Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Planta Med ; 89(8): 824-832, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35868331

RESUMO

The unambiguous identification of plant material is a prerequisite of rational phytotherapy. Misidentification can even cause serious health problems, as in the case of the Chinese medicinal herb Zicao. Commercial material labelled "Zicao" may be derived from the roots of Arnebia euchroma (ruan zicao), Lithospermum erythrorhizon (ying zicao), or Onosma paniculata (dian zicao). All of these roots contain shikonin derivatives as main bioactive constituents, but ying zicao and dian zicao contain also hepatotoxic pyrrolizidine alkaloids in high amounts. Therefore, the use of A. euchroma with a very low pyrrolizidine alkaloid content is desirable. Confusions of the species occur quite often, indicating an urgent need for an unambiguous identification method. Discrimination of 23 zicao samples has been achieved by analyses of the nuclear internal transcribed spacer ITS2 and trnL-F intergenic spacer of the chloroplast DNA. Data were analyzed using Bioedit, ClustalX, Mega 11 and BLAST. Results indicate that ITS2 barcoding can accurately distinguish Arnebia euchroma from their adulterants. Subsequently, an HPTLC method has been developed allowing a chemical discrimination of the most widely used species. (22E)-Ergosta-4,6,8(14),22-tetraen-3-one has been identified as characteristic marker compound, allowing an unambiguous discrimination of A. euchroma and L. erythrorhizon.


Assuntos
Código de Barras de DNA Taxonômico , Lithospermum , Código de Barras de DNA Taxonômico/métodos , DNA de Cloroplastos , Lithospermum/genética , DNA de Plantas/genética
2.
Sci Rep ; 10(1): 13555, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782359

RESUMO

Lithospermum erythrorhizon is a medicinal plant that produces shikonin, a red lipophilic naphthoquinone derivative that accumulates exclusively in roots. The biosynthetic steps required to complete the naphthalene ring of shikonin and its mechanism of secretion remain unclear. Multiple omics studies identified several candidate genes involved in shikonin production. The functions of these genes can be evaluated using virus-induced gene silencing (VIGS) systems, which have been shown advantageous in introducing iRNA genes into non-model plants. This study describes the development of a VIGS system using an apple latent spherical virus (ALSV) vector and a target gene, phytoene desaturase (LePDS1). Virus particles packaged in Nicotiana benthamiana were inoculated into L. erythrorhizon seedlings, yielding new leaves with albino phenotype but without disease symptoms. The levels of LePDS1 mRNAs were significantly lower in the albino plants than in mock control or escape plants. Virus-derived mRNA was detected in infected plants but not in escape and mock plants. Quantitative PCR and deep sequencing analysis indicated that transcription of another hypothetical PDS gene (LePDS2) also decreased in the defective leaves. Virus infection, however, had no effect on shikonin production. These results suggest that virus-based genetic transformation and the VIGS system silence target genes in soil-grown L. erythrorhizon.


Assuntos
Regulação da Expressão Gênica de Plantas , Inativação Gênica , Lithospermum/genética , Doenças das Plantas/genética , Folhas de Planta/genética , Proteínas de Plantas/antagonistas & inibidores , Plantas Medicinais/genética , Secoviridae/genética , Lithospermum/virologia , Doenças das Plantas/virologia , Folhas de Planta/virologia , Proteínas de Plantas/genética , Plantas Medicinais/virologia , Secoviridae/patogenicidade
3.
Plant Physiol ; 184(2): 753-761, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32727911

RESUMO

Several Boraginaceae plants produce biologically active red naphthoquinone pigments, derivatives of the enantiomers shikonin and alkannin, which vary in acyl groups on their side chains. Compositions of shikonin/alkannin derivatives vary in plant species, but the mechanisms generating the diversity of shikonin/alkannin derivatives are largely unknown. This study describes the identification and characterization of two BAHD acyltransferases, shikonin O-acyltransferase (LeSAT1) and alkannin O-acyltransferase (LeAAT1), from Lithospermum erythrorhizon, a medicinal plant in the family Boraginaceae that primarily produces the shikonin/alkannin derivatives acetylshikonin and ß-hydroxyisovalerylshikonin. Enzyme assays using Escherichia coli showed that the acylation activity of LeSAT1 was specific to shikonin, whereas the acylation activity of LeAAT1 was specific to alkannin. Both enzymes recognized acetyl-CoA, isobutyryl-CoA, and isovaleryl-CoA as acyl donors to produce their corresponding shikonin/alkannin derivatives, with both enzymes showing the highest activity for acetyl-CoA. These findings were consistent with the composition of shikonin/alkannin derivatives in intact L erythrorhizon plants and cell cultures. Genes encoding both enzymes were preferentially expressed in the roots and cell cultures in the dark in pigment production medium M9, conditions associated with shikonin/alkannin production. These results indicated that LeSAT1 and LeAAT1 are enantiomer-specific acyltransferases that generate various shikonin/alkannin derivatives.


Assuntos
Aciltransferases/metabolismo , Lithospermum/enzimologia , Naftoquinonas/metabolismo , Aciltransferases/genética , Escherichia coli , Lithospermum/genética , Especificidade por Substrato
4.
Plant Cell Physiol ; 60(1): 19-28, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169873

RESUMO

Plants produce a large variety of specialized (secondary) metabolites having a wide range of hydrophobicity. Shikonin, a red naphthoquinone pigment, is a highly hydrophobic metabolite produced in the roots of Lithospermum erythrorhizon, a medicinal plant in the family Boraginaceae. The shikonin molecule is formed by the coupling of p-hydroxybenzoic acid and geranyl diphosphate, catalyzed by a membrane-bound geranyltransferase LePGT at the endoplasmic reticulum, followed by cyclization of the geranyl chain and oxidations; the latter half of this biosynthetic pathway, however, has not yet been clarified. To shed light on these steps, a proteome analysis was conducted. Shikonin production in vitro was specifically regulated by illumination and by the difference in media used to culture cells and hairy roots. In intact plants, however, shikonin is produced exclusively in the root bark of L. erythrorhizon. These features were utilized for comparative transcriptome and proteome analyses. As the genome sequence is not known for this medicinal plant, sequences from de novo RNA-seq data with 95,861 contigs were used as reference for proteome analysis. Because shikonin biosynthesis requires copper ions and is sensitive to blue light, this methodology identified strong candidates for enzymes involved in shikonin biosynthesis, such as polyphenol oxidase, cannabidiolic acid synthase-like and neomenthol dehydrogenase-like proteins. Because acetylshikonin is the main end product of shikonin derivatives, an O-acetyltransferase was also identified. This enzyme may be responsible for end product formation in these plant species. Taken together, these findings suggest a putative pathway for shikonin biosynthesis.


Assuntos
Vias Biossintéticas , Lithospermum/enzimologia , Lithospermum/metabolismo , Naftoquinonas/metabolismo , Proteômica , Análise por Conglomerados , Regulação da Expressão Gênica de Plantas , Lithospermum/genética , Naftoquinonas/química , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência de RNA
5.
Planta Med ; 84(12-13): 920-934, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29843181

RESUMO

Lithospermum officinale is a valuable source of bioactive metabolites with medicinal and industrial values. However, little is known about genes involved in the biosynthesis of these metabolites, primarily due to the lack of genome or transcriptome resources. This study presents the first effort to establish and characterize de novo transcriptome assembly resource for L. officinale and expression analysis for three of its tissues, namely leaf, stem, and root. Using over 4Gbps of RNA-sequencing datasets, we obtained de novo transcriptome assembly of L. officinale, consisting of 77,047 unigenes with assembly N50 value as 1524 bps. Based on transcriptome annotation and functional classification, 52,766 unigenes were assigned with putative genes functions, gene ontology terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. KEGG pathway and gene ontology enrichment analysis using highly expressed unigenes across three tissues and targeted metabolome analysis showed active secondary metabolic processes enriched specifically in the root of L. officinale. Using co-expression analysis, we also identified 20 and 48 unigenes representing different enzymes of lithospermic/chlorogenic acid and shikonin biosynthesis pathways, respectively. We further identified 15 candidate unigenes annotated as cytochrome P450 with the highest expression in the root of L. officinale as novel genes with a role in key biochemical reactions toward shikonin biosynthesis. Thus, through this study, we not only generated a high-quality genomic resource for L. officinale but also propose candidate genes to be involved in shikonin biosynthesis pathways for further functional characterization.


Assuntos
Benzofuranos/metabolismo , Ácido Clorogênico/metabolismo , Depsídeos/metabolismo , Lithospermum/genética , Metaboloma , Naftoquinonas/metabolismo , Transcriptoma , Vias Biossintéticas , Ontologia Genética , Lithospermum/química , Lithospermum/metabolismo , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Caules de Planta/química , Caules de Planta/genética , Caules de Planta/metabolismo
6.
Mol Phylogenet Evol ; 52(3): 755-68, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19464377

RESUMO

Phylogenetic relationships are complex within the Lithospermeae, a large subgroup of the Boraginaceae s.str. The relationships of New World Lasiarrhenum, Macromeria, Nomosa, Onosmodium, Perittostoma, and Psilolaemus to subcosmopolitan and much larger Lithospermum have not been critically investigated in the recent past. No molecular data on the phylogeny of these genera and Lithospermum have so far been published. We investigated the relationships within Lithospermeae using three loci (nuclear ITS plus 5.8S rRNA, chloroplast trnL-F-spacer, and trnS-G-spacer) and micromorphological character traits (pollen, nutlets). Lithospermums.l. constitutes the sistergroup of Asian Ulugbekia and is monophyletic only when its American segregates "Macromeria", monotypic Nomosa, and Onosmodium are included. Both the African and the South American species groups of Lithospermum are monophyletic, but North American representatives are not resolved in a single clade. Morphological characters that have been considered as important for generic delimitation in the past (such as large, yellow corollas without faucal scales, particular pollen types, coarsely veined leaves, shrubby habit) have evolved in at least two only distantly related lineages within Lithospermums.l. The reduction of American "Macromeria", Nomosa, and Onosmodium as well as Asian Ulugbekia under Lithospermum is proposed to render the latter monophyletic. This redefined Lithospermum s.l. appears to have undergone a type of recent "island radiation" in the Americas, reflected in a morphological diversity far exceeding that found in the Old World.


Assuntos
Evolução Molecular , Lithospermum/genética , Filogenia , DNA de Cloroplastos/genética , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Frutas/ultraestrutura , Lithospermum/classificação , Lithospermum/ultraestrutura , Microscopia Eletrônica de Varredura , Pólen/ultraestrutura , RNA Ribossômico 5,8S/genética , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA