RESUMO
Recently, a newly emerged avian flavivirus, duck Tembusu virus (TMUV), was identified as the causative agent of a serious duck viral disease in Asia. Its rapid spread and expanded host range have raised substantial concerns regarding its potential threat to non-avian hosts, including humans. In this study, we report an infectious cDNA clone for a clinical strain CQW1 isolated from Southwest China, which is representative of the disease outbreak in the Chinese mainland. We generated a full-length cDNA clone pACYC FL-TMUV, which is infectious, and this cDNA clone-derived recombinant TMUV (rTMUV) showed comparative growth kinetics in both BHK21â¯cells and DEF cells compared with parental TMUV (pTMUV). In addition, rTMUV also showed the same high virulence in 9-day-old duck embryos as that in pTMUV, suggesting that rTMUV possessed similar properties to the natural virus both in vitro and in vivo. Based on the cDNA-clone, we first generated a reporter TMUV (TMUV-RLuc) carrying a Renilla luciferase (RLuc) gene. The luciferase kinetics of TMUV-RLuc were determined both in BHK21 and DEF cells. It seems that TMUV-RLuc grew well in vitro; however, the insertion of the RLuc gene attenuated viral replication in vitro. The higher viral titres of TMUV-RLuc were observed in BHK21 compared with that in DEF cells. The antiviral effects of exogenous-expressed duck RIG-I, MDA5, STING, MAVS, TBK1, IFNα and IFNγ were studied in vitro by using TMUV-RLuc. Our reverse genetics system will provide a multicomponent platform for the pathogenesis study of duck TMUV and the development of molecular countermeasures against duck TMUV infection.
Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Flavivirus/genética , Genética Reversa/métodos , Virologia/métodos , Animais , Antivirais/isolamento & purificação , Antivirais/farmacologia , Doenças das Aves/epidemiologia , Doenças das Aves/virologia , Células Cultivadas , China , Cricetinae , DNA Complementar/genética , DNA Viral/genética , Surtos de Doenças , Patos , Flavivirus/efeitos dos fármacos , Flavivirus/isolamento & purificação , Flavivirus/patogenicidade , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/veterinária , Infecções por Flavivirus/virologia , Genes Reporter , Luciferases de Renilla/análise , Luciferases de Renilla/genética , Coloração e Rotulagem , Análise de Sobrevida , VirulênciaRESUMO
Nipah virus (NiV) outbreaks have occurred in Malaysia, India, and Bangladesh, and the virus continues to cause annual outbreaks of fatal human encephalitis in Bangladesh due to spillover from its bat host reservoir. Due to its high pathogenicity, its potential use for bio/agro-terrorism, and to the current lack of approved therapeutics, NiV is designated as an overlap select agent requiring biosafety level-4 containment. Although the development of therapeutic monoclonal antibodies and soluble protein subunit vaccines have shown great promise, the paucity of effective antiviral drugs against NiV merits further exploration of compound libraries using rapid quantitative antiviral assays. As a proof-of-concept study, we evaluated the use of fluorescent and luminescent reporter NiVs for antiviral screening. We constructed and rescued NiVs expressing either Renilla luciferase or green fluorescent protein, and characterized their reporter signal kinetics in different cell types as well as in the presence of several inhibitors. The 50% effective concentrations (EC50s) derived for inhibitors against both reporter viruses are within range of EC50s derived from virus yield-based dose-response assays against wild-type NiV (within 1Log10), thus demonstrating that both reporter NiVs can serve as robust antiviral screening tools. Utilizing these live NiV-based reporter assays requires modest instrumentation, and circumvents the time and labor-intensive steps associated with cytopathic effect or viral antigen-based assays. These reporter NiVs will not only facilitate antiviral screening, but also the study of host cell components that influence the virus life cycle.
Assuntos
Antivirais/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos/métodos , Genes Reporter , Luciferases de Renilla/análise , Vírus Nipah/efeitos dos fármacos , Animais , Antivirais/farmacologia , Linhagem Celular , Humanos , Luciferases de Renilla/genética , Medições Luminescentes , Vírus Nipah/genéticaRESUMO
Identification of active compounds in high-throughput screening (HTS) contexts can be substantially improved by applying classical experimental design and statistical inference principles to all phases of HTS studies. The authors present both experimental and simulated data to illustrate how true-positive rates can be maximized without increasing false-positive rates by the following analytical process. First, the use of robust data preprocessing methods reduces unwanted variation by removing row, column, and plate biases. Second, replicate measurements allow estimation of the magnitude of the remaining random error and the use of formal statistical models to benchmark putative hits relative to what is expected by chance. Receiver Operating Characteristic (ROC) analyses revealed superior power for data preprocessed by a trimmed-mean polish method combined with the RVM t-test, particularly for small- to moderate-sized biological hits.