Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38431089

RESUMO

The agri-food industry generates substantial waste, leading to significant environmental impacts. Lychee (Litchi chinensis Sonnerat), which is rich in bioactive compounds in its peel, pulp, and seeds, offers an opportunity for waste use. This study aimed to evaluate the effects of supplementing a high-carbohydrate diet with varying levels of lychee peel flour on lipid metabolism biomarkers and oxidative stress in a zebrafish (Danio rerio) model. A total of 225 zebrafish, approximately four months old, were divided into five groups: control, high-carbohydrate (HC), HC2%, HC4%, and HC6%. The study did not find significant differences in the growth performance of zebrafish in any group. However, the HC6% group exhibited a significant decrease in glucose and triglyceride levels compared with the HC group. Furthermore, this group showed enhanced activities of the antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD), along with reduced levels of malondialdehyde (MDA). Increased antioxidant activity was also evidenced by DPPH-, ABTS+, and ß-carotene/Linoleic acid assays in the HC6% group. A positive correlation was identified between SOD/CAT activity and in vitro antioxidant assays. These findings suggest that dietary supplementation with 6% lychee peel flour can significantly modulate glucose homeostasis, lipid metabolism, and antioxidant activity in zebrafish.


Assuntos
Antioxidantes , Litchi , Animais , Antioxidantes/metabolismo , Peixe-Zebra/metabolismo , Litchi/metabolismo , Farinha , Estresse Oxidativo , Dieta , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Carboidratos/farmacologia , Glucose/farmacologia
2.
J Ethnopharmacol ; 319(Pt 3): 117327, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37871755

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Litchi chinensis Sonn. (Litchi) seed, a traditional Chinese medicine, is habitually used in the clinical treatment of prostate cancer (PCa)-induced bone pain. In our previous study, flavonoids have been identified as the active ingredient of litchi seed against PCa. However, its anti-tumor activities in bone and associated molecular mechanisms are still unclear. AIM OF THE STUDY: To investigate the effects and underlying mechanisms of total flavonoids of litchi seed (TFLS) on the growth of PCa in bone. MATERIALS AND METHODS: The effect of TFLS on the growth of PCa in bone was observed using a mouse model constructed with tibial injection of luciferase-expressing RM1-luc cells. Conditioned medium (CM) from bone marrow stromal cells OP9 and CM treated with TFLS (T-CM) was used to investigate the effect on the proliferation, colony formation, and apoptosis of PCa cells (LNCaP, PC3, RM1). An antibody microarray was performed to detect cytokine expression in the supernatant fraction of OP9 cell cultures treated with TFLS or left untreated. Western blot assay was employed to determine the expression and activity of HGFR and its key downstream proteins, Akt, mTOR, NF-κB, and Erk, in PCa cells. The potential target was further verified using immunofluorescence and immunohistochemistry assays. RESULTS: Treatment with TFLS (80 mg/kg, 24 days) significantly suppressed the growth of RM1 cells in bone. CM from bone marrow stromal cells OP9 stimulated the proliferation and colony formation of the PCa cells as well as inhibited the apoptosis of PC3 cells, while T-CM reversed the effects mediated by OP9 cells in vitro. In an antibody array assay, TFLS regulated the majority of cytokines in OP9 cell culture supernatant, among which HGF, HGFR, IGF-1R, and PDGF-AA showed the greatest fold changes. Mechanistically, CM upregulated HGFR and promoted phosphorylation of NF-κB while T-CM induced reduction of HGFR and dephosphorylation of NF-κB in PC3 cells. Moreover, T-CM inhibited NF-κB entry into PC3 cell nuclei. Data from in vivo experiments further confirmed the inhibitory effects of TFLS on NF-κB. CONCLUSION: TFLS suppresses the growth of PCa in bone through regulating bone microenvironment and the underlying mechanism potentially involves attenuation of the HGFR/NF-κB signaling axis.


Assuntos
Litchi , Neoplasias da Próstata , Masculino , Humanos , NF-kappa B/metabolismo , Litchi/química , Litchi/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Transdução de Sinais , Neoplasias da Próstata/metabolismo , Citocinas/farmacologia , Linhagem Celular Tumoral , Microambiente Tumoral
3.
Cell Death Dis ; 14(2): 109, 2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774343

RESUMO

Litchi chinensis seed, as a valuable by-product of the subtropical fruit litchi (Litchi chinensis Sonn.), has been confirmed to be rich in procyanidins (LPC). The anticarcinogenic properties of procyanidins has been primarily attributed to their antioxidant and anti-inflammatory activities. However, there is a comparative paucity of information on if and how LPC inhibits colon cancer. Here, LPC significantly inhibited CT26 colon cancer cells proliferation and metastasis in vivo and in vitro. In CT26 lung metastatic mice, the anti-metastatic effect of LPC relied on its regulation of gut microbiota such as increase of Lachnospiraceae UCG-006, Ruminococcus, and their metabolites such as acetic acid, propionic acid and butyric acid. In addition, LPC significantly inhibited CT26 colon cancer cells metastasis through increasing CD8+ cytotoxic T lymphocytes infiltration and decreasing the number of macrophages. Antibiotics treatment demonstrated that the therapeutic effect of LPC depended on the gut microbiota, which regulated T cells immune response. Taken together, LPC had strong inhibitory effects on colon cancer pulmonary metastasis by triggering gut-lung axis to influence the T cells immune response. Our research provides a novel finding for the utilization of procyanidins in the future, that is, supplementing more fruits and vegetables rich in procyanidins is beneficial to the treatment of colon cancer, or it can be used as an adjuvant drug in clinical anti-tumor immunotherapy.


Assuntos
Neoplasias do Colo , Litchi , Proantocianidinas , Camundongos , Animais , Litchi/metabolismo , Frutas/metabolismo , Proantocianidinas/farmacologia , Proantocianidinas/uso terapêutico , Extratos Vegetais/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Proliferação de Células , Imunoterapia , Pulmão/metabolismo
4.
Food Funct ; 12(12): 5375-5386, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33982735

RESUMO

Animal studies and clinical trials have shown that dietary polyphenols and polyphenol-rich foods can reduce the risk of type 2 diabetes (T2D) and its complications, but how diabetes regulates the metabolism of polyphenol has not been fully elucidated. This study investigated the effects of diabetes on litchi pericarp oligomeric procyanidin (LPOPC) dynamic metabolism and its major static metabolites in urine. First, a high-fat and streptozotocin (STZ)-induced diabetic Sprague Dawley (SD) rat model was established. In the diabetic rat model, elevated fasting blood glucose, severely impaired glucose tolerance test, and increased reactive oxygen species (ROS) levels in serum and the liver were observed. Subsequently, 200 mg per kg body weight of LPOPC was administrated to control and diabetic SD rats, and the gastrointestinal tract was collected at 0.5 h, 1 h, 3 h, and 6 h. The results showed that the retention time of LPOPC was not changed in our diabetic rat model. However, the gut microbiota were significantly altered, with elevated Proteobacteria and Verrucomicrobia abundance in diabetic rats and decreased short chain fatty acid (SCFA)-producing bacteria. Interestingly, after one dose of 300 mg per kg body weight LPOPC, the total antioxidant capacity of urine in diabetic rats significantly decreased. We then tested the static metabolites of LPOPC, demonstrating that epicatechin had not changed in urine in diabetic rats, but that shikimic acid was significantly reduced in urine in diabetic rats. The changes in shikimic acid may be due to the alteration of gut microbiota and elevated ROS levels in serum.


Assuntos
Biflavonoides/farmacologia , Catequina/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Litchi/metabolismo , Extratos Vegetais/farmacologia , Proantocianidinas/farmacologia , Animais , Antioxidantes/farmacologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Jejum , Frutas/química , Masculino , RNA Ribossômico 16S , Ratos , Ratos Sprague-Dawley
5.
Biosci Biotechnol Biochem ; 85(3): 467-475, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33589897

RESUMO

To investigate the modulation of endogenous indole-3-acetic acid (IAA) level by biosynthesis and inactivation during floral development, IAA and its metabolites were analyzed by LC-ESI/MS/MS in Lychee (Litchi chinensis Sonn.) flowers. In the bloomed flowers, the level of free IAA was higher in males than in females. In contrast, the total sum level of IAA metabolites was higher in females than in males, suggesting a higher biosynthetic activity of IAA in the females before the bloom. A detailed time-course analysis from the bud stage to the developing flower stage showed higher levels of IAA in females than males. The major metabolites were oxidized IAA in both sexes. The results suggest that IAA is involved in the maturation of female floral tissues in lychee, and oxidative metabolism plays an essential role in controlling the free IAA levels therein.


Assuntos
Flores/metabolismo , Ácidos Indolacéticos/metabolismo , Litchi/metabolismo , Cromatografia Líquida/métodos , Óvulo Vegetal , Pólen , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
6.
Food Chem ; 336: 127618, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32771896

RESUMO

Litchi fruit were exposed to 0.7 PPM hydrogen water (HW) before storage at 25 ± 1 â„ƒ. HW treatment delayed the pericarp browning and maintained the total soluble solids (TSS) of litchi fruit. Then, a total of 25 antioxidant system-related characters were determined to evaluate the effects of HW on antioxidant system during pericarp browning. Compared with control pericarp, the pericarp of HW-treated litchi fruit exhibited higher levels of superoxide radical (O2-·) scavenging activity, glutathione (GSH), monodehydroascorbate reductase (MDHAR), polyphenol oxidase (PPO) and total flavonoids during whole storage, higher levels of hydrogen peroxide (H2O2), catalase (CAT), glutathione disulfide (GSSG), ascorbate oxidase (AAO) and total phenols only on day 1, and higher levels of ascorbate peroxidase (APX), total anthocyanin, glutathione reductase (GR) and glutathione peroxidases (GPX) at later stage of storage. Those HW-induced antioxidant system-related characters might directly or indirectly enhanced the antioxidant capacity and delayed the pericarp browning of litchi.


Assuntos
Antioxidantes/química , Armazenamento de Alimentos/métodos , Hidrogênio/química , Litchi/metabolismo , Catalase/metabolismo , Análise Discriminante , Flavonoides/química , Flavonoides/metabolismo , Frutas/química , Frutas/efeitos dos fármacos , Frutas/metabolismo , Glutationa Redutase/metabolismo , Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Análise dos Mínimos Quadrados , Litchi/química , Litchi/efeitos dos fármacos
7.
Food Funct ; 12(1): 203-214, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33295903

RESUMO

Lychee pulp phenolics (LPP) was subjected to four simulated gastrointestinal digestions and colonic fermentation to investigate the changes in its phenolic composition and bioactivities; the fecal metabolic profiles of LPP-fed mice were also elucidated using UHPLC-ESI-QTOF-MS/MS. After simulated salivary, gastric and intestinal digestion, slight increases in phenolic acids and (+)-catechin occurred relative to undigested LPP, whereas other flavonoids showed an opposite trend. Unlike the above-described separate simulated digestions, successive gastrointestinal digestion significantly enhanced the release of phenolic compounds (p < 0.05), gallic acid (413.79%), ferulic acid (393.69%), (+)-catechin (570.27%) and rutin (247.54%). During colonic fermentation, ten detected phenolics were utilized by gut microbes, among which procyanidin B2 (22.35%) was the most degraded. LPP fermentation accelerated the production of short-chain fatty acids (122.79%). The metabolic pathways altered by LPP including unsaturated fatty acid, biotin, and nicotinamide metabolism may be the potential regulatory mechanisms and associated with the integrity of the gut barrier. These findings indicate that LPP may act as a promising candidate to protect gut health.


Assuntos
Colo/metabolismo , Digestão/fisiologia , Fermentação/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Litchi/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Animais , Fezes/microbiologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Fenóis/metabolismo , Extratos Vegetais/metabolismo
8.
Food Chem ; 291: 126-131, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31006450

RESUMO

Procyanidins (PCs) are polyphenols highly accumulated in litchi fruit (Litchi chinensis). Despite their bioactivity, the molecular composition of native and oxidized procyanidins is little understood. In this paper, polyphenols from litchi pericarp were extracted using two solvents (methanol and acetone). The mean degree of polymerization (mDP) of native and identification of oxidized PCs were carried out by phloroglucinolysis- and thioglycolysis-HPLC-ESI-MS/MS, respectively. About 60% of extracted polyphenols corresponded to procyanidins from litchi pericarp. Native PCs were mainly oligomeric procyanidins (mDP 4). Only (-)-epicatechin was detected as terminal and extension units in PCs. Thioglycolysis-HPLC-ESI-MS identified five oxidation markers of PCs with [M-H]-m/z 575, 593, 609, 679 and 863. Intra- and intermolecular modifications of A and B-type procyanidins were identified. The method used for the characterization of PCs from litchi pericarp allowed understanding of the structural composition of its native and oxidized tannins.


Assuntos
Cromatografia Líquida de Alta Pressão , Litchi/química , Proantocianidinas/química , Espectrometria de Massas em Tandem , Catequina/análise , Frutas/química , Frutas/metabolismo , Litchi/metabolismo , Oxirredução , Extratos Vegetais/química , Proantocianidinas/análise , Taninos/análise
9.
J Agric Food Chem ; 67(12): 3354-3362, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30848127

RESUMO

It has been proven that A-type procyanidins, containing an additional ether bond, compared to B-type procyanidins are also bioavailable in vitro and in vivo. However, their bioavailability and absorption in the gastrointestinal tract remain uncertain. In this study, a model of the human adenocarcinoma stomach cell line (MKN-28) was established to explore the cellular transport of flavanolic monomers and procyanidin dimer A2, which were isolated from the litchi pericarp extract. After the integrity and permeability of the cell monolayer were ensured by measurement of the transepithelial electrical resistance and the apparent permeability coefficient for Lucifer yellow, the transportation of procyanidins A2 and B2, (-)-epicatechin (EC), and (+)-catechin (CC) was studied at pH 3.0, 5.0, or 7.0 in the apical side, with compound concentrations of 0.05 and 0.1 mg/mL based on the cytotoxicity test. High-performance liquid chromatography and liquid chromatography-mass spectrometry analyses indicated that EC, CC, and A2 were transported in the MKN-28 cell line from 30 to 180 min, while B2 showed no transport. The maximal transport efficiencies of EC, CC, and A2 were 23 ± 0.81, 13.16 ± 1.53, and 16.41 ± 1.36%, respectively, existing at 120, 180, and 120 min of transportation. Laser scanning confocal microscopy analysis presented the dynamic transmission of EC, in accordance with the result of concentration determination, suggesting that the A-type procyanidins are possibly absorbed through the stomach barrier, which is pH- and time-dependent.


Assuntos
Adenocarcinoma/metabolismo , Biflavonoides/metabolismo , Catequina/metabolismo , Flavanonas/metabolismo , Mucosa Gástrica/metabolismo , Litchi/metabolismo , Extratos Vegetais/metabolismo , Proantocianidinas/metabolismo , Biflavonoides/química , Disponibilidade Biológica , Transporte Biológico , Catequina/química , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Dimerização , Flavanonas/química , Frutas/química , Frutas/metabolismo , Humanos , Litchi/química , Extratos Vegetais/química , Proantocianidinas/química
10.
Food Chem ; 282: 9-17, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30711110

RESUMO

Phenolic compounds are a large class of plant secondary metabolites with various health-promoting effects, and are known for their structural diversity. Therefore, high efficiency characterization of phenolic profiles is of key importance in identifying their potential bioactivity. In the present study, Global Natural Products Social (GNPS) Molecular Networking was applied to trace the phenolic compounds in plants, which allowed the characterization of 9 procyanidins and 11 flavonoid glycosides (di-, tri-, or tetra-saccharides of kaempferol, quercetin, isorhamnetin and myricetin) in litchi pulp extracts. Six compounds were reported for the first time in litchi pulp. In addition, quercetin-3-O-rutinoside-(1 → 2)-O-rhamnoside, the most abundant flavonoid glycoside in litchi pulp, was proved to have considerable α-glucosidase inhibitory activity, illustrating the anti-diabetic potential of phenolic-rich litchi pulp extracts.


Assuntos
Litchi/química , Fenóis/análise , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Frutas/química , Frutas/metabolismo , Glicosídeos/análise , Litchi/metabolismo , Espectroscopia de Ressonância Magnética , Extratos Vegetais/química , Proantocianidinas/análise
11.
Food Chem ; 266: 299-308, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30381189

RESUMO

This study aimed to investigate the effects of a novel chitosan formulation (Kadozan) treatment on disease development, response of disease resistance, metabolism of reactive oxygen species (ROS) in Peronophthora litchii-inoculated "Wuye" litchis. Compared with P. litchii-inoculated litchis, Kadozan-treated P. litchii-inoculated litchis exhibited lower fruit disease index, higher lignin content, higher activities of disease resistance-related enzymes (CHI, GLU and PAL), lower O2- generating rate and malondialdehyde content, higher activities of ROS scavenging enzymes (SOD, CAT and APX), higher contents of ascorbic acid and glutathione, and higher levels of reducing power and DPPH radical scavenging activity. These results suggest that Kadozan can be used to inhibit the growth of P. litchii in harvested litchis owning to the enhancement of disease resistance and ROS scavenging capacity, and decreases in O2- accumulation and membrane lipid peroxidation. Kadozan treatment can be used as a facile and novel method for suppressing postharvest pathogenic disease of litchis.


Assuntos
Quitosana/química , Litchi/química , Phytophthora/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/química , Quitinases/metabolismo , Quitosana/farmacologia , Resistência à Doença , Frutas/química , Frutas/metabolismo , Glucana 1,3-beta-Glucosidase/metabolismo , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Litchi/metabolismo , Malondialdeído/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Phytophthora/efeitos dos fármacos
12.
World J Microbiol Biotechnol ; 34(8): 118, 2018 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30008019

RESUMO

This paper describes the extracellular synthesis of silver nanoparticles from waste part of lychee fruit (peel) and their conjugation with selected antibiotics (amoxicillin, cefixim, and streptomycin). FTIR studies revealed the reduction of metallic silver and stabilization of silver nanoparticles and their conjugates due to the presence of CO (carboxyl), OH (hydroxyl) and CH (alkanes) groups. The size of conjugated nanoparticles varied ranging from 3 to 10 nm as shown by XRD. TEM image revealed the spherical shape of biosynthesized silver nanoparticles. Conjugates of amoxicillin and cefixim showed highest antibacterial activity (147.43 and 107.95%, respectively) against Gram-negative bacteria i.e. Alcaligenes faecalis in comparison with their control counterparts. The highest reduction in MIC was noted against Gram-positive strains i.e. Enterococcus faecium (75%) and Microbacterium oxydans (75%) for amoxicillin conjugates. Anova two factor followed by two-tailed t test showed non-significant results both in case of cell leakage and protein estimation between nanoparticles and conjugates of amoxicillin, cefixime and streptomycin. In case of MDA release, non-significant difference among the test samples against the selected strains. Our study found green-synthesized silver nanoparticles as effective antibacterial bullet against both Gram positive and Gram negative bacteria, but they showed a more promising effect on conjugation with selected antibiotics against Gram negative type.


Assuntos
Antibacterianos/metabolismo , Antibacterianos/farmacologia , Litchi/metabolismo , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Prata/metabolismo , Amoxicilina/metabolismo , Amoxicilina/farmacologia , Cefixima/metabolismo , Cefixima/farmacologia , Membrana Celular/efeitos dos fármacos , Frutas/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Extratos Vegetais/química , Prata/química , Análise Espectral , Estreptomicina/metabolismo , Estreptomicina/farmacologia , Difração de Raios X
13.
Food Funct ; 8(8): 2760-2770, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28702654

RESUMO

Litchi pericarp procyanidins (LPP) are dietary supplements with high antioxidant activity, but poor oral bioavailability and efficacy. Lactobacillus casei (L. casei-01) can transform flavan-3-ols from litchi pericarp and increase their antioxidant ability; thus, L. casei-01 with LPP was administered to rats for four and eight weeks to study the effect of such a combination on metabolic parameters and on phase II metabolism and detoxification pathways in the liver as an indirect measure for phenolic bioavailability. Our data indicated that the T-AOC of the plasma, the liver GSH-Px and GSH-ST activity, and the expression of UGT and SULT isoforms in the liver of the rats were all enhanced after the eight-week administration compared with those of the control. However, at 1 h after administration the concentration of (-)-epicatechin in the combined system was lower than that obtained after the ingestion of LPP alone, suggesting that L. casei-01 enhances the bioavailability of phenolics from LPP by modulating the transformation to other compounds but not by increasing its absorption in the native form.


Assuntos
Biflavonoides/metabolismo , Catequina/metabolismo , Lacticaseibacillus casei/metabolismo , Litchi/microbiologia , Fenóis/metabolismo , Extratos Vegetais/metabolismo , Proantocianidinas/metabolismo , Animais , Biflavonoides/análise , Biotransformação , Catequina/análise , Frutas/metabolismo , Frutas/microbiologia , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Litchi/metabolismo , Fígado/enzimologia , Fígado/metabolismo , Masculino , Fenóis/análise , Extratos Vegetais/análise , Proantocianidinas/análise , Ratos , Ratos Sprague-Dawley
14.
J Agric Food Chem ; 65(9): 1893-1899, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28195469

RESUMO

The bioavailability of A-type procyanidins in vivo has been rarely investigated; as such, this study discusses the effect of A-type linkage and degree of polymerization on the metabolism of procyanidins extracted from litchi pericarp (LPOPC). Sprague-Dawley rats were gavaged with (-)-epicatechin (EC) and LPOPC and sacrificed at different time points after ingestion. A-type linkage procyanidin oligomers inhibited the absorption of EC. Analysis of urinary contents from rats administered with EC, A-type procyanidin dimer (A-2), and A-type procyanidin trimer (A-3) showed distinct native and metabolite profiles for each rat. Rats fed with A-2 and A-3 presented significantly higher levels of shikimic acid and less amount of m(p)-coumaric acid metabolites in vivo and provide insight into the quantitative structure-activity relationship of procyanidin oligomers during metabolism, indicating that procyanidins with A-type linkage could induce an altered metabolic pathway of oligomers in the gastrointestinal system.


Assuntos
Biflavonoides/farmacocinética , Catequina/farmacocinética , Mucosa Intestinal/metabolismo , Litchi/metabolismo , Extratos Vegetais/farmacocinética , Proantocianidinas/farmacocinética , Animais , Biflavonoides/química , Biflavonoides/metabolismo , Catequina/química , Catequina/metabolismo , Frutas/química , Frutas/metabolismo , Intestinos/química , Litchi/química , Masculino , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Polimerização , Proantocianidinas/química , Proantocianidinas/metabolismo , Ratos , Ratos Sprague-Dawley
15.
BMC Plant Biol ; 13: 55, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23547657

RESUMO

BACKGROUND: Recent studies have demonstrated that cellular energy is a key factor switching on ripening and senescence of fruit. However, the factors that influence fruit energy status remain largely unknown. RESULTS: HPLC profiling showed that ATP abundance increased significantly in developing preharvest litchi fruit and was strongly correlated with fruit fresh weight. In contrast, ATP levels declined significantly during postharvest fruit senescence and were correlated with the decrease in the proportion of edible fruit. The five gene transcripts isolated from the litchi fruit pericarp were highly expressed in vegetative tissues and peaked at 70 days after flowering (DAF) consistent with fruit ADP concentrations, except for uncoupling mitochondrial protein 1 (UCP1), which was predominantly expressed in the root, and ATP synthase beta subunit (AtpB), which was up-regulated significantly before harvest and peaked 2 days after storage. These results indicated that the color-breaker stage at 70 DAF and 2 days after storage may be key turning points in fruit energy metabolism. Transcript abundance of alternative oxidase 1 (AOX1) increased after 2 days of storage to significantly higher levels than those of LcAtpB, and was down-regulated significantly by exogenous ATP. ATP supplementation had no significant effect on transcript abundance of ADP/ATP carrier 1 (AAC1) and slowed the changes in sucrose non-fermenting-1-related kinase 2 (SnRK2) expression, but maintained ATP and energy charge levels, which were correlated with delayed senescence. CONCLUSIONS: Our results suggest that senescence of litchi fruit is closely related with energy. A surge of LcAtpB expression marked the beginning of fruit senescence. The findings may provide a new strategy to extend fruit shelf life by regulating its energy level.


Assuntos
Metabolismo Energético , Frutas/crescimento & desenvolvimento , Litchi/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Litchi/genética , Litchi/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Food Chem ; 138(2-3): 1536-42, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23411278

RESUMO

Intervention studies with A-type oligomeric procyanidins from litchi (Litchi chinensis) pericarp (LPOPC) suggested its protective effect against cardiovascular diseases. However, there is no consensus on the absorption and metabolism of LPOPC. It was demonstrated that the main components in LPOPC were (-)-epicatechin, A-type procyanidin dimers, trimers and tetramers. Rats were orally administered different levels of LPOPC (150 and 300 mg/kgbw), the procyanidins and their microbial metabolites in urine were identified by HPLC-MS/MS analysis 18 h post-administration. Data indicated that seven aromatic acid metabolites excreted were significantly increased by 300 mg/kgbw of LPOPC (P<0.01). However, only (-)-epicatechin and its methylated derivatives were detected in rat plasma 1h after 300 mg/kgbw of LPOPC administration. The total EC content absorbed in plasma was only 2.54 ± 0.53 µmol/L, indicating that the biological properties of LPOPC should be probably explained by its microbial degraded phenolic acids.


Assuntos
Biflavonoides/urina , Catequina/urina , Litchi/metabolismo , Extratos Vegetais/metabolismo , Proantocianidinas/urina , Animais , Biflavonoides/metabolismo , Catequina/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Frutas/química , Frutas/metabolismo , Humanos , Absorção Intestinal , Litchi/química , Masculino , Espectrometria de Massas/métodos , Extratos Vegetais/urina , Proantocianidinas/metabolismo , Ratos , Ratos Sprague-Dawley
17.
J Agric Food Chem ; 61(10): 2506-12, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23330597

RESUMO

Litchi chinensis pericarp from litchi processing waste is an important plant source of A-type procyanidins, which were considered a natural dietary supplement because of their high biological activity in vivo. Litchi pericarp oligomeric procyanidins (LPOPCs) did not selectively modify the growth of Streptococcus thermophilus and Lactobacillus casei -01 at concentrations of 0.25 and 0.5 mg/mL, and it was demonstrated that the two strains could transform procyanidins during their log period of growth by two different pathways. S. thermophilus was able to metabolize procyanidin A2 to its isomer, and L. casei could decompose flavan-3-ols into 3,4-hydroxyphenylacetic acid, 4-hydroxyphenylpropionic acid, m-coumaric acid, and p-coumaric acid. The total antioxidant capability (T-AOC) of LPOPCs before and after microbial incubation was estimated, and the results suggested that probiotic bacteria bioconversion is a feasible and efficient method to convert litchi pericarp procyanidins to a more effective antioxidant agent.


Assuntos
Antioxidantes/metabolismo , Biflavonoides/metabolismo , Catequina/metabolismo , Lacticaseibacillus casei/metabolismo , Litchi/química , Extratos Vegetais/metabolismo , Proantocianidinas/metabolismo , Probióticos/metabolismo , Streptococcus thermophilus/metabolismo , Antioxidantes/análise , Biflavonoides/análise , Biotransformação , Catequina/análise , Frutas/química , Frutas/metabolismo , Frutas/microbiologia , Lacticaseibacillus casei/crescimento & desenvolvimento , Litchi/metabolismo , Litchi/microbiologia , Extratos Vegetais/análise , Proantocianidinas/análise , Streptococcus thermophilus/crescimento & desenvolvimento , Resíduos/análise
18.
PLoS One ; 6(4): e19455, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21559331

RESUMO

Litchi has diverse fruit color phenotypes, yet no research reflects the biochemical background of this diversity. In this study, we evaluated 12 litchi cultivars for chromatic parameters and pigments, and investigated the effects of abscisic acid, forchlorofenron (CPPU), bagging and debagging treatments on fruit coloration in cv. Feizixiao, an unevenly red cultivar. Six genes encoding chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS) and UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) were isolated from the pericarp of the fully red litchi cv. Nuomici, and their expression was analyzed in different cultivars and under the above mentioned treatments. Pericarp anthocyanin concentration varied from none to 734 mg m(-2) among the 12 litchi cultivars, which were divided into three coloration types, i.e. non-red ('Kuixingqingpitian', 'Xingqiumili', 'Yamulong'and 'Yongxing No. 2'), unevenly red ('Feizixiao' and 'Sanyuehong') and fully red ('Meiguili', 'Baila', Baitangying' 'Guiwei', 'Nuomici' and 'Guinuo'). The fully red type cultivars had different levels of anthocyanin but with the same composition. The expression of the six genes, especially LcF3H, LcDFR, LcANS and LcUFGT, in the pericarp of non-red cultivars was much weaker as compared to those red cultivars. Their expression, LcDFR and LcUFGT in particular, was positively correlated with anthocyanin concentrations in the pericarp. These results suggest the late genes in the anthocyanin biosynthetic pathway were coordinately expressed during red coloration of litchi fruits. Low expression of these genes resulted in absence or extremely low anthocyanin accumulation in non-red cultivars. Zero-red pericarp from either immature or CPPU treated fruits appeared to be lacking in anthocyanins due to the absence of UFGT expression. Among these six genes, only the expression of UFGT was found significantly correlated with the pericarp anthocyanin concentration (r = 0.84). These results suggest that UFGT played a predominant role in the anthocyanin accumulation in litchi as well as pericarp coloration of a given cultivar.


Assuntos
Antocianinas/biossíntese , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Litchi/genética , Litchi/metabolismo , Antocianinas/química , Carotenoides/química , Clorofila/química , Cromatografia Líquida de Alta Pressão/métodos , Primers do DNA/genética , DNA Complementar/metabolismo , Genes de Plantas , Fenótipo , Pigmentação/genética , Proteínas de Plantas
19.
Molecules ; 12(4): 745-58, 2007 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-17851427

RESUMO

The current status of the isolation, identification, biological activity, utilization and development prospects of flavonoids found in litchi fruit pericarp (LFP) tissues is reviewed. LFP tissues account for approximately 15% by weight of the whole fresh fruit and are comprised of significant amount of flavonoids. The major flavonoids in ripe LFP include flavonols and anthocyanins. The major flavanols in the LFP are reported to be procyanidin B4, procyanidin B2 and epicatechin, while cyanindin-3-rutinside, cyanidin-3-glucoside, quercetin-3-rutinosde and quercetin-3-glucoside are identified as the important anthocyanins. Litchi flavanols and anthocyanins exhibit good potential antioxidant activity. The hydroxyl radical and superoxide anion scavenging activities of procyanidin B2 are greater than those of procyanidin B4 and epicatechin, while epicatechin has the highest alpha,alpha-diphenyl-beta-picrylhydrazyl radical (DPPH*) scavenging activity. In addition to the antioxidant activity, LFP extract displays a dose- and time-dependent inhibitory effect on human breast cancer, which could be attributed, in part, to its inhibition of proliferation and induction of apoptosis in cancer cells through upregulation and down-regulation of multiple genes. Furthermore, various anticancer activities are observed for epicatechin, procyanidin B2, procyanidin B4 and the ethyl acetate fraction of LFP tissue extracts. Procyanidin B4 and the ethyl acetate fraction show a stronger inhibitory effect on HELF than MCF-7 proliferation, while epicatechin and procyanidin B2 have lower cytotoxicities towards MCF-7 and HELF than paclitaxel. It is therefore suggested that flavonoids from LFP might be potentially useful components for functional foods and/or anti-breast cancer drugs.


Assuntos
Flavonoides/química , Litchi/metabolismo , Extratos Vegetais/química , Antineoplásicos/química , Antioxidantes/química , Cátions , DNA/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Flavonoides/análise , Flavonóis/química , Frutas , Modelos Químicos , Fenol/química , Fatores de Tempo , Verduras
20.
Molecules ; 12(4): 759-71, 2007 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-17851428

RESUMO

Phenolics were extracted from litchi fruit pericarp (LFP) tissues, purified and their antioxidant properties analyzed. LFP phenolics strongly inhibited linoleic acid oxidation and exhibited a dose-dependent free-radical scavenging activity against alpha,alpha-diphenyl-beta-picrylhydrazyl (DPPH*) and hydroxyl radicals and superoxide anions. The degradation of deoxyribose by hydroxyl radicals was inhibited by phenolics acting mainly as iron ion chelators, rather than by directly scavenging the radicals. Phenolics from litchi fruit pericarp were found to display similar reducing power activity as ascorbic acid. The effect of phenolic compound treatment on pericarp browning and electrolyte leakage of litchi fruit was also evaluated and it was observed that application of exogenous litchi phenolics to harvested litchi fruit significantly prevented pericarp browning and delayed increases in electrolyte leakage. These results suggest that litchi pericarp tissue phenolics could be beneficial in scavenging free radicals, maintaining membrane integrity and, thereby inhibiting pericarp browning of litchi fruit.


Assuntos
Antioxidantes/metabolismo , Química/métodos , Litchi/metabolismo , Fenol/química , Extratos Vegetais/metabolismo , Ânions , Antioxidantes/química , Compostos de Bifenilo/química , Relação Dose-Resposta a Droga , Eletrólitos , Radicais Livres , Hidrazinas/química , Radical Hidroxila , Ácido Linoleico/química , Peroxidação de Lipídeos , Picratos , Superóxidos/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA