Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 306
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Ophthalmic Physiol Opt ; 44(5): 954-962, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38557968

RESUMO

PURPOSE: To determine whether visible light is needed to elicit axial eye shortening by exposure to long wavelength light. METHODS: Incoherent narrow-band red (620 ± 10 nm) or near-infrared (NIR, 875 ± 30 nm) light was generated by an array of light-emitting diodes (LEDs) and projected monocularly in 17 myopic and 13 non-myopic subjects for 10 min. The fellow eye was occluded. Light sources were positioned 50 cm from the eye in a dark room. Axial length (AL) was measured before and after the exposure using low-coherence interferometry. RESULTS: Non-myopic subjects responded to red light with significant eye shortening, while NIR light induced minor axial elongation (-13.3 ± 17.3 µm vs. +6.5 ± 11.6 µm, respectively, p = 0.005). Only 41% of the myopic subjects responded to red light exposure with a decrease in AL and changes were therefore, on average, not significantly different from those observed with NIR light (+0.2 ± 12.1 µm vs. +1.1 ± 11.2 µm, respectively, p = 0.83). Interestingly, there was a significant correlation between refractive error and induced changes in AL after exposure to NIR light in myopic eyes (r(15) = -0.52, p = 0.03) and induced changes in AL after exposure to red light in non-myopic eyes (r(11) = 0.62, p = 0.02), with more induced axial elongation with increasing refractive error. CONCLUSIONS: Incoherent narrow-band red light at 620 nm induced axial shortening in 77% of non-myopic and 41% of myopic eyes. NIR light did not induce any significant changes in AL in either refractive group, suggesting that the beneficial effect of red laser light therapy on myopia progression requires visible stimulation and not simply thermal energy.


Assuntos
Comprimento Axial do Olho , Raios Infravermelhos , Miopia , Humanos , Comprimento Axial do Olho/diagnóstico por imagem , Miopia/fisiopatologia , Masculino , Feminino , Raios Infravermelhos/efeitos adversos , Adulto , Adulto Jovem , Interferometria/métodos , Refração Ocular/fisiologia , Luz/efeitos adversos , Adolescente
2.
Food Funct ; 14(5): 2313-2325, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36779860

RESUMO

Blue light emitted by smartphones and tablets at night increases the risk of depression. Pu-erh tea has been reported to reduce the risk of depression by regulating tryptophan metabolism, but its underlying protective mechanism on depression induced by blue light at night (BLAN) remains unclear. In this work, two groups of C57BL6/J mice were given water or 0.25% (w/v) Pu-erh tea for 120 days, followed by a 45-day BLAN treatment (400 lux blue light between 21:00 and 23:00) to simulate blue light emitted from electronic equipment. Our results indicated that BLAN induced depression-like behaviors and gut microbiota disorders in healthy mice. Pu-erh tea intake significantly reshaped the gut microbiome (especially Bifidobacterium) and regulated the metabolism of short-chain fatty acids (SCFAs) which protected the integrity of the intestinal barrier. This improvement further reduced blood-brain barrier (BBB) damage and alleviated neuroinflammation by inhibiting MyD88/NF-κB pathways which finally regulated neurotransmitters such as brain-derived neurotrophic factor (BDNF) and serotonin (5-hydroxytryptamine, 5-HT). Collectively, 0.25% (w/v) Pu-erh tea has the potential to prevent BLAN-induced depression-like behaviors by reshaping the gut microbiota and increasing the generation of SCFAs via the gut-brain axis.


Assuntos
Depressão , Microbioma Gastrointestinal , Luz , Chá , Animais , Camundongos , Depressão/tratamento farmacológico , Luz/efeitos adversos
3.
BMC Complement Med Ther ; 22(1): 224, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028853

RESUMO

BACKGROUND: Oxidative stress can induce age-related diseases. Age-related retinal diseases, such as age-related macular degeneration (AMD), are difficult to cure owing to their complicated mechanisms. Although anti-neovascular therapeutics are used to treat wet AMD, vision cannot always be completely restored, and disease progression cannot always be inhibited. Therefore, determining a method to prevent or slow retinal damage is important. This study aimed to investigate the protective effect of a chrysanthemum water extract rich in flavone on the oxidatively stressed retina of mice. METHODS: Light damage was induced to establish oxidative stress mouse models. For in vitro experiments, ARPE-19 cells were cultured and divided into four groups: control, light-damaged, and low- and high-dose chrysanthemum extract. No treatment was administered in the control group. The light-damaged and low- and high-dose chrysanthemum extract groups were exposed to a similar white light level. The chrysanthemum extract was added at a low dose of 0.4 mg/mL or a high dose of 1.0 mg/mL before cell exposure to 2500-lx white light. Reactive oxygen species (ROS) level and cellular viability were measured using MTT and immunofluorescence staining. For in vivo experiments, C57BL/6 J mice were divided into the same four groups. Low- (0.23 g/kg/day) and high-dose (0.38 g/kg/day) chrysanthemum extracts were continuously intragastrically administered for 8 weeks before mouse exposure to 10,000-lx white light. Retinal function was evaluated using electroretinography. In vivo optical coherence tomography and in vitro haematoxylin and eosin staining were performed to observe the pathological retinal changes in each group after light damage. Fluorescein fundus angiography of the arteriovenous vessel was performed, and the findings were analysed using the AngioTool software. TUNEL immunofluorescence staining was used to assess isolated retinal apoptosis. RESULTS: In vitro, increased ROS production and decreased ARPE-19 cell viability were found in the light-damaged group. Improved ARPE-19 cell viability and reduced ROS levels were observed in the chrysanthemum extract treatment groups. In vivo, dysfunctional retinas and abnormal retinal structures were found in the light-damaged group, as well as increased apoptosis in the retinal ganglion cells (RGCs) and inner and outer nuclear layers. The apoptosis rate in the same layers was lower in the chrysanthemum extract treatment groups than in the light-damaged group. The production of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), increased in the treatment groups. NF-κB in the nucleus and TNF-α were more highly expressed in the light-damaged group than in the low- and high-dose chrysanthemum extract groups. CONCLUSIONS: Light damage-induced retinal oxidative stress can lead to ROS accumulation in the retinal tissues. Herein, RGC and photoreceptor layer apoptosis was triggered, and NF-κB in the nucleus and TNF-α were highly expressed in the light-damaged group. Preventive chrysanthemum extract administration decreased ROS production by increasing SOD, CAT, and GSH-Px activities and reversing the negative changes, demonstrating a potential protective effect on the retina.


Assuntos
Chrysanthemum , Luz , Extratos Vegetais , Retina , Animais , Antioxidantes , Chrysanthemum/química , Luz/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio , Retina/efeitos dos fármacos , Retina/efeitos da radiação , Superóxido Dismutase , Fator de Necrose Tumoral alfa
4.
PLoS One ; 17(1): e0262799, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35089982

RESUMO

OBJECTIVE: Sleep disturbances are common in pregnancy. Blocking blue light has been shown to improve sleep and may be a suitable intervention for sleep problems during pregnancy. The present study investigated the effects of blue light blocking in the evening and during nocturnal awakenings among pregnant women on primary sleep outcomes in terms of total sleep time, sleep efficiency and mid-point of sleep. METHODS: In a double-blind randomized controlled trial, 60 healthy nulliparous pregnant women in the beginning of the third trimester were included. They were randomized, using a random number generator, either to a blue-blocking glass intervention (n = 30) or to a control glass condition constituting partial blue-blocking effect (n = 30). Baseline data were recorded for one week and outcomes were recorded in the last of two intervention/control weeks. Sleep was measured by actigraphy, sleep diaries, the Bergen Insomnia Scale, the Karolinska Sleepiness Scale and the Pre-Sleep Arousal Scale. RESULTS: The results on the primary outcomes showed no significant mean difference between the groups at posttreatment, neither when assessed with sleep diary; total sleep time (difference = .78[min], 95%CI = -19.7, 21.3), midpoint of sleep (difference = -8.9[min], 95%CI = -23.7, 5.9), sleep efficiency (difference = -.06[%], 95%CI = -1.9, 1.8) and daytime functioning (difference = -.05[score points], 95%CI = -.33, .22), nor by actigraphy; total sleep time (difference = 13.0[min], 95%CI = -9.5, 35.5), midpoint of sleep (difference = 2.1[min], 95%CI = -11.6, 15.8) and sleep efficiency (difference = 1.7[%], 95%CI = -.4, 3.7). On the secondary outcomes, the Bergen Insomnia Scale, the Karolinska Sleepiness Scale and the Pre-Sleep Arousal Scale the blue-blocking glasses no statistically significant difference between the groups were found. Transient side-effects were reported in both groups (n = 3). CONCLUSIONS: The use of blue-blocking glasses compared to partially blue-blocking glasses in a group of healthy pregnant participants did not show statistically significant effects on sleep outcomes. Research on the effects of blue-blocking glasses for pregnant women with sleep-problems or circadian disturbances is warranted. TRIAL REGISTRATION: The trial is registered at ClinicalTrials.gov (NCT03114072).


Assuntos
Óculos/efeitos adversos , Luz/efeitos adversos , Fototerapia/métodos , Terceiro Trimestre da Gravidez , Proteção Radiológica/métodos , Distúrbios do Início e da Manutenção do Sono/prevenção & controle , Sono/fisiologia , Adulto , Estudos de Casos e Controles , Método Duplo-Cego , Feminino , Humanos , Gravidez , Sono/efeitos da radiação , Distúrbios do Início e da Manutenção do Sono/etiologia
5.
Med Sci Monit ; 27: e935000, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34949755

RESUMO

BACKGROUND Over-exposure to visible white light can cause retinal damage. Lotus seedpod proanthocyanidins (LSPCs) possess a variety of biological activities, including potent antioxidant and protective effects. Herein, this study observed whether LSPCs can protect against light exposure-induced retinal damage. MATERIAL AND METHODS We randomly separated 40 Prague-Dawley rats into a control group, a light exposure-induced retinal injury model group, and low-dose (50 mg/kg), medium-dose (100 mg/kg), and high-dose (100 mg/kg) LSPCs groups. Light-induced retinal damage models were established by 5000±200 Lx light treatment for 6 h. Five days and 0.5 h before the light treatment, rats in the LSPCs groups were separately administered 50, 100, and 200 mg/kg LSPCs by gavage. After 7 days, H&E staining of retinal sections was performed and the thickness of the ONL was measured. Oxidative stress-related markers and antioxidant enzymes were measured in serum by biochemical testing. TUNEL staining of retinal sections was also performed. Apoptosis-relevant proteins were examined by RT-qPCR and western blotting. GFAP expression was examined with immunohistochemistry. RESULTS Our H&E staining showed that LSPCs can prevent retinal degeneration following light exposure. Histological analysis showed a significant reduction in the ONL thickness of light exposure-induced retinal injury rats, but LSPCs substantially improved the ONL thickness. LSPCs markedly ameliorated the light-induced increase in levels of MDA, NO, and NOS, and decrease in activity of GSH-Px and SOD. Moreover, LSPCs treatment alleviated light-induced retinal apoptosis and limited the light-induced increase in GFAP expression. CONCLUSIONS LSPCs effectively attenuated light-induced retinal damage through antioxidative stress, anti-apoptosis, and neuroprotective effects.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Lotus/química , Fármacos Neuroprotetores/farmacologia , Proantocianidinas/farmacologia , Retina/efeitos dos fármacos , Animais , Apoptose/efeitos da radiação , Western Blotting , Relação Dose-Resposta à Radiação , Feminino , Marcação In Situ das Extremidades Cortadas , Luz/efeitos adversos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Componentes Aéreos da Planta/química , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Retina/efeitos da radiação
6.
Photochem Photobiol Sci ; 20(9): 1229-1238, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34449075

RESUMO

Photoaging induced by both ultraviolet and visible light has been shown to lead to increased inflammation and dysregulation of the extracellular matrix. Standardized extract of the Polypodium leucotomos fern, PLE, possesses anti-inflammatory and antioxidant properties, and has been shown to potentially mitigate photoaging through various mechanisms. This comprehensive review presents the data available on the effects of P. leucotomos extract on UV and VL-induced photoaging in vitro as well as in vivo in murine and human models.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Polypodium , Envelhecimento da Pele/efeitos dos fármacos , Protetores Solares/farmacologia , Animais , Anti-Inflamatórios/química , Antioxidantes/química , Humanos , Luz/efeitos adversos , Extratos Vegetais/química , Polypodium/química , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Protetores Solares/química , Raios Ultravioleta/efeitos adversos
7.
Phytomedicine ; 88: 153604, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34130054

RESUMO

BACKGROUND: Blue light can directly penetrate the lens and reach the retina to induce retinal damage, causing dry age-related macular degeneration (dAMD). Cynaroside (Cyn), a flavonoid glycoside, was proved to alleviate the oxidative damage of retinal cells in vitro. However, whether or not Cyn also exerts protective effect on blue light-induced retinal degeneration and its mechanisms of action are unclear. PURPOSE: This study aims to evaluate the protective effects of Cyn against blue-light induced retinal degeneration and its underlying mechanisms in vitro and in vivo. STUDY DESIGN/METHODS: Blue light-induced N-retinylidene-N-retinylethanolamine (A2E)-laden adult retinal pigment epithelial-19 (ARPE-19) cell damage and retinal damage in SD rats were respectively used to evaluate the protective effects of Cyn on retinal degeneration in vitro and in vivo. MTT assay and AnnexinV-PI double staining assay were used to evaluate the in vitro efficacy. Histological analysis, TUNEL assay, and fundus imaging were conducted to evaluate the in vivo efficacy. ELISA assay, western blot, and immunostaining were performed to investigate the mechanisms of action of Cyn. RESULTS: Cyn decreased the blue light-induced A2E-laden ARPE-19 cell damage and oxidative stress. Intravitreal injection of Cyn (2, 4 µg/eye) reversed the retinal degeneration induced by blue light in SD rats. Furthermore, Cyn inhibited the nuclear translocation of NF-κB and induced autophagy, which led to the clearance of overactivated pyrin domain containing 3 (NLRP3) inflammasome in vitro and in vivo. CONCLUSION: Cyn protects against blue light-induced retinal degeneration by modulating autophagy and decreasing the NLRP3 inflammasome.


Assuntos
Apoptose/efeitos dos fármacos , Glucosídeos/farmacologia , Luteolina/farmacologia , Substâncias Protetoras/farmacologia , Degeneração Retiniana/tratamento farmacológico , Animais , Apoptose/fisiologia , Autofagia/efeitos dos fármacos , Linhagem Celular , Glucosídeos/administração & dosagem , Humanos , Inflamassomos/metabolismo , Injeções Intravítreas , Luz/efeitos adversos , Luteolina/administração & dosagem , Masculino , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/administração & dosagem , Ratos Sprague-Dawley , Degeneração Retiniana/etiologia , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia
8.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572787

RESUMO

Age-related macular degeneration (AMD) is the progressive degeneration of the retinal pigment epithelium (RPE), retina, and choriocapillaris among elderly individuals and is the leading cause of blindness worldwide. Thus, a better understanding of the underlying mechanisms in retinal tissue activated by blue light exposure is important for developing novel treatment and intervention strategies. In this study, blue-light-emitting diodes with a wavelength of 440 nm were applied to RPE cells at a dose of 3.7 ± 0.75 mW/cm2 for 24 h. ARPE-19 cells were used to investigate the underlying mechanism induced by blue light exposure. A trypan blue exclusion assay was used for the cell viability determination. Flow cytometry was used for apoptosis rate detection and autophagy analysis. An immunofluorescence microscopy analysis was used to investigate cellular oxidative stress and DNA damage using DCFDA fluorescence staining and an anti-γH2AX antibody. Blue light exposure of zebrafish larvae was established to investigate the effect on retinal tissue development in vivo. To further demonstrate the comprehensive effect of blue light on ARPE-19 cells, next-generation sequencing (NGS) was performed for an ingenuity pathway analysis (IPA) to reveal additional related mechanisms. The results showed that blue light exposure caused a decrease in cell proliferation and an increase in apoptosis in ARPE-19 cells in a time-dependent manner. Oxidative stress increased during the early stage of 2 h of exposure and activated DNA damage in ARPE-19 cells after 8 h. Furthermore, autophagy was activated in response to blue light exposure at 24-48 h. The zebrafish larvae model showed the unfavorable effect of blue light in prohibiting retinal tissue development. The RNA-Seq results confirmed that blue light induced cell death and participated in tissue growth inhibition and maturation. The current study reveals the mechanisms by which blue light induces cell death in a time-dependent manner. Moreover, both the in vivo and NGS data uncovered blue light's effect on retinal tissue development, suggesting that exposing children to blue light could be relatively dangerous. These results could benefit the development of preventive strategies utilizing herbal medicine-based treatments for eye diseases or degeneration in the future.


Assuntos
Autofagia/efeitos da radiação , Dano ao DNA/efeitos da radiação , Luz/efeitos adversos , Degeneração Macular/etiologia , Estresse Oxidativo/efeitos da radiação , Epitélio Pigmentado da Retina/efeitos da radiação , Animais , Linhagem Celular , Modelos Animais de Doenças , Humanos , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Peixe-Zebra
9.
Molecules ; 25(23)2020 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260389

RESUMO

Crocus sativus L. belongs to the Iridaceae family and it is commonly known as saffron. The different cultures together with the geoclimatic characteristics of the territory determine a different chemical composition that characterizes the final product. This is why a complete knowledge of this product is fundamental, from which more than 150 chemical compounds have been extracted from, but only about one third of them have been identified. The chemical composition of saffron has been studied in relation to its efficacy in coping with neurodegenerative retinal diseases. Accordingly, experimental results provide evidence of a strict correlation between chemical composition and neuroprotective capacity. We found that saffron's ability to cope with retinal neurodegeneration is related to: (1) the presence of specific crocins and (2) the contribution of other saffron components. We summarize previous evidence and provide original data showing that results obtained both "in vivo" and "in vitro" lead to the same conclusion.


Assuntos
Crocus/química , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Cálcio/metabolismo , Carotenoides/química , Carotenoides/metabolismo , Carotenoides/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Cromatografia Líquida de Alta Pressão , Crocus/metabolismo , Modelos Animais de Doenças , Flores/química , Células HEK293 , Humanos , Luz/efeitos adversos , Camundongos , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Ratos Sprague-Dawley , Receptores Purinérgicos P2X7/efeitos dos fármacos , Retina/diagnóstico por imagem , Retina/efeitos dos fármacos , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/etiologia , Vitamina A/análogos & derivados , Vitamina A/metabolismo
10.
J Drugs Dermatol ; 19(9): 844-850, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33026752

RESUMO

BACKGROUND: An intense pulsed light (IPL) narrowband "KTP/PDL-like" filter (525–585 nm) may combine the tolerability of the IPL with the precision of KTP and PDL lasers. This study evaluated the impact of IPL with a KTP/PDL-like filter on telangiectasias. METHODS: This was a single-center, prospective study of 17 subjects with facial telangiectasias and skin types I–III. Three monthly treatments were performed using this specific filter, with follow-up visits at 1, 3, and 6 months. Telangiectasia improvement was assessed by the investigator and subjects using a 5-point scale. Facial photographs and safety assessments were obtained at each visit. Subject discomfort was evaluated using a visual analog scale (VAS) immediately posttreatment, and subject downtime was recorded at each subsequent visit. RESULTS: All facial telangiectasias significantly improved. At 1-month follow-up, >50% lesion clearance was noted in 97.1% of facial (n=36) and 85.7% of non-facial (n=7) lesions, with 73% of subjects satisfied or very satisfied. An increase in mean social downtime (0, 2.3, and 3 days) and VAS scores (3.5, 4.5, and 4.8) with treatments 1, 2, and 3, respectively, mirrored a stepwise increase in fluence with subsequent sessions. CONCLUSIONS: The use of a novel IPL narrowband KTP/PDL-like filter can significantly improve facial and non-facial telangiectasias with minimal downtime. J Drugs Dermatol. 2020;19(9):844-850. doi:10.36849/JDD.2020.4834.


Assuntos
Dermatoses Faciais/terapia , Dor/diagnóstico , Fototerapia/instrumentação , Dermatopatias Vasculares/terapia , Telangiectasia/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Dermatoses Faciais/diagnóstico , Feminino , Seguimentos , Humanos , Luz/efeitos adversos , Pessoa de Meia-Idade , Dor/etiologia , Medição da Dor , Satisfação do Paciente/estatística & dados numéricos , Fotografação , Fototerapia/efeitos adversos , Fototerapia/métodos , Estudos Prospectivos , Pele/irrigação sanguínea , Pele/diagnóstico por imagem , Pele/efeitos da radiação , Dermatopatias Vasculares/diagnóstico , Telangiectasia/diagnóstico , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
11.
PLoS One ; 15(9): e0235522, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32946481

RESUMO

Light conditions in retail stores may contribute to potato greening. In this study, we aimed to develop a potato tuber greening risk rating model for retail stores based on light quality and intensity parameters. This was achieved by firstly exposing three potato varieties (Nicola, Maranca and Kennebec) to seven specific light wavelengths (370, 420, 450, 530, 630, 660 and 735 nm) to determine the tuber greening propensity. Detailed light quality and intensity measurements from 25 retail stores were then combined with the greening propensity data to develop a tuber greening risk rating model. Our study showed that maximum greening occurred under blue light (450 nm), while 53%, 65% and 75% less occurred under green (530 nm), red (660 nm) and orange (630 nm) light, respectively. Greening risk, which varied between stores, was found to be related to light intensity level, and partially explained potato stock loss in stores. Our results from this study suggested that other in-store management practices, including lighting duration, average potato turnover, and light protection during non-retail periods, likely influence tuber greening risk.


Assuntos
Luz/efeitos adversos , Iluminação/efeitos adversos , Tubérculos/efeitos da radiação , Solanum tuberosum/efeitos da radiação , Verduras/efeitos da radiação , Comércio , Qualidade dos Alimentos , Armazenamento de Alimentos/métodos , Iluminação/instrumentação , Iluminação/métodos , Tubérculos/metabolismo , Medição de Risco/métodos , Fatores de Risco , Solanum tuberosum/economia , Solanum tuberosum/metabolismo , Fatores de Tempo , Verduras/economia , Verduras/metabolismo
12.
J Oleo Sci ; 69(10): 1163-1179, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32908089

RESUMO

Sixty-four bottles of red palm olein and palm olein (constituted as control) samples were stored at permutations of common home setting variables which are: temperature (room temperature (24°C) or 8°C), light (kept in dark or exposure under light) and oxygen (opened or sealed caps). The effects of temperature, oxygen and light on the stability of red palm olein and palm olein were studied over 4 months of storage at simulated domestic conditions. The degree of auto- and photo-oxidations was evaluated by monitoring the following quality parameters: acidity, peroxide and p-anisidine values, fatty acids composition, carotenes and vitamin E. It is noted from the study that opened bottles of red palm olein was found to be stable for 4 months in comparison to its counterpart (palm olein) evidenced from their primary oxidative constituents (peroxides) and hydrolytic behavior (free fatty acids). Opened bottles are better off when stored at 8°C and protected from light for a longer shelf-life. Sealed bottles of palm olein showed better storage stability in the dark at 8°C; whereas sealed bottles of red palm olein was found to be stable at both temperatures studied without the influence of light. After 4 months of varying storage conditions, the fatty acid composition, vitamin E and carotenes of both oils remained unchanged. The phytonutrients in red palm olein rendered better storage stability when compared to palm olein.


Assuntos
Temperatura Baixa , Escuridão , Armazenamento de Alimentos , Óleo de Palmeira/química , Compostos de Anilina/análise , Carotenoides/análise , Ácidos Graxos/análise , Qualidade dos Alimentos , Luz/efeitos adversos , Oxirredução , Oxigênio/efeitos adversos , Óleo de Palmeira/classificação , Peróxidos , Fotólise , Vitamina E/análise
13.
Medicine (Baltimore) ; 99(24): e20568, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32541484

RESUMO

RATIONALE: Skin photobiomodulation involves the use of low doses of light of a specific wavelength to reduce skin inflammation and promote tissue repair. Recently, a face mask using a light-emitting diode (LED) to induce photobiomodulation has been widely introduced in the market. However, a short wavelength of high-energy blue light can cause retinal damage. We would like to report a rare case of photochemical retinopathy after using a blue LED face mask. PATIENT CONCERNS: A 37-year-old woman presented with complaints of distorted vision. The patient was exposed to blue light from an LED face mask 1 month before presentation. DIAGNOSIS: Color fundus photography revealed a yellowish chorioretinal lesion and optical coherence tomography revealed retinal pigment epithelium destruction in the parafoveal area. Fluorescein angiography revealed leakage from the lesion at the parafovea. The patient was diagnosed with blue LED-induced photochemical retinopathy. INTERVENTIONS: Intravitreal bevacizumab was injected in the right eye. OUTCOMES: After 4 weeks, dysmorphopsia was improved. LESSONS: This case report demonstrates that retinal damage can occur in humans due to prolonged exposure to blue light. Therefore, it is important to be wary of eye exposure and ensure the eyes are covered during LED face mask use.


Assuntos
Luz/efeitos adversos , Terapia com Luz de Baixa Intensidade/efeitos adversos , Doenças Retinianas/etiologia , Adulto , Feminino , Humanos , Doenças Retinianas/diagnóstico por imagem
14.
Nat Neurosci ; 23(7): 869-880, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32483349

RESUMO

Besides generating vision, light modulates various physiological functions, including mood. While light therapy applied in the daytime is known to have anti-depressive properties, excessive light exposure at night has been reportedly associated with depressive symptoms. The neural mechanisms underlying this day-night difference in the effects of light are unknown. Using a light-at-night (LAN) paradigm in mice, we showed that LAN induced depressive-like behaviors without disturbing the circadian rhythm. This effect was mediated by a neural pathway from retinal melanopsin-expressing ganglion cells to the dorsal perihabenular nucleus (dpHb) to the nucleus accumbens (NAc). Importantly, the dpHb was gated by the circadian rhythm, being more excitable at night than during the day. This indicates that the ipRGC→dpHb→NAc pathway preferentially conducts light signals at night, thereby mediating LAN-induced depressive-like behaviors. These findings may be relevant when considering the mental health effects of the prevalent nighttime illumination in the industrial world.


Assuntos
Ritmo Circadiano/fisiologia , Ritmo Circadiano/efeitos da radiação , Depressão/fisiopatologia , Luz/efeitos adversos , Vias Visuais/fisiologia , Animais , Depressão/etiologia , Habenula/fisiologia , Habenula/efeitos da radiação , Camundongos , Núcleo Accumbens/fisiologia , Núcleo Accumbens/efeitos da radiação , Células Ganglionares da Retina/fisiologia , Células Ganglionares da Retina/efeitos da radiação , Vias Visuais/efeitos da radiação
15.
Biomed Pharmacother ; 126: 110050, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32135462

RESUMO

Photoreceptor cells are first-order retinal neurons that directly contribute to the formation of vision. Photoreceptor degeneration is the primary cause of vision impairment during the course of retinopathies such as retinitis pigmentosa and age-related macular degeneration, for which photoreceptor-targeted therapies are currently unavailable. Shihu Yeguang Pill (SYP), a classic formula in traditional Chinese medicine, has a long histology of clinical application for the treatment of a wide range of retinopathies in China. However, whether SYP is pharmacological effective at protecting photoreceptor cells is unclear. The current study thus directly addressed the pharmacological implications of SYP in photoreceptor degeneration in a mouse model characterized by bright light-induced retinal degeneration. Non-invasive full-retinal assessment was carried out to evaluate the effect of SYP on the retinal structure and function through optical coherence tomography and electroretinography, respectively. In addition, photoreceptor apoptosis, second-order neuron impairment and reactive changes in retinal microglial and müller cells, hallmark pathologies associated with photoreceptor degeneration, were assessed using immunohistochemistry and real-time PCR analyses. The results showed that SYP treatment attenuated bright light-induced impairment of the retinal structure and function. Moreover, SYP treatment suppressed photoreceptor apoptosis, alleviated the impairment of bipolar and horizontal cells and mitigated the reactive changes of müller and microglial cells in the bright light-exposed retinas. Real-time PCR analyses showed that dysregulated expression of pro-apoptotic c-fos and c-jun and anti-apoptotic bcl-2 as well as proinflammatory TNF-α in the bright light-exposed retinas was partially normalized as a result of SYP treatment. In summary, the work here demonstrates for the first time that SYP treatment protects the retinas from developing bright light-induced photoreceptor degeneration and associated alterations in second-order neurons and glial cells. The findings here thus provide experimental evidence to better support the mechanism-guided clinical application of SYP in the treatment of related retinal degenerative diseases.


Assuntos
Apoptose/efeitos dos fármacos , Medicamentos de Ervas Chinesas/uso terapêutico , Luz/efeitos adversos , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras/efeitos dos fármacos , Retina/efeitos dos fármacos , Degeneração Retiniana/prevenção & controle , Animais , Medicamentos de Ervas Chinesas/farmacologia , Eletrorretinografia , Feminino , Medicina Tradicional Chinesa , Camundongos Endogâmicos BALB C , Células Fotorreceptoras/patologia , Células Fotorreceptoras/efeitos da radiação , Células Fotorreceptoras de Vertebrados/patologia , Retina/patologia , Retina/efeitos da radiação , Degeneração Retiniana/etiologia
16.
Int J Mol Sci ; 21(3)2020 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-32024276

RESUMO

Skin is being increasingly exposed to artificial blue light due to the extensive use of electronic devices. This, together with recent observations reporting that blue light-also known as high-energy visible light-can exert cytotoxic effects associated with oxidative stress and promote hyperpigmentation, has sparked interest in blue light and its potential harmful effects on skin. The photoprotective properties of new extracts of different botanicals with antioxidant activity are therefore being studied. Deschampsia antarctica (Edafence®, EDA), a natural aqueous extract, has shown keratinocyte and fibroblast cell protection effects against ultraviolet radiation and dioxin toxicity. In this regard, we studied the protective capacity of EDA against the deleterious effects of artificial blue light irradiation in human dermal fibroblasts (HDF) and melanocytes. We analyzed the impact of EDA on viability, cell morphology, oxidative stress, melanogenic signaling pathway activation and hyperpigmentation in HDF and melanocytes subjected to artificial blue light irradiation. Our results show that EDA protects against cell damage caused by artificial blue light, decreasing oxidative stress, melanogenic signaling pathway activation and hyperpigmentation caused by blue light irradiation. All these findings suggest that EDA might help prevent skin damage produced by artificial blue light exposure from screen of electronic devices.


Assuntos
Luz/efeitos adversos , Extratos Vegetais/farmacologia , Poaceae/química , Substâncias Protetoras/farmacologia , Envelhecimento da Pele/efeitos dos fármacos , Pele/efeitos dos fármacos , Dispositivos Eletrônicos Vestíveis/efeitos adversos , Sobrevivência Celular , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Estresse Oxidativo , Espécies Reativas de Oxigênio , Pele/citologia , Pele/efeitos da radiação , Envelhecimento da Pele/patologia
17.
J Pediatr Gastroenterol Nutr ; 69(6): 719-725, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31568154

RESUMO

OBJECTIVES: The purpose of the present study was to determine if protecting parenteral nutrition solutions from ambient light and supplementing with N-acetylcysteine (NAC) improves mesenteric blood flow, gut morphology, and oxidative status of parenterally fed neonates. METHODS: Neonatal Yucatan miniature piglets (n = 23, 7-11 days old) were surgically fitted with central venous catheters and an ultrasonic blood flow probe around the superior mesenteric artery. Piglets were fed continuously for 7 days either light-protected (LP) or light-exposed (LE) complete parenteral nutrition that was enriched with either NAC or alanine (ALA). RESULTS: There were no differences in body weight or overall gut morphology among groups after 7 days. Plasma concentrations of NAC were greater and total homocysteine lower in NAC- versus ALA-supplemented pigs on day 7 (N-acetylcysteine: 94 vs 7 µmol/L; P < 0.001; homocysteine: 14 versus 21 µmol/L; P < 0.005); plasma total glutathione was not affected. Hepatic lipid peroxidation was reduced by 25% in piglets that received LP parenteral nutrition (P < 0.05). The mesenteric artery blood flow decreased in all pigs between days 2 and 6 (P < 0.001) because of parenteral feeding. Photoprotection alone (LP-ALA) attenuated the decrease in mesenteric blood flow to 66% of baseline on day 6 compared with LE-ALA (37%; P < 0.05) and LP-NAC pigs (43%; P = 0.062); LE-NAC piglets had intermediate reductions in blood flow (55%). CONCLUSIONS: Photoprotection of parenteral nutrition solutions is a simple, effective method to attenuate decline in blood flow to the gut and hepatic lipid peroxidation, which are both commonly associated with parenteral feeding.


Assuntos
Acetilcisteína/administração & dosagem , Luz/efeitos adversos , Nutrição Parenteral Total/métodos , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Humanos , Intestinos/irrigação sanguínea , Masculino , Artérias Mesentéricas/fisiologia , Oxirredução , Distribuição Aleatória , Suínos
18.
Exp Eye Res ; 188: 107781, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31473259

RESUMO

To study the effect of taurine depletion induced by ß-alanine supplementation in the retinal nerve fiber layer (RNFL), and retinal ganglion cell (RGC) survival and axonal transport. Albino Sprague-Dawley rats were divided into two groups: one group received ß-alanine supplementation (3%) in the drinking water during 2 months to induce taurine depletion, and the other group received regular water. After one month, half of the rats from each group were exposed to light. Retinas were analyzed in-vivo using Spectral-Domain Optical Coherence Tomography (SD-OCT). Prior to processing, RGCs were retrogradely traced with fluorogold (FG) applied to both superior colliculi, to assess the state of their retrograde axonal transport. Retinas were dissected as wholemounts, surviving RGCs were immunoidentified with Brn3a, and the RNFL with phosphorylated high-molecular-weight subunit of the neurofilament triplet (pNFH) antibodies. ß-alanine supplementation decreases significantly taurine plasma levels and causes a significant reduction of the RNFL thickness that is increased after light exposure. An abnormal pNFH immunoreactivity in some RGC bodies, their proximal dendrites and axons, and a further diminution of the mean number of FG-traced RGCs compared with Brn3a+RGCs, indicate that their retrograde axonal transport is affected. In conclusion, taurine depletion causes RGC loss and axonal transport impairment. Finally, our results suggest that care should be taken when ingesting ß-alanine supplements due to the limited understanding of their potential adverse effects.


Assuntos
Transporte Axonal/efeitos dos fármacos , Luz/efeitos adversos , Fibras Nervosas/efeitos dos fármacos , Degeneração Retiniana/etiologia , Células Ganglionares da Retina/efeitos dos fármacos , Taurina/deficiência , beta-Alanina/toxicidade , Animais , Fibras Nervosas/metabolismo , Fibras Nervosas/patologia , Proteínas de Neurofilamentos/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Taurina/sangue , Tomografia de Coerência Óptica , Fator de Transcrição Brn-3A/metabolismo
19.
Cutan Ocul Toxicol ; 38(2): 161-168, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30513212

RESUMO

PURPOSE: Zeaxanthin protects the macula from ocular damage due to light or radiation by scavenging harmful reactive oxygen species. In the present study, zeaxanthin product (OmniXan®; OMX), derived from paprika pods (Capsicum annum; Family-Solanaceae), was tested for its efficacy in the rat retina against photooxidation. METHODS: Forty-two male 8-week-old Wistar rats exposed to 12L/12D, 16L/8D and 24L/0D hours of intense light conditions were orally administrated either 0 or 100 mg/kg BW of zeaxanthin concentration. Retinal morphology was analyzed by histopathology, and target gene expressions were detected with real-time polymerase chain reaction methods. RESULTS: OMX treatment significantly increased the serum zeaxanthin concentration (p < 0.001) and ameliorated oxidative damage by increasing the antioxidant enzyme activities in the retina induced by light (p < 0.001). OMX administration significantly upregulated the expression of genes, including Rhodopsin (Rho), Rod arrestin (SAG), Gα Transducin 1 (GNAT-1), neural cell adhesion molecule (NCAM), growth-associated protein 43 (GAP43), nuclear factor-(erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase (HO-1) and decreased the expression of nuclear factor-κB (NF- κB) and GFAP by OMX treatment rats. The histologic findings confirmed the antioxidant and gene expression data. CONCLUSIONS: This study suggests that OMX is a potent substance that can be used to protect photoreceptor cell degeneration in the retina exposed to intense light.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Luz/efeitos adversos , Degeneração Retiniana/tratamento farmacológico , Zeaxantinas/uso terapêutico , Animais , Anti-Inflamatórios/sangue , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Biomarcadores/metabolismo , Proteínas do Olho/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Masculino , Malondialdeído/metabolismo , Ratos Wistar , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Retina/efeitos da radiação , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Zeaxantinas/sangue , Zeaxantinas/farmacologia
20.
Crit Care Nurs Q ; 42(1): 75-80, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30507667

RESUMO

The general goal of this review is to summarize, clarify, and evaluate what is known about patients' sleep in the intensive care units (ICUs) in terms of sleep measurement and management. In addition, this review focuses on the gap in knowledge in this field. A review of online databases for relevant articles in the period between 2000 and 2017 was conducted. The results of this study indicate that there are several methods to measure patients' quality of sleep. Polysomnography and actigraphy are the most common standard objective and valid methods used to measure sleep disorders in the ICU. On the contrary, several subjective instruments are used such as the Richards-Campbell Sleep Scale, Verran Snyder Harper Sleep Scale, Pittsburgh Sleep Quality Index, Insomnia Severity Index, and Sleep Efficiency Index. To improve patients' sleep in the ICU, various strategies are used internationally. These strategies include reducing the noise and light levels; using relaxation technique, meditation, hypnosis, earplugs, eye masks, relaxation music; and modifying the time of delivering nursing care.


Assuntos
Actigrafia/métodos , Unidades de Terapia Intensiva , Polissonografia/métodos , Sono/fisiologia , Dispositivos de Proteção das Orelhas , Dispositivos de Proteção dos Olhos , Humanos , Luz/efeitos adversos , Ruído/efeitos adversos , Terapia de Relaxamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA