. Guar gum/carboxymethyl cellulose containing LSE as an antioxidant agent could be applied as food packaging for low water activity oxygen-sensitive food.


Assuntos
Litchi , Nanotubos , Eliminação de Resíduos , Antioxidantes/farmacologia , Carboximetilcelulose Sódica , Argila , Alimentos , Embalagem de Alimentos , Galactanos , Mananas , Extratos Vegetais , Gomas Vegetais
19.
J Sci Food Agric ; 102(4): 1381-1390, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34363221

RESUMO

BACKGROUND: During the thermal processing of fruit, it has been observed for phenolic compounds to either degrade, polymerize, or transfer into macromolecules. In this study, the bound and free phenolic compound composition, content, and phenolic-related enzyme activity of lychee pulp were investigated to determine whether the free phenolic had converted to bound phenolic during heat-pump drying (HPD). RESULTS: It was found that after HPD, when compared with the fresh lychee pulp (control), the content of bound phenolics of dried lychee pulp had increased by 62.69%, whereas the content of free phenolics of dried lychee pulp decreased by 22.26%. It was also found that the antioxidant activity of bound phenolics had also increased after drying. With the use of high-performance liquid chromatography-tandem mass spectrometry, it was identified that (+)-gallocatechin, protocatechuic aldehyde, isorhamnetin-3-O-rutoside, 3,4-dihydroxybenzeneacetic acid, and 4-hydroxybenzoic acid were newly generated during HPD, when compared with the control sample. After drying, the contents of gallic acid, catechin, 4-hydroxybenzoic acid, vanillin, syringic acid, and quercetin in bound phenolics had also increased, and polyphenol oxidase and peroxidase still showed enzyme activity, which could be related to the conversion of free phenolics to bound phenolics. CONCLUSION: Overall, during the thermal processing of lychee pulp, the free phenolics weres found to be converted into bound phenolics, new substances were generated, and antioxidant activity was increased. Hence, it was concluded that HPD improved the bound phenolics content of lychee pulp, thus providing theoretical support for the lychee processing industry. © 2021 Society of Chemical Industry.


Assuntos
Litchi , Antioxidantes , Cromatografia Líquida de Alta Pressão , Frutas/química , Temperatura Alta , Fenóis/análise , Extratos Vegetais , Espectrometria de Massas em Tandem
20.
J Med Food ; 25(1): 61-69, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34874786

RESUMO

Lychee is a fruit of Asian origin with an exquisite flavor and an attractive reddish color. However, according to recent reports, the consumption of this fruit reduces the levels of blood glucose with adverse effects on human health such as encephalopathy and hypoglycemic. The objective of this work was to determine if the peel, pulp, and seed of "Brewster" lychee fruits harvested at two stages of maturity had antihyperglycemic effect. This effect was determined by an oral glucose tolerance test using Wistar rats. In addition, ultraviolet-visible spectrophotometry and high-resolution liquid chromatography were used to quantify phenolic compounds, flavonoids, organic acids (OAs), sugars, and antioxidant activity. Results indicated that stage I pulp (immature fruits) and stage II peel and seed (export mature fruits) reduced blood glucose levels, and the effects of the former two were synergistic with metformin. The pulp of mature fruits (stage II), however, lacked a hypoglycemic effect. Additionally, the peel and the seeds of these fruits presented a high antioxidant activity (as determined by DPPH [2,2-diphenyl-2-picryl-hydracyl] and ABTS+ [2,2-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid] methods), which correlated well with the total content of phenolic compounds. The highest content of polyphenolics, flavonoids, and OAs was found in the extracts of the peel and seeds of both stages of maturity. It was therefore concluded that "Brewster" mature lychees are safe for human consumption, and both the seed and the peel can be useful sources for obtaining new compounds with antihyperglycemic activity.


Assuntos
Litchi , Animais , Antioxidantes/farmacologia , Frutas , Hipoglicemiantes , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA