Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 215: 116808, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32289451

RESUMO

Accumulation of iron within the cortex of Alzheimer's disease (AD) patients has been reported by numerous MRI studies using iron-sensitive methods. Validation of iron-sensitive MRI is important for the interpretation of in vivo findings. In this study, the relation between the spatial iron distribution and T2∗-weighted MRI in the human brain was investigated using a direct comparison of spatial maps of iron as detected by T2∗-weighted MRI, iron histochemistry and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), in postmortem brain tissue of the medial frontal gyrus of three control subjects and six AD patients. In addition, iron levels measured by LA-ICP-MS and three quantitative MRI methods, namely R2∗ (=1/T2∗), image phase and quantitative susceptibility mapping (QSM), were compared between 19 AD and 11 controls. Histochemistry results we obtained with the modified Meguro staining were highly correlated with iron levels as detected by LA-ICP-MS (r2 â€‹= â€‹0.82, P â€‹< â€‹0.0001). Significant positive correlations were also found between LA-ICP-MS and the three quantitative MRI measurements: R2∗ (r2 â€‹= â€‹0.63), image phase (r2 â€‹= â€‹0.70) and QSM (r2 â€‹= â€‹0.74 (all p â€‹< â€‹0.0001)). R2∗ and QSM showed the strongest correlation with iron content; the correlation of phase with iron clearly showed increased variation, probably due to its high orientation dependence. Despite the obvious differences in iron distribution patterns within the cortex between AD patients and controls, no overall significant differences were found in iron as measured by LA-ICP-MS, nor in R2∗, phase or susceptibility. In conclusion, our results show that histochemistry as well as quantitative MRI methods such as R2∗ mapping and QSM provide reliable measures of iron distribution in the cortex. These results support the use of MRI studies focusing on iron distribution in both the healthy and the diseased brain.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/metabolismo , Ferro/metabolismo , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Lobo Frontal/química , Voluntários Saudáveis , Humanos , Ferro/análise , Terapia a Laser/métodos , Masculino , Espectrometria de Massas/métodos , Pessoa de Meia-Idade
2.
Ann Anat ; 227: 151428, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31610254

RESUMO

Aging is a normal process associated with neurodegenerative changes resulting in decline of cognitive and motor functions. Oxidative stress plays an important role. Controlled ozone (O3) therapy has been proved to induce oxidative preconditioning thus reversing oxidative stress. To the best of our knowledge, this research is the first attempt to investigate whether the antioxidant properties of O3 can ameliorate age-associated structural alterations of the cerebral cortex. Ozone administration (at a dose of 0.7mg/kg intraperitonially, three times a week for eight weeks) produced significant downregulation of tissue malondialdehyde (MDA) and upregulation of glutathione, superoxide dismutase (SOD) and catalase (CAT) within the frontal cortex of aged rats. Sections of the frontal cortex from adult and aged rats were stained with hematoxylin and eosin and analyzed using light microscopy. In addition, quantitative immunohistochemical assessments of the expression of inducible nitric oxide synthase (iNOS), caspase-3, glial fibrillary acidic protein (GFAP), Ki67 and acetylcholinesterase (AChE) were performed. Our results revealed the beneficial effect of O3 in improving the neurodegenerative changes of the cerebral cortex of aged rats. Moreover, this study clarified that O3 exerted its effects via reducing oxidative stress, apoptosis, gliosis as well as improving neurogenesis and cholinergic plasticity. This work added to the previously proved aging - associated neurodegenerative effects and provided a new insight into the promising role of O3 to ameliorate these effects.


Assuntos
Envelhecimento/patologia , Lobo Frontal/patologia , Ozônio/uso terapêutico , Animais , Caspase 3/metabolismo , Catalase/análise , Regulação para Baixo , Lobo Frontal/química , Lobo Frontal/enzimologia , Proteína Glial Fibrilar Ácida/metabolismo , Glutationa/análise , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Masculino , Malondialdeído/análise , Óxido Nítrico Sintase Tipo II/metabolismo , Ozônio/metabolismo , Ratos , Superóxido Dismutase/análise , Regulação para Cima
3.
Sci Rep ; 9(1): 11385, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31388067

RESUMO

Reading is a learned activity that engages multiple cognitive systems. In a cohort of typical and struggling adult readers we show evidence that successful oral reading of real words is related to gamma-amino-butyric acid (GABA) concentration in the higher-order language system, whereas reading of unfamiliar pseudo-words is not related to GABA in this system. We also demonstrate the capability of resting state functional connectivity (rsFC) combined with GABA measures to predict single real word compared to pseudo-word reading performance. Results show that the strength of rsFC between left fusiform gyrus (L-FG) and higher-order language systems predicts oral reading behavior of real words, irrespective of the local concentration of GABA. On the other hand, pseudo-words, which require grapheme-to-phoneme conversion, are not predicted by the connection between L-FG and higher-order language system. This suggests that L-FG may have a multi-functional role: lexical processing of real words and grapheme-to-phoneme processing of pseudo-words. Additionally, rsFC between L-FG, pre-motor, and putamen areas are positively related to the oral reading of both real and pseudo-words, suggesting that text may be converted into a phoneme sequence for speech initiation and production regardless of whether the stimulus is a real word or pseudo-word. In summary, from a systems neuroscience perspective, we show that: (i) strong rsFC between higher order visual, language, and pre-motor areas can predict and differentiate efficient oral reading of real and pseudo-words. (ii) GABA measures, along with rsFC, help to further differentiate the neural pathways for previously learned real words versus unfamiliar pseudo-words.


Assuntos
Corpo Estriado/fisiologia , Lobo Frontal/fisiologia , Aprendizagem/fisiologia , Leitura , Lobo Temporal/fisiologia , Ácido gama-Aminobutírico/metabolismo , Adulto , Mapeamento Encefálico , Corpo Estriado/química , Corpo Estriado/diagnóstico por imagem , Feminino , Lobo Frontal/química , Lobo Frontal/diagnóstico por imagem , Humanos , Linguística , Alfabetização , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia , Lobo Temporal/química , Lobo Temporal/diagnóstico por imagem , Adulto Jovem , Ácido gama-Aminobutírico/análise
4.
J Hypertens ; 37(3): 612-628, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30044313

RESUMO

BACKGROUND AND OBJECTIVE: Hypertension can lead to mood disorders that may worsen or ameliorate depending on the type of antihypertensive prescribed. Depression is associated with modifications in basal brain asymmetry particularly that of the frontal cortex, which is involved in blood pressure control. Furthermore, different vasoactive drugs may change the brain's asymmetry in a manner that contributes to cognition status. We studied the bilateral activity of several neuropeptidases in frontal cortex as a reflect of the functional status of certain neuropeptides involved in mood. METHODS: Using arylamide derivatives as substrates, we fluorometrically analysed the activity of these enzymes in the left and right frontal cortex of control untreated Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHRs) and compared their activities with WKY or SHR treated with the antihypertensive drugs captopril (CAP) and propranolol (PRO) or with the hypertensive N (G)-nitro-L-arginine methyl ester. SBP was also measured in all WKY and SHR groups. RESULTS: Untreated WKY, WKY treated with CAP or PRO and SHR treated with CAP exhibited normotensive values of SBP. However, WKY treated with N (G)-nitro-L-arginine methyl ester as well as untreated SHR and SHR treated with PRO and N(G)-nitro-L-arginine methyl ester demonstrated hypertensive values of SBP. Changes in the bilateral distribution of neuropeptidases were depending on the strain, the enzyme analysed and the drug used. Normotensive WKY groups (WKY, CAP, PRO) revealed intrahemispheric correlations mainly in the left hemisphere. In contrast, WKY treated with N(G)-nitro-L-arginine methyl ester and SHR groups demonstrated intrahemispheric correlations mainly in the right hemisphere. Interhemispheric correlations were mostly observed in WKY as well as in SHR groups with antihypertensive treatments (CAP, PRO). CONCLUSION: Our results suggest specific brain bilateral patterns of neuropeptidase activities in WKY that change in SHR. This observation may be related to the cognitive disorders that have been described in these animals and that change under antihypertensive or hypertensive drug's treatments.


Assuntos
Anti-Hipertensivos/farmacologia , Lobo Frontal , Neuropeptídeos , Animais , Lobo Frontal/química , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/enzimologia , Lobo Frontal/metabolismo , Neuropeptídeos/análise , Neuropeptídeos/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
5.
Nutrients ; 10(10)2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332832

RESUMO

Sialic acids (Sia) are postulated to improve cognitive abilities. This study evaluated Sia effects on rat behavior when administered in a free form as N-acetylneuraminic acid (Neu5Ac) or conjugated as 6'-sialyllactose (6'-SL). Rat milk contains Sia, which peaks at Postnatal Day 9 and drops to a minimum by Day 15. To bypass this Sia peak, a cohort of foster mothers was used to raise the experimental pups. A group of pups received a daily oral supplementation of Neu5Ac to mimic the amount naturally present in rat milk, and another group received the same molar amount of Sia as 6'-SL. The control group received water. After weaning, rats were submitted to behavioral evaluation. One year later, behavior was re-evaluated, and in vivo long-term potentiation (LTP) was performed. Brain samples were collected and analyzed at both ages. Adult rats who received Sia performed significantly better in the behavioral assessment and showed an enhanced LTP compared to controls. Within Sia groups, 6'-SL rats showed better scores in some cognitive outcomes compared to Neu5Ac rats. At weaning, an effect on polysialylated-neural cell adhesion molecule (PSA-NCAM) levels in the frontal cortex was only observed in 6'-SL fed rats. Providing Sia during lactation, especially as 6'-SL, improves memory and LTP in adult rats.


Assuntos
Suplementos Nutricionais , Lactação , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Ácido N-Acetilneuramínico/administração & dosagem , Oligossacarídeos/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Lobo Frontal/química , Lactose/administração & dosagem , Lactose/análogos & derivados , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Leite/química , Molécula L1 de Adesão de Célula Nervosa/análise , Oligossacarídeos/química , Ratos , Ratos Sprague-Dawley , Ácidos Siálicos/análise
6.
Neuroimage ; 172: 817-825, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29391242

RESUMO

Creatine is a key regulator of brain energy homeostasis, and well-balanced creatine metabolism is central in healthy brain functioning. Still, the variability of brain creatine metabolism is largely unattended in magnetic resonance spectroscopy (MRS) research. In the human brain, marginal sex differences in creatine levels have been found in the prefrontal cortex. It is however not known to what degree these sex differences are stable or change with varying gonadal hormone levels. The current study therefore investigated creatine in the prefrontal cortex across the menstrual cycle. In addition, we explored cerebral asymmetries. Creatine, Choline (Cho), N-acetylaspartate (NAA), Myo inositol (mI), and glutamate + glutamine (Glx) were assessed three times in 15 women and 14 men using MRS. Women were tested in cycle phases of varying hormone levels (menstrual, follicular, and luteal phase). Prefrontal creatine was found to change across the menstrual cycle, in a hemisphere-specific manner. Women in the follicular phase showed increased left prefrontal creatine accompanied with reduced right prefrontal creatine, while this asymmetry was not present in the luteal phase. In men, the creatine levels remained stable across three testing sessions. In general, both men and women were found to have higher creatine levels in the left as compared to the right prefrontal cortex. Exploratory analyses of other metabolites showed similar asymmetries in NAA, Cho, and mI, while Cho also showed a menstrual cycle effect. This is the first time that sex hormone-related changes in creatine metabolism have been demonstrated in the human brain. These findings may have important methodological implications for MRS research, as it supports previous concerns against uncritical usage of creatine as a reference measure for other metabolites, assumed to be invariant across individuals and conditions.


Assuntos
Química Encefálica , Creatina/análise , Lobo Frontal/química , Espectroscopia de Prótons por Ressonância Magnética/métodos , Caracteres Sexuais , Feminino , Humanos , Masculino , Ciclo Menstrual , Adulto Jovem
7.
J Pharm Biomed Anal ; 152: 31-38, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29414016

RESUMO

In vivo measurement of multiple neurotransmitters is highly interesting but remains challenging in the field of neuroscience. GABA and l-glutamic acid are the major inhibitory and excitatory neurotransmitters, respectively, in the central nervous system, and their changes are related to a variety of diseases such as anxiety and major depressive disorder. This study described a simple method allowing the simultaneous LC-MS/MS quantification of l-glutamic acid, glutamine and GABA. Analytes were acquired from samples of the prefrontal cortex by microdialysis technique in freely moving mice. The chromatographic separation was performed by hydrophilic interaction liquid chromatography (HILIC) with a core-shell ammonium-sulfonic acid modified silica column using a gradient elution with mobile phases consisting of a 25 mM pH 3.5 ammonium formate buffer and acetonitrile. The detection of l-glutamic acid, glutamine and GABA, as well as the internal standards [d6]-GABA and [d5]-glutamate was performed on a triple quadrupole mass spectrometer in positive electrospray ionization and multiple reaction monitoring mode. The limit of quantification was 0.63 ng/ml for GABA, 1.25 ng/ml for l-glutamic acid and 3.15 ng/ml for glutamine, and the intra-day and inter-day accuracy and precision have been assessed for the three analytes. Therefore, the physiological relevance of the method was successfully applied for the determination of basal extracellular levels and potassium-evoked release of these neuroactive substances in the prefrontal cortex in adult awake C57BL/6 mice.


Assuntos
Lobo Frontal/química , Ácido Glutâmico/química , Glutamina/química , Ácido gama-Aminobutírico/química , Acetonitrilas/química , Compostos de Amônio/química , Animais , Cromatografia Líquida de Alta Pressão/métodos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microdiálise/métodos , Neurotransmissores/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Ácidos Sulfônicos/química , Espectrometria de Massas em Tandem/métodos
8.
Dis Markers ; 2018: 3654894, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30595760

RESUMO

PURPOSE: Modern neuroimaging techniques allow investigating brain structures and substances involved in the pathophysiology of mental disorders, trying to find new markers of these disorders. To better understanding of the pathophysiology and differential diagnosis of schizophrenia and bipolar disorder, this study was conducted to assess the neurochemical alterations in the frontal and temporal lobes in hospitalized patients with schizophrenia and bipolar disorder. METHODS: Twenty-one subjects with schizophrenia (paranoid and differentiated types), 16 subjects with bipolar I disorder (manic, depressive, and mixed episode), and 20 healthy subjects were studied. Magnetic resonance (MR) imaging and proton resonance magnetic spectroscopy (1H MRS) were performed on a 1.5 T scanner. Voxels of 8 cm3 were positioned in the left frontal and left temporal lobes. RESULTS: Glx/H2O (GABA, glutamine, and glutamate/nonsuppressed water signal) ratios were significantly increased in the left temporal lobe in schizophrenia, but not in bipolar disorder, compared with controls. Cho/H2O (choline/nonsuppressed water signal) ratios in the left frontal lobe had a tendency to increase in bipolar disorder and schizophrenia, relative to controls. A lower temporal lobe NAA/H2O ratio in mixed than in manic and depressive episode of bipolar patients was also found. No other significant differences were found among three studied groups as regards NAA, Cr, and mI ratios. CONCLUSIONS: Our results partially confirm the role of a glutamatergic system in schizophrenia, however, only in a temporal lobe. We also point to the importance of the choline-containing compounds (marker of cellular density) in the frontal lobe of patients suffering from bipolar disorder and schizophrenia. We also found the deleterious effect of mixed bipolar episode on the integrity and functioning of the temporal lobe. Glutamatergic left temporal spectroscopic changes may potentially help in differential diagnosis of schizophrenia from bipolar disorder.


Assuntos
Biomarcadores/análise , Transtorno Bipolar/metabolismo , Lobo Frontal/metabolismo , Esquizofrenia/metabolismo , Lobo Temporal/metabolismo , Adulto , Ácido Aspártico/análogos & derivados , Ácido Aspártico/análise , Ácido Aspártico/metabolismo , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/fisiopatologia , Estudos de Casos e Controles , Colina/análise , Colina/metabolismo , Creatina/análise , Creatina/metabolismo , Feminino , Lobo Frontal/química , Ácido Glutâmico/análise , Ácido Glutâmico/metabolismo , Glutamina/análise , Glutamina/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Espectroscopia de Prótons por Ressonância Magnética/métodos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/fisiopatologia , Lobo Temporal/química , Ácido gama-Aminobutírico/análise , Ácido gama-Aminobutírico/metabolismo
9.
PLoS One ; 12(4): e0175090, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28380057

RESUMO

Opiates, one of the oldest known drugs, are the benchmark for treating pain. Regular opioid exposure also induces euphoria making these compounds addictive and often misused, as shown by the current epidemic of opioid abuse and overdose mortalities. In addition to the effect of opioids on their cognate receptors and signaling cascades, these compounds also induce multiple adaptations at cellular and behavioral levels. As omega-3 polyunsaturated fatty acids (n-3 PUFAs) play a ubiquitous role in behavioral and cellular processes, we proposed that supplemental n-3 PUFAs, enriched in docosahexanoic acid (DHA), could offset these adaptations following chronic opioid exposure. We used an 8 week regimen of n-3 PUFA supplementation followed by 8 days of morphine in the presence of this diet. We first assessed the effect of morphine in different behavioral measures and found that morphine increased anxiety and reduced wheel-running behavior. These effects were reduced by dietary n-3 PUFAs without affecting morphine-induced analgesia or hyperlocomotion, known effects of this opiate acting at mu opioid receptors. At the cellular level we found that morphine reduced striatal DHA content and that this was reversed by supplemental n-3 PUFAs. Chronic morphine also increased glutamatergic plasticity and the proportion of Grin2B-NMDARs in striatal projection neurons. This effect was similarly reversed by supplemental n-3 PUFAs. Gene analysis showed that supplemental PUFAs offset the effect of morphine on genes found in neurons of the dopamine receptor 2 (D2)-enriched indirect pathway but not of genes found in dopamine receptor 1(D1)-enriched direct-pathway neurons. Analysis of the D2 striatal connectome by a retrogradely transported pseudorabies virus showed that n-3 PUFA supplementation reversed the effect of chronic morphine on the innervation of D2 neurons by the dorsomedial prefontal and piriform cortices. Together these changes outline specific behavioral and cellular effects of morphine that can be reduced or reversed by dietary n-3 PUFAs.


Assuntos
Ácidos Graxos Ômega-3/farmacologia , Morfina/farmacologia , Animais , Ansiedade/induzido quimicamente , Corpo Estriado/química , Esquema de Medicação , Feminino , Lobo Frontal/química , Lipídeos/análise , Locomoção/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Morfina/administração & dosagem , Morfina/antagonistas & inibidores , Atividade Motora/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Glutamato/análise
10.
An Acad Bras Cienc ; 89(1): 155-161, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28273245

RESUMO

Several studies have shown that a high consumption of vegetables and fruits is consistently associated with a low risk of oxidative stress-induced diseases, which includes some degenerative diseases such as amyotrophic lateral sclerosis, Alzheimer and Parkinson. Therefore, the objective of this study is to verify the effects of conventional and organic grape juice in the modulation of the neurotrophic factor (BDNF) and astrocytic markers protein (S100B) in hippocampus and frontal cortex of Wistar rats. In this study, 24 male Wistar rats were divided into three groups. To the first one, it was given organic purple grape juice; to the second, conventional grape juice, while the last one received only saline. After 30 days, all rats were sacrificed and hippocampus and frontal cortex were dissected. The animals that received organic and conventional grape juice showed, in frontal cortex, an elevated BNDF levels in relation to saline group. However, S100B levels did not change. These results showed that grape juices are able to modulate important marker in brain tissue, and could be an important factor to prevent brain diseases.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/análise , Lobo Frontal/química , Sucos de Frutas e Vegetais , Hipocampo/química , Subunidade beta da Proteína Ligante de Cálcio S100/análise , Vitis/química , Animais , Antioxidantes/farmacologia , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Alimentos Orgânicos , Lobo Frontal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Distribuição Aleatória , Ratos Wistar , Valores de Referência , Reprodutibilidade dos Testes , Subunidade beta da Proteína Ligante de Cálcio S100/efeitos dos fármacos
11.
An. acad. bras. ciênc ; 89(1): 155-161, Jan,-Mar. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-886639

RESUMO

ABSTRACT Several studies have shown that a high consumption of vegetables and fruits is consistently associated with a low risk of oxidative stress-induced diseases, which includes some degenerative diseases such as amyotrophic lateral sclerosis, Alzheimer and Parkinson. Therefore, the objective of this study is to verify the effects of conventional and organic grape juice in the modulation of the neurotrophic factor (BDNF) and astrocytic markers protein (S100B) in hippocampus and frontal cortex of Wistar rats. In this study, 24 male Wistar rats were divided into three groups. To the first one, it was given organic purple grape juice; to the second, conventional grape juice, while the last one received only saline. After 30 days, all rats were sacrificed and hippocampus and frontal cortex were dissected. The animals that received organic and conventional grape juice showed, in frontal cortex, an elevated BNDF levels in relation to saline group. However, S100B levels did not change. These results showed that grape juices are able to modulate important marker in brain tissue, and could be an important factor to prevent brain diseases.


Assuntos
Animais , Masculino , Fator Neurotrófico Derivado do Encéfalo/análise , Vitis/química , Subunidade beta da Proteína Ligante de Cálcio S100/análise , Sucos de Frutas e Vegetais , Lobo Frontal/química , Hipocampo/química , Valores de Referência , Distribuição Aleatória , Reprodutibilidade dos Testes , Ratos Wistar , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Alimentos Orgânicos , Subunidade beta da Proteína Ligante de Cálcio S100/efeitos dos fármacos , Lobo Frontal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Antioxidantes/farmacologia
12.
Nutr Neurosci ; 20(5): 305-315, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26750735

RESUMO

OBJECTIVE: Açaí (Euterpe spp.), an exotic palm fruit, has recently emerged as a promising source of natural antioxidants with wide pharmacological and nutritional value. In this study, two different species of açaí pulp extracts, naturally grown in two distinct regions of the Amazon, namely, Euterpe oleracea Mart. (habitat: Brazilian floodplains of the Amazon) and Euterpe precatoria Mart. (habitat: Bolivian Amazon), were studied for their effects on brain health and cognition. METHODS: Neurochemical analyses were performed in critical brain regions associated with memory and cognition of 19-month-old açaí-fed rats, in whom the cognitive benefits of açaí had been established. RESULTS: Results indicated significant reductions (P< 0.05) in prooxidant NADPH-oxidoreductase-2 (NOX2) and proinflammatory transcription factor NF-κB in açaí-fed rats. Measurement of Nrf2 expression, a transcription factor for antioxidant enzymes, and a possible link between oxidative stress, neuroinflammation and autophagy mechanisms, indicated significant overexpression (P<0.005) in the hippocampus and frontal cortex of the açaí-fed rats. Furthermore, significant activation of endogenous antioxidant enzymes GST and SOD were also observed in the açaí-fed animals when compared to control. Analysis of autophagy markers such as p62, phospho-mTOR, beclin1 and MAP1B-LC3 revealed differential expression in frontal cortex and hippocampus, mostly indicating an upregulation in the açaí-fed rats. DISCUSSION: In general, results were more profound for EP than EO in hippocampus as well as frontal cortex. Therefore, an açaí-enriched diet could possibly modulate Nrf2, which is known to modulate the intracellular redox status, thereby regulating the ubiquitin-proteosomal pathway, ultimately affecting cognitive function in the aging brain.


Assuntos
Dieta , Euterpe , Lobo Frontal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Animais , Antioxidantes/análise , Autofagia/efeitos dos fármacos , Cognição/efeitos dos fármacos , Lobo Frontal/química , Lobo Frontal/metabolismo , Frutas/química , Hipocampo/química , Hipocampo/metabolismo , Inflamação/prevenção & controle , Masculino , Memória/efeitos dos fármacos , NADPH Oxidase 2/análise , NADPH Oxidase 2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/fisiologia , NF-kappa B/análise , NF-kappa B/antagonistas & inibidores , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia , Ratos , Ratos Endogâmicos F344 , Especificidade da Espécie
13.
Toxicol Ind Health ; 33(2): 119-132, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26431867

RESUMO

Silica nanoparticles (SiNPs) are being used increasingly in biomedical and industrial fields; however, their adverse effects on human health have not been fully investigated. In this study, we focused on some of the toxicological aspects of SiNPs by studying oxidative stress and pro-inflammatory responses in the frontal cortex, corpus striatum and hippocampus regions of rat brain. Wistar rats were exposed to SiNPs of size 80 nm and 10 nm at a dose of 150 µg/50 µL phosphate-buffered saline/rat for 30 days. The results indicated a significant increase of lipid peroxide levels and hydrogen peroxide content in various regions of the treated rat brain. Moreover, these changes were accompanied with a significant decrease in the activities of manganese superoxide dismutase, glutathione reductase, catalase and reduced glutathione in different brain regions, suggesting impaired antioxidant defence system. Furthermore, SiNPs exposure not only increased messenger RNA (mRNA) and protein expression of nuclear factor-κB (NF-κB) but also significantly increased the mRNA and protein levels of tumour necrosis factor α (TNF-α), interleukin 1ß (IL-1ß) and monocyte chemoattractant protein 1 (MCP-1) in different regions of rat brain. Cumulatively, these data suggest that SiNPs induced the activation of NF-κB and increased the expression of TNF-α, IL-1ß and MCP-1 in rat brain, possibly via redox-sensitive cellular signalling pathways.


Assuntos
Encéfalo/efeitos dos fármacos , Nanopartículas/efeitos adversos , Dióxido de Silício/efeitos adversos , Administração Intranasal , Animais , Corpo Estriado/química , Corpo Estriado/efeitos dos fármacos , Lobo Frontal/química , Lobo Frontal/efeitos dos fármacos , Hipocampo/química , Hipocampo/efeitos dos fármacos , Peróxido de Hidrogênio/análise , Inflamação/induzido quimicamente , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Nanopartículas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Dióxido de Silício/administração & dosagem , Superóxido Dismutase/metabolismo
14.
Br J Nutr ; 116(1): 126-31, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27181635

RESUMO

α-Tocopherol is the principal source of vitamin E, an essential nutrient that plays a crucial role in maintaining healthy brain function. Infant formula is routinely supplemented with synthetic α-tocopherol, a racaemic mixture of eight stereoisomers with less bioactivity than the natural stereoisomer RRR-α-tocopherol. α-Tocopherol stereoisomer profiles have not been previously reported in the human brain. In the present study, we analysed total α-tocopherol and α-tocopherol stereoisomers in the frontal cortex (FC), hippocampus (HPC) and visual cortex (VC) of infants (n 36) who died of sudden infant death syndrome or other conditions. RRR-α-tocopherol was the predominant stereoisomer in all brain regions (P<0·0001) and samples, despite a large intra-decedent range in total α-tocopherol (5-17 µg/g). Mean RRR-α-tocopherol concentrations in FC, HPC and VC were 10·5, 6·8 and 5·5 µg/g, respectively. In contrast, mean levels of the synthetic stereoisomers were RRS, 1-1·5; RSR, 0·8-1·0; RSS, 0·7-0·9; and Σ2S 0·2-0·3 µg/g. Samples from all but two decedents contained measurable levels of the synthetic stereoisomers, but the intra-decedent variation was large. The ratio of RRR:the sum of the synthetic 2R stereoisomers (RRS+RSR+RSS) averaged 2·5, 2·3 and 2·4 in FC, HPC and VC, respectively, and ranged from 1 to at least 4·7, indicating that infant brain discriminates against synthetic 2R stereoisomers in favour of RRR. These findings reveal that RRR-α-tocopherol is the predominant stereoisomer in infant brain. These data also indicate that the infant brain discriminates against the synthetic 2R stereoisomers, but is unable to do so completely. On the basis of these findings, investigation into the impact of α-tocopherol stereoisomers on neurodevelopment is warranted.


Assuntos
Lobo Frontal/química , Hipocampo/química , Córtex Visual/química , alfa-Tocoferol/química , Humanos , Lactente , Estereoisomerismo
15.
Biol Res ; 49: 15, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26927389

RESUMO

BACKGROUND: It has been proposed that the γ-aminobutyric acid (GABA) plays a key role in the regulation of food intake and body weight by controlling the excitability, plasticity and the synchronization of neuronal activity in the frontal cortex (FC). It has been also proposed that the high-fat diet (HFD) could disturb the metabolism of glutamate and consequently the GABA levels, but the mechanism is not yet clearly understood. Therefore, the aim of this study was to investigate the effect of a HFD on the GABA levels in the FC and hippocampus of rats. RESULTS: The HFD significantly increased weight gain and blood glucose levels, whereas decreased the GABA levels in the FC and hippocampus compared with standard diet-fed rats. CONCLUSIONS: HFD decreases GABA levels in the FC and hippocampus of rat, which likely disrupts the GABAergic inhibitory processes, underlying feeding behavior.


Assuntos
Dieta Hiperlipídica , Lobo Frontal/química , Hipocampo/química , Ácido gama-Aminobutírico/análise , Animais , Glicemia/análise , Peso Corporal , Comportamento Alimentar , Lobo Frontal/metabolismo , Hipocampo/metabolismo , Masculino , Obesidade/metabolismo , Ratos Wistar , Valores de Referência , Aumento de Peso , Ácido gama-Aminobutírico/metabolismo
16.
JAMA ; 315(5): 489-97, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26836731

RESUMO

IMPORTANCE: Seafood consumption is promoted for its many health benefits even though its contamination by mercury, a known neurotoxin, is a growing concern. OBJECTIVE: To determine whether seafood consumption is correlated with increased brain mercury levels and also whether seafood consumption or brain mercury levels are correlated with brain neuropathologies. DESIGN, SETTING, AND PARTICIPANTS: Cross-sectional analyses of deceased participants in the Memory and Aging Project clinical neuropathological cohort study, 2004-2013. Participants resided in Chicago retirement communities and subsidized housing. The study included 286 autopsied brains of 554 deceased participants (51.6%). The mean (SD) age at death was 89.9 (6.1) years, 67% (193) were women, and the mean (SD) educational attainment was 14.6 (2.7) years. EXPOSURES: Seafood intake was first measured by a food frequency questionnaire at a mean of 4.5 years before death. MAIN OUTCOMES AND MEASURES: Dementia-related pathologies assessed were Alzheimer disease, Lewy bodies, and the number of macroinfarcts and microinfarcts. Dietary consumption of seafood and n-3 fatty acids was annually assessed by a food frequency questionnaire in the years before death. Tissue concentrations of mercury and selenium were measured using instrumental neutron activation analyses. RESULTS: Among the 286 autopsied brains of 544 participants, brain mercury levels were positively correlated with the number of seafood meals consumed per week (ρ = 0.16; P = .02). In models adjusted for age, sex, education, and total energy intake, seafood consumption (≥ 1 meal[s]/week) was significantly correlated with less Alzheimer disease pathology including lower density of neuritic plaques (ß = -0.69 score units [95% CI, -1.34 to -0.04]), less severe and widespread neurofibrillary tangles (ß = -0.77 score units [95% CI, -1.52 to -0.02]), and lower neuropathologically defined Alzheimer disease (ß = -0.53 score units [95% CI, -0.96 to -0.10]) but only among apolipoprotein E (APOE ε4) carriers. Higher intake levels of α-linolenic acid (18:3 n-3) were correlated with lower odds of cerebral macroinfarctions (odds ratio for tertiles 3 vs 1, 0.51 [95% CI, 0.27 to 0.94]). Fish oil supplementation had no statistically significant correlation with any neuropathologic marker. Higher brain concentrations of mercury were not significantly correlated with increased levels of brain neuropathology. CONCLUSIONS AND RELEVANCE: In cross-sectional analyses, moderate seafood consumption was correlated with lesser Alzheimer disease neuropathology. Although seafood consumption was also correlated with higher brain levels of mercury, these levels were not correlated with brain neuropathology.


Assuntos
Doença de Alzheimer/patologia , Química Encefálica , Ácidos Graxos Ômega-3/administração & dosagem , Mercúrio/análise , Alimentos Marinhos/efeitos adversos , Idoso , Idoso de 80 Anos ou mais , Apolipoproteína E4/análise , Autopsia , Cerebelo/química , Cerebelo/patologia , Estudos Transversais , Registros de Dieta , Escolaridade , Feminino , Lobo Frontal/química , Lobo Frontal/patologia , Humanos , Masculino , Selênio/análise , Lobo Temporal/química , Lobo Temporal/patologia
17.
Biol. Res ; 49: 1-6, 2016. graf, tab
Artigo em Inglês | LILACS | ID: biblio-950842

RESUMO

BACKGROUND: It has been proposed that the γ-aminobutyric acid (GABA) plays a key role in the regulation of food intake and body weight by controlling the excitability, plasticity and the synchronization of neuronal activity in the frontal cortex (FC). It has been also proposed that the high-fat diet (HFD) could disturb the metabolism of glutamate and consequently the GABA levels, but the mechanism is not yet clearly understood. Therefore, the aim of this study was to investigate the effect of a HFD on the GABA levels in the FC and hippocampus of rats. RESULTS: The HFD significantly increased weight gain and blood glucose levels, whereas decreased the GABA levels in the FC and hippocampus compared with standard diet-fed rats. CONCLUSIONS: HFD decreases GABA levels in the FC and hippocampus of rat, which likely disrupts the GABAergic inhibitory processes, underlying feeding behavior.


Assuntos
Animais , Masculino , Ratos , Dieta Hiperlipídica , Lobo Frontal/química , Ácido gama-Aminobutírico/análise , Hipocampo/química , Valores de Referência , Glicemia/análise , Peso Corporal , Aumento de Peso , Ratos Wistar , Comportamento Alimentar , Lobo Frontal/metabolismo , Ácido gama-Aminobutírico/metabolismo , Hipocampo/metabolismo , Obesidade/metabolismo
18.
Neurotox Res ; 27(1): 1-14, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25323423

RESUMO

The present study was designed to investigate the role of pre- and postnatal manganese (Mn) exposure on hydroxyl radical (HO(•)) formation in the brains of dopamine (DA) partially denervated rats (Parkinsonian rats). Wistar rats were given tap water containing 10,000 ppm manganese chloride during the duration of pregnancy and until the time of weaning. Control rat dams consumed tap water without added Mn. Three days after birth, rats of both groups were treated with 6-hydroxydopamine at one of three doses (15, 30, or 67 µg, intraventricular on each side), or saline vehicle. We found that Mn content in the brain, kidney, liver, and bone was significantly elevated in dams exposed to Mn during pregnancy. In neonates, the major organs that accumulated Mn were the femoral bone and liver. However, Mn was not elevated in tissues in adulthood. To determine the possible effect on generation of the reactive species, HO(•) in Mn-induced neurotoxicity, we analyzed the contents of 2.3- and 2.5-dihydroxybenzoic acid (spin trap products of salicylate; HO(•) being an index of in vivo HO(•) generation), as well as antioxidant enzyme activities of superoxide dismutase (SOD) isoenzymes and glutathione S-transferase (GST). 6-OHDA-depletion of DA produced enhanced HO(•) formation in the brain tissue of newborn and adulthood rats that had been exposed to Mn, and the latter effect did not depend on the extent of DA denervation. Additionally, the extraneuronal, microdialysate, content of HO(•) in neostriatum was likewise elevated in 6-OHDA-lesioned rats. Interestingly, there was no difference in extraneuronal HO(•) formation in the neostriatum of Mn-exposed versus control rats. In summary, findings in this study indicate that Mn crosses the placenta but in contrast to other heavy metals, Mn is not deposited long term in tissues. Also, damage to the dopaminergic system acts as a "trigger mechanism," initiating a cascade of adverse events leading to a protracted increase in HO(•) generation, and the effects of Mn and 6-OHDA are compounded. Moreover, HO(•) generation parallels the suppression of SOD isoenzymes and GST in the brains of rats lesioned with 6-OHDA and/or intoxicated with Mn-the most prominent impairments being in frontal cortex, striatum, and brain stem. In conclusion, ontogenetic Mn exposure, resulting in reactive oxygen species, HO(•) formation, represents a risk factor for dopaminergic neurotoxicity and development of neurodegenerative disorders.


Assuntos
Química Encefálica , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Radical Hidroxila , Manganês/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Feminino , Lobo Frontal/química , Hipocampo/química , Masculino , Manganês/análise , Neostriado/química , Oxidopamina , Gravidez , Ratos , Ratos Wistar
19.
Metab Brain Dis ; 30(1): 129-36, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25483788

RESUMO

Ferulic acid is a polyphenol that has antioxidant, anti-inflammatory and anticancer properties. The present study analyzed the antidepressant-like potential of ferulic acid using two well-validated mouse models of despair test, tail suspension and forced swim tests. The results suggested that ferulic acid treatment at doses of 10, 20, 40 and 80 mg/kg (p.o.) significantly reduced the immobility time in both of these two tests. These doses that affected the depressive-like behaviors did now show any effect on locomotion counts. The further neurochemical assays suggested that ferulic acid increased monoamine neurotransmitter levels in the brain regions that are relative to mood disorders: the hippocampus and frontal cortex. The increased tend to serotonin and norepinephrine was also found in the hypothalamus after higher dose of ferulic acid treatment. The subsequent study suggested that monoamine oxidase A (MAO-A) activity was inhibited in the frontal cortex and hippocampus when treatment with 40 and 80 mg/kg ferulic acid; while MAO-B activity did not change significantly. The current study provides the first lines of evidence that serotonin and norepinephrine, but not dopamine levels were elevated in mouse hippocampus and frontal cortex after ferulic acid treatment. These changes may be attributable to the inhibition of MAO-A activities in the same brain regions.


Assuntos
Antidepressivos/uso terapêutico , Ácidos Cumáricos/uso terapêutico , Inibidores da Monoaminoxidase/uso terapêutico , Norepinefrina/fisiologia , Serotonina/fisiologia , Animais , Antidepressivos/farmacologia , Corpo Estriado/química , Corpo Estriado/efeitos dos fármacos , Ácidos Cumáricos/farmacologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Lobo Frontal/química , Lobo Frontal/efeitos dos fármacos , Hipocampo/química , Hipocampo/efeitos dos fármacos , Hipotálamo/química , Hipotálamo/efeitos dos fármacos , Imipramina/farmacologia , Imipramina/uso terapêutico , Imobilização , Masculino , Camundongos , Camundongos Endogâmicos ICR , Moclobemida/farmacologia , Moclobemida/uso terapêutico , Monoaminoxidase/análise , Inibidores da Monoaminoxidase/farmacologia , Atividade Motora/efeitos dos fármacos , Norepinefrina/análise , Esforço Físico/efeitos dos fármacos , Serotonina/análise , Estresse Fisiológico , Estresse Psicológico , Natação
20.
NMR Biomed ; 27(10): 1167-75, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25088346

RESUMO

The (1)H resonances of γ-aminobutyric acid (GABA) in the human brain in vivo are extensively overlapped with the neighboring abundant resonances of other metabolites and remain indiscernible in short-TE MRS at 7 T. Here we report that the GABA resonance at 2.28 ppm can be fully resolved by means of echo time optimization of a point-resolved spectroscopy (PRESS) scheme. Following numerical simulations and phantom validation, the subecho times of PRESS were optimized at (TE, TE2) = (31, 61) ms for detection of GABA, glutamate (Glu), glutamine (Gln), and glutathione (GSH). The in vivo feasibility of the method was tested in several brain regions in nine healthy subjects. Spectra were acquired from the medial prefrontal, left frontal, medial occipital, and left occipital brain and analyzed with LCModel. Following the gray and white matter (GM and WM) segmentation of T1 -weighted images, linear regression of metabolite estimates was performed against the fractional GM contents. The GABA concentration was estimated to be about seven times higher in GM than in WM. GABA was overall higher in frontal than in occipital brain. Glu was about twice as high in GM as in WM in both frontal and occipital brain. Gln was significantly different between frontal GM and WM while being similar between occipital GM and WM. GSH did not show significant dependence on tissue content. The signals from N-acetylaspartylglutamate were clearly resolved, giving the concentration more than 10 times higher in WM than in GM. Our data indicate that the PRESS TE = 92 ms method provides an effective means for measuring GABA and several challenging J-coupled spin metabolites in human brain at 7 T.


Assuntos
Córtex Cerebral/química , Espectroscopia de Prótons por Ressonância Magnética/métodos , Ácido gama-Aminobutírico/análise , Adulto , Córtex Cerebral/anatomia & histologia , Colina/análise , Simulação por Computador , Creatina/análise , Dipeptídeos/análise , Estudos de Viabilidade , Feminino , Lobo Frontal/química , Glutamatos/análise , Glutamina/análise , Glutationa/análise , Humanos , Masculino , Lobo Occipital/química , Imagens de Fantasmas , Córtex Pré-Frontal/química , Prótons , Substância Branca/química , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA