Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.863
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38479809

RESUMO

First-order thalamic nuclei receive feedforward signals from peripheral receptors and relay these signals to primary sensory cortex. Primary sensory cortex, in turn, provides reciprocal feedback to first-order thalamus. Because the vast majority of sensory thalamocortical inputs target primary sensory cortex, their complementary corticothalamic neurons are assumed to be similarly restricted to primary sensory cortex. We upend this assumption by characterizing morphologically diverse neurons in multiple mid-level visual cortical areas of the primate (Macaca mulatta) brain that provide direct feedback to the primary visual thalamus, the dorsal lateral geniculate nucleus (LGN). Although the majority of geniculocortical neurons project to primary visual cortex (V1), a minority, located mainly in the koniocellular LGN layers, provide direct input to extrastriate visual cortex. These "V1-bypassing" projections may be implicated in blindsight. We hypothesized that geniculocortical inputs directly targeting extrastriate cortex should be complemented by reciprocal corticogeniculate circuits. Using virus-mediated circuit tracing, we discovered corticogeniculate neurons throughout three mid-level extrastriate areas: MT, MST, and V4. Quantitative morphological analyses revealed nonuniform distributions of unique cell types across areas. Many extrastriate corticogeniculate neurons had spiny stellate morphology, suggesting possible targeting of koniocellular LGN layers. Importantly though, multiple morphological types were observed across areas. Such morphological diversity could suggest parallel streams of V1-bypassing corticogeniculate feedback at multiple stages of the visual processing hierarchy. Furthermore, the presence of corticogeniculate neurons across visual cortex necessitates a reevaluation of the LGN as a hub for visual information rather than a simple relay.


Assuntos
Córtex Visual , Vias Visuais , Animais , Retroalimentação , Vias Visuais/fisiologia , Tálamo/fisiologia , Macaca mulatta , Córtex Visual/fisiologia
2.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397125

RESUMO

Alcohol misuse and HIV independently induce myopathy. We previously showed that chronic binge alcohol (CBA) administration, with or without simian immunodeficiency virus (SIV), decreases differentiation capacity of male rhesus macaque myoblasts. We hypothesized that short-term alcohol and CBA/SIV would synergistically decrease differentiation capacity and impair bioenergetic parameters in female macaque myoblasts. Myoblasts from naïve (CBA-/SIV-), vehicle [VEH]/SIV, and CBA/SIV (N = 4-6/group) groups were proliferated (3 days) and differentiated (5 days) with 0 or 50 mM ethanol (short-term). CBA/SIV decreased differentiation and increased non-mitochondrial oxygen consumption rate (OCR) versus naïve and/or VEH/SIV. Short-term alcohol decreased differentiation; increased maximal and non-mitochondrial OCR, mitochondrial reactive oxygen species (ROS) production, and aldolase activity; and decreased glycolytic measures, ATP production, mitochondrial membrane potential (ΔΨm), and pyruvate kinase activity. Mitochondrial ROS production was closely associated with mitochondrial network volume, and differentiation indices were closely associated with key bioenergetic health and function parameters. Results indicate that short-term alcohol and CBA non-synergistically decrease myoblast differentiation capacity. Short-term alcohol impaired myoblast glycolytic function, driving the bioenergetic deficit. Results suggest potentially differing mechanisms underlying decreased differentiation capacity with short-term alcohol and CBA, highlighting the need to elucidate the impact of different alcohol use patterns on myopathy.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas , Doenças Musculares , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Feminino , Animais , Masculino , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Espécies Reativas de Oxigênio , Etanol/farmacologia , Mioblastos , Metabolismo Energético , Doenças Musculares/complicações , Carga Viral
3.
PLoS One ; 19(1): e0286742, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38232123

RESUMO

Brain machine interfaces (BMI) connect brains directly to the outside world, bypassing natural neural systems and actuators. Neuronal-activity-to-motion transformation algorithms allow applications such as control of prosthetics or computer cursors. These algorithms lie within a spectrum between bio-mimetic control and bio-feedback control. The bio-mimetic approach relies on increasingly complex algorithms to decode neural activity by mimicking the natural neural system and actuator relationship while focusing on machine learning: the supervised fitting of decoder parameters. On the other hand, the bio-feedback approach uses simple algorithms and relies primarily on user learning, which may take some time, but can facilitate control of novel, non-biological appendages. An increasing amount of work has focused on the arguably more successful bio-mimetic approach. However, as chronic recordings have become more accessible and utilization of novel appendages such as computer cursors have become more universal, users can more easily spend time learning in a bio-feedback control paradigm. We believe a simple approach which leverages user learning and few assumptions will provide users with good control ability. To test the feasibility of this idea, we implemented a simple firing-rate-to-motion correspondence rule, assigned groups of neurons to virtual "directional keys" for control of a 2D cursor. Though not strictly required, to facilitate initial control, we selected neurons with similar preferred directions for each group. The groups of neurons were kept the same across multiple recording sessions to allow learning. Two Rhesus monkeys used this BMI to perform a center-out cursor movement task. After about a week of training, monkeys performed the task better and neuronal signal patterns changed on a group basis, indicating learning. While our experiments did not compare this bio-feedback BMI to bio-mimetic BMIs, the results demonstrate the feasibility of our control paradigm and paves the way for further research in multi-dimensional bio-feedback BMIs.


Assuntos
Interfaces Cérebro-Computador , Animais , Macaca mulatta , Retroalimentação , Biorretroalimentação Psicológica/métodos , Algoritmos , Encéfalo/fisiologia , Interface Usuário-Computador
4.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37950874

RESUMO

Cortical neurons of eutherian mammals project to the contralateral hemisphere, crossing the midline primarily via the corpus callosum and the anterior, posterior, and hippocampal commissures. We recently reported and named the thalamic commissures (TCs) as an additional interhemispheric axonal fiber pathway connecting the cortex to the contralateral thalamus in the rodent brain. Here, we demonstrate that TCs also exist in primates and characterize the connectivity of these pathways with high-resolution diffusion-weighted MRI, viral axonal tracing, and fMRI. We present evidence of TCs in both New World (Callithrix jacchus and Cebus apella) and Old World primates (Macaca mulatta). Further, like rodents, we show that the TCs in primates develop during the embryonic period, forming anatomical and functionally active connections of the cortex with the contralateral thalamus. We also searched for TCs in the human brain, showing their presence in humans with brain malformations, although we could not identify TCs in healthy subjects. These results pose the TCs as a vital fiber pathway in the primate brain, allowing for more robust interhemispheric connectivity and synchrony and serving as an alternative commissural route in developmental brain malformations.


Assuntos
Substância Branca , Animais , Humanos , Substância Branca/diagnóstico por imagem , Encéfalo , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/fisiologia , Tálamo/diagnóstico por imagem , Macaca mulatta , Mamíferos
5.
PLoS One ; 18(12): e0294021, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38091314

RESUMO

Infectious diarrhea is a World Health Organization public health priority area due to the lack of effective vaccines and an accelerating global antimicrobial resistance crisis. New strategies are urgently needed such as immunoprophylactic for prevention of diarrheal diseases. Hyperimmune bovine colostrum (HBC) is an established and effective prophylactic for infectious diarrhea. The commercial HBC product, Travelan® (Immuron Ltd, Australia) targets multiple strains of enterotoxigenic Escherichia coli (ETEC) is highly effective in preventing diarrhea in human clinical studies. Although Travelan® targets ETEC, preliminary studies suggested cross-reactivity with other Gram-negative enteric pathogens including Shigella and Salmonella species. For this study we selected an invasive diarrheal/dysentery-causing enteric pathogen, Shigella, to evaluate the effectiveness of Travelan®, both in vitro and in vivo. Here we demonstrate broad cross-reactivity of Travelan® with all four Shigella spp. (S. flexneri, S. sonnei, S. dysenteriae and S. boydii) and important virulence factor Shigella antigens. Naïve juvenile rhesus macaques (NJRM) were randomized, 8 dosed with Travelan® and 4 with a placebo intragastrically twice daily over 6 days. All NJRM were challenged with S. flexneri 2a strain 2457T on the 4th day of treatment and monitored for diarrheal symptoms. All placebo-treated NJRM displayed acute dysentery symptoms within 24-36 hours of challenge. Two Travelan®-treated NJRM displayed dysentery symptoms and six animals remained healthy and symptom-free post challenge; resulting in 75% efficacy of prevention of shigellosis (p = 0.014). These results strongly indicate that Travelan® is functionally cross-reactive and an effective prophylactic for shigellosis. This has positive implications for the prophylactic use of Travelan® for protection against both ETEC and Shigella spp. diarrheal infections. Future refinement and expansion of pathogens recognized by HBC including Travelan® could revolutionize current management of gastrointestinal infections and outbreaks in travelers' including military, peacekeepers, humanitarian workers and in populations living in endemic regions of the world.


Assuntos
Disenteria Bacilar , Disenteria , Escherichia coli Enterotoxigênica , Shigella , Feminino , Gravidez , Animais , Bovinos , Humanos , Disenteria Bacilar/epidemiologia , Macaca mulatta , Colostro , Fatores Imunológicos , Diarreia/prevenção & controle
6.
Sci Rep ; 13(1): 16913, 2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805650

RESUMO

The control of some physiological parameters, such as the heart rate, is known to have a role in cognitive and emotional processes. Cardiac changes are also linked to mental health issues and neurodegeneration. Thus, it is not surprising that many of the brain structures typically associated with cognition and emotion also comprise a circuit-the central automatic network-responsible for the modulation of cardiovascular output. The mediodorsal thalamus (MD) is involved in higher cognitive processes and is also known to be connected to some of the key neural structures that regulate cardiovascular function. However, it is unclear whether the MD has any role in this circuitry. Here, we show that discrete manipulations (microstimulation during anaesthetized functional neuroimaging or localized cytotoxin infusions) to either the magnocellular or the parvocellular MD subdivisions led to observable and variable changes in the heart rate of female and male rhesus macaque monkeys. Considering the central positions that these two MD subdivisions have in frontal cortico-thalamocortical circuits, our findings suggest that MD contributions to autonomic regulation may interact with its identified role in higher cognitive processes, representing an important physiological link between cognition and emotion.


Assuntos
Cognição , Tálamo , Animais , Masculino , Feminino , Macaca mulatta , Cognição/fisiologia , Encéfalo , Vias Neurais/fisiologia
7.
Hear Res ; 439: 108879, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37826916

RESUMO

We demonstrate how the structure of auditory cortex can be investigated by combining computational modelling with advanced optimisation methods. We optimise a well-established auditory cortex model by means of an evolutionary algorithm. The model describes auditory cortex in terms of multiple core, belt, and parabelt fields. The optimisation process finds the optimum connections between individual fields of auditory cortex so that the model is able to reproduce experimental magnetoencephalographic (MEG) data. In the current study, this data comprised the auditory event-related fields (ERFs) recorded from a human subject in an MEG experiment where the stimulus-onset interval between consecutive tones was varied. The quality of the match between synthesised and experimental waveforms was 98%. The results suggest that neural activity caused by feedback connections plays a particularly important role in shaping ERF morphology. Further, ERFs reflect activity of the entire auditory cortex, and response adaptation due to stimulus repetition emerges from a complete reorganisation of AC dynamics rather than a reduction of activity in discrete sources. Our findings constitute the first stage in establishing a new non-invasive method for uncovering the organisation of the human auditory cortex.


Assuntos
Córtex Auditivo , Animais , Humanos , Córtex Auditivo/fisiologia , Mapeamento Encefálico , Magnetoencefalografia , Macaca mulatta/fisiologia , Simulação por Computador , Potenciais Evocados Auditivos , Percepção Auditiva/fisiologia , Estimulação Acústica
8.
Neurobiol Aging ; 132: 246-249, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866084

RESUMO

Old male rhesus macaques often show cognitive impairment, and also have attenuated circulating levels of testosterone and dehydroepiandrosterone sulfate (DHEAS). However, it is unclear if these age-associated decreases in circulating androgen levels are casually related to mechanisms that support cognition. To test this possibility, old male rhesus macaques were given daily supplements of testosterone and DHEA for ∼7 months, using a paradigm designed to mimic the 24-hour circulating hormone patterns of young adults. Animals completed the Delayed Match-to-Sample (DMS) task to assess recognition, and the Delayed Response (DR) task to assess working memory. The animals all showed significant delay-dependent performance, with longer delays resulting in lower accuracy; and timepoint-dependent performance, showing improvement with the repeated opportunities for practice. However, there were no differences between the androgen supplemented animals and age-matched controls. These data indicate that the specific short-term supplementation paradigm employed here offers no obvious benefits for DMS or DR task performance.


Assuntos
Androgênios , Desidroepiandrosterona , Animais , Masculino , Androgênios/farmacologia , Macaca mulatta/fisiologia , Desidroepiandrosterona/farmacologia , Testosterona , Cognição/fisiologia , Suplementos Nutricionais
9.
J Comp Neurol ; 531(18): 1934-1962, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37357562

RESUMO

Fundamental differences in excitatory pyramidal cells across cortical areas and species highlight the implausibility of extrapolation from mouse to primate neurons and cortical networks. Far less is known about comparative regional and species-specific features of neurochemically distinct cortical inhibitory interneurons. Here, we quantified the density, laminar distribution, and somatodendritic morphology of inhibitory interneurons expressing one or more of the calcium-binding proteins (CaBPs) (calretinin [CR], calbindin [CB], and/or parvalbumin [PV]) in mouse (Mus musculus) versus rhesus monkey (Macaca mulatta) in two functionally and cytoarchitectonically distinct regions-the primary visual and frontal cortical areas-using immunofluorescent multilabeling, stereological counting, and 3D reconstructions. There were significantly higher densities of CB+ and PV+ neurons in visual compared to frontal areas in both species. The main species difference was the significantly greater density and proportion of CR+ interneurons and lower extent of CaBP coexpression in monkey compared to mouse cortices. Cluster analyses revealed that the somatodendritic morphology of layer 2-3 inhibitory interneurons is more dependent on CaBP expression than on species and area. Only modest effects of species were observed for CB+ and PV+ interneuron morphologies, while CR+ neurons showed no difference. By contrast to pyramidal cells that show highly distinctive area- and species-specific features, here we found more subtle differences in the distribution and features of interneurons across areas and species. These data yield insight into how nuanced differences in the population organization and properties of neurons may underlie specializations in cortical regions to confer species- and area-specific functional capacities.


Assuntos
Parvalbuminas , Proteína G de Ligação ao Cálcio S100 , Animais , Camundongos , Calbindinas/metabolismo , Calbindina 2/metabolismo , Parvalbuminas/metabolismo , Proteína G de Ligação ao Cálcio S100/análise , Proteína G de Ligação ao Cálcio S100/metabolismo , Córtex Pré-Frontal , Interneurônios/metabolismo , Lobo Frontal , Macaca mulatta
10.
Neuropharmacology ; 235: 109563, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37116610

RESUMO

Sensorimotor gating is the ability to suppress motor responses to irrelevant sensory inputs. This response is disrupted in a range of neuropsychiatric disorders. Prepulse inhibition (PPI) of the acoustic startle response (ASR) is a form of sensorimotor gating in which a low-intensity prepulse immediately precedes a startling stimulus, resulting in an attenuation of the startle response. PPI is conserved across species and the underlying circuitry mediating this effect has been widely studied in rodents. However, recent work from our laboratories has shown an unexpected divergence between the circuitry controlling PPI in rodents as compared to macaques. The nucleus accumbens, a component of the basal ganglia, has been identified as a key modulatory node for PPI in rodents. The role of the nucleus accumbens in modulating PPI in primates has yet to be investigated. We measured whole-body PPI of the ASR in six rhesus macaques following (1) pharmacological inhibition of the nucleus accumbens using the GABAA agonist muscimol, and (2) focal application of the dopamine D2/3 agonist quinpirole (at 3 doses). We found that quinpirole, but not muscimol, infused into the nucleus accumbens disrupts prepulse inhibition in monkeys. These results differ from those observed in rodents, where both muscimol and quinpirole disrupt prepulse inhibition.


Assuntos
Núcleo Accumbens , Inibição Pré-Pulso , Animais , Quimpirol/farmacologia , Reflexo de Sobressalto , Macaca mulatta , Muscimol/farmacologia , Agonistas de Dopamina/farmacologia , Acústica , Estimulação Acústica/métodos
11.
Viruses ; 15(3)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36992332

RESUMO

In this follow-up study, we investigated the abundance and compartmentalization of blood plasma extracellular miRNA (exmiRNA) into lipid-based carriers-blood plasma extracellular vesicles (EVs) and non-lipid-based carriers-extracellular condensates (ECs) during SIV infection. We also assessed how combination antiretroviral therapy (cART), administered in conjunction with phytocannabinoid delta-9-tetrahydrocannabinol (THC), altered the abundance and compartmentalization of exmiRNAs in the EVs and ECs of SIV-infected rhesus macaques (RMs). Unlike cellular miRNAs, exmiRNAs in blood plasma may serve as minimally invasive disease indicators because they are readily detected in stable forms. The stability of exmiRNAs in cell culture fluids and body fluids (urine, saliva, tears, cerebrospinal fluid (CSF), semen, blood) is based on their association with different carriers (lipoproteins, EVs, and ECs) that protect them from the activities of endogenous RNases. Here, we showed that in the blood plasma of uninfected control RMs, significantly less exmiRNAs were associated with EVs compared to the level (30% higher) associated with ECs, and that SIV infection altered the profile of EVs and ECs miRNAome (Manuscript 1). In people living with HIV (PLWH), host-encoded miRNAs regulate both host and viral gene expression, which may serve as indicators of disease or treatment biomarkers. The profile of miRNAs in blood plasma of PLWH (elite controllers versus viremic patients) are different, indicating that HIV may alter host miRNAome. However, there are no studies assessing the effect of cART or other substances used by PLWH, such as THC, on the abundance of exmiRNA and their association with EVs and ECs. Moreover, longitudinal exmiRNA profiles following SIV infection, treatment with THC, cART, or THC+cART remains unclear. Here, we serially analyzed miRNAs associated with blood plasma derived EVs and ECs. Methods: Paired EVs and ECs were separated from EDTA blood plasma of male Indian rhesus macaques (RMs) in five treatment groups, including VEH/SIV, VEH/SIV/cART, THC/SIV, THC/SIV/cART, or THC alone. Separation of EVs and ECs was achieved with the unparalleled nano-particle purification tool ─PPLC, a state-of-the-art, innovative technology equipped with gradient agarose bead sizes and a fast fraction collector that allows high resolution separation and retrieval of preparative quantities of sub-populations of extracellular structures. Global miRNA profiles of the paired EVs and ECs were determined with RealSeq Biosciences (Santa Cruz, CA) custom sequencing platform by conducting small RNA (sRNA)-seq. The sRNA-seq data were analyzed using various bioinformatic tools. Validation of key exmiRNA was performed using specific TaqMan microRNA stem-loop RT-qPCR assays. Results: We investigated the effect of cART, THC, or both cART and THC together on the abundance and compartmentalization of blood plasma exmiRNA in EVs and ECs in SIV-infected RMs. As shown in Manuscript 1 of this series, were in uninfected RMs, ~30% of exmiRNAs were associated with ECs, we confirmed in this follow up manuscript that exmiRNAs were present in both lipid-based carriers-EVs and non-lipid-based carriers-ECs, with 29.5 to 35.6% and 64.2 to 70.5 % being associated with EVs and ECs, respectively. Remarkably, the different treatments (cART, THC) have distinct effects on the enrichment and compartmentalization pattern of exmiRNAs. In the VEH/SIV/cART group, 12 EV-associated and 15 EC-associated miRNAs were significantly downregulated. EV-associated miR-206, a muscle-specific miRNA that is present in blood, was higher in the VEH/SIV/ART compared to the VEH/SIV group. ExmiR-139-5p that was implicated in endocrine resistance, focal adhesion, lipid and atherosclerosis, apoptosis, and breast cancer by miRNA-target enrichment analysis was significantly lower in VEH/SIV/cART compared to VEH/SIV, irrespective of the compartment. With respect to THC treatment, 5 EV-associated and 21 EC-associated miRNAs were significantly lower in the VEH/THC/SIV. EV-associated miR-99a-5p was higher in VEH/THC/SIV compared to VEH/SIV, while miR-335-5p counts were significantly lower in both EVs and ECs of THC/SIV compared to VEH/SIV. EVs from SIV/cART/THC combined treatment group have significant increases in the count of eight (miR-186-5p, miR-382-5p, miR-139-5p and miR-652, miR-10a-5p, miR-657, miR-140-5p, miR-29c-3p) miRNAs, all of which were lower in VEH/SIV/cART group. Analysis of miRNA-target enrichment showed that this set of eight miRNAs were implicated in endocrine resistance, focal adhesions, lipid and atherosclerosis, apoptosis, and breast cancer as well as cocaine and amphetamine addiction. In ECs and EVs, combined THC and cART treatment significantly increased miR-139-5p counts compared to VEH/SIV group. Significant alterations in these host miRNAs in both EVs and ECs in the untreated and treated (cART, THC, or both) RMs indicate the persistence of host responses to infection or treatments, and this is despite cART suppression of viral load and THC suppression of inflammation. To gain further insight into the pattern of miRNA alterations in EVs and ECs and to assess potential cause-and-effect relationships, we performed longitudinal miRNA profile analysis, measured in terms of months (1 and 5) post-infection (MPI). We uncovered miRNA signatures associated with THC or cART treatment of SIV-infected macaques in both EVs and ECs. While the number of miRNAs was significantly higher in ECs relative to EVs for all groups (VEH/SIV, SIV/cART, THC/SIV, THC/SIV/cART, and THC) longitudinally from 1 MPI to 5 MPI, treatment with cART and THC have longitudinal effects on the abundance and compartmentalization pattern of exmiRNAs in the two carriers. As shown in Manuscript 1 where SIV infection led to longitudinal suppression of EV-associated miRNA-128-3p, administration of cART to SIV-infected RMs did not increase miR-128-3p but resulted in longitudinal increases in six EV-associated miRNAs (miR-484, miR-107, miR-206, miR-184, miR-1260b, miR-6132). Furthermore, administration of cART to THC treated SIV-infected RMs resulted in a longitudinal decrease in three EV-associated miRNAs (miR-342-3p, miR-100-5p, miR181b-5p) and a longitudinal increase in three EC-associated miRNAs (miR-676-3p, miR-574-3p, miR-505-5p). The longitudinally altered miRNAs in SIV-infected RMs may indicate disease progression, while in the cART Group and the THC Group, the longitudinally altered miRNAs may serve as biomarkers of response to treatment. Conclusions: This paired EVs and ECs miRNAome analyses provided a comprehensive cross-sectional and longitudinal summary of the host exmiRNA responses to SIV infection and the impact of THC, cART, or THC and cART together on the miRNAome during SIV infection. Overall, our data point to previously unrecognized alterations in the exmiRNA profile in blood plasma following SIV infection. Our data also indicate that cART and THC treatment independently and in combination may alter both the abundance and the compartmentalization of several exmiRNA related to various disease and biological processes.


Assuntos
Vesículas Extracelulares , Infecções por HIV , MicroRNAs , Neoplasias , Animais , Masculino , Dronabinol/farmacologia , Dronabinol/uso terapêutico , Macaca mulatta , Estudos Transversais , Seguimentos , MicroRNAs/genética , Infecções por HIV/tratamento farmacológico , Plasma
12.
Clin Exp Med ; 23(6): 2287-2299, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36939968

RESUMO

This study aimed to uncover the current major topics regarding COVID-19 vaccine, and systematically evaluate the development trends for future research. The top 100 most cited original articles on COVID-19 vaccine from January 2020 to October 2022 were identified from Web of Science Core Collection database. CiteSpace (v6.1.R3) was adopted for bibliometric analysis with statistical and visual analysis. The number of citations ranged from 206 to 5881, with a median of 349.5. The USA (n = 56), England (n = 33), and China (n = 16) ranked the top three countries/regions in terms of the number of publications. Harvard Medical School (centrality = 0.71), Boston Children's Hospital (centrality = 0.67), and Public Health England (centrality = 0.57) were the top three institutions leading the way on COVID-19 vaccine research. The New England of medicine journal dominated with 22 articles in the 32 high-quality journals. The three most frequent keywords were immunization (centrality = 0.25), influenza vaccination (centrality = 0.21), and coronavirus (centrality = 0.18). Cluster analysis of keywords showed that the top four categories were protection efficacy, vaccine hesitancy, spike protein, and second vaccine dose (Q value = 0.535, S value = 0.879). Cluster analysis of cited references showed that top eight largest categories were Cov-2 variant, clinical trial, large integrated health system, COV-2 rhesus macaque, mRNA vaccine, vaccination intent, phase II study, and Cov-2 omicron variant (Q value = 0.672, S value = 0.794). The research on COVID-19 vaccine is currently the hottest topic in academic community. At present, COVID-19 vaccines researches have focused on vaccine efficacy, vaccine hesitancy, and the efficacy of current vaccines on omicron variants. However, how to increase vaccine uptake, focus on mutations in the spike protein, evaluate of the efficacy of booster vaccine, and how effective new vaccines under pre- and clinical development against omicron will be spotlight in the future.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Criança , Animais , Humanos , Macaca mulatta , Glicoproteína da Espícula de Coronavírus , COVID-19/prevenção & controle , SARS-CoV-2 , Bibliometria
13.
J Physiol ; 601(1): 25-35, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35851953

RESUMO

The thalamus and cortex are interconnected both functionally and anatomically and share a common developmental trajectory. Interactions between the mediodorsal thalamus (MD) and different parts of the prefrontal cortex are essential in cognitive processes, such as learning and adaptive decision-making. Cortico-thalamocortical interactions involving other dorsal thalamic nuclei, including the anterior thalamus and pulvinar, also influence these cognitive processes. Our work, and that of others, indicates a crucial influence of these interdependent cortico-thalamocortical neural networks that contributes actively to the processing of information within the cortex. Each of these thalamic nuclei also receives potent subcortical inputs that are likely to provide additional influences on their regulation of cortical activity. Here, we highlight our current neuroscientific research aimed at establishing when cortico-MD thalamocortical neural network communication is vital within the context of a rapid learning and memory discrimination task. We are collecting evidence of MD-prefrontal cortex neural network communication in awake, behaving male rhesus macaques. Given the prevailing evidence, further studies are needed to identify both broad and specific mechanisms that govern how the MD, anterior thalamus and pulvinar cortico-thalamocortical interactions support learning, memory and decision-making. Current evidence shows that the MD (and the anterior thalamus) are crucial for frontotemporal communication, and the pulvinar is crucial for frontoparietal communication. Such work is crucial to advance our understanding of the neuroanatomical and physiological bases of these brain functions in humans. In turn, this might offer avenues to develop effective treatment strategies to improve the cognitive deficits often observed in many debilitating neurological disorders and diseases and in neurodegeneration.


Assuntos
Aprendizagem , Tálamo , Animais , Masculino , Humanos , Macaca mulatta , Aprendizagem/fisiologia , Tálamo/fisiologia , Córtex Pré-Frontal/fisiologia , Vias Neurais/fisiologia
14.
Braz. J. Pharm. Sci. (Online) ; 59: e21371, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1439539

RESUMO

Abstract Ischemia/reperfusion injury (I/R) is commonly related to acute kidney injury (AKI) and oxidative stress. Antioxidant agents are used to treat this condition. Lippia sidoides is a brazillian shrub with anti-inflammatory and anti-oxidative properties. Thus, the aim of this study is to evaluate the effect of Lippia sidoides ethanolic extract (LSEE) on in vivo and in vitro models of AKI induced by I/R. Male Wistar rats were submitted to unilateral nephrectomy and ischemia on contralateral kidney for 60 min via clamping followed by reperfusion for 48 h. They were divided into four groups: Sham, LSEE (sham-operated rats pre-treated with LSEE), I/R (rats submitted to ischemia) and I/R-LSEE (rats treated with LSEE before ischemia). Kidney tissues homogenates were used to determine stress parameters and nephrin expression. Plasma and urine samples were collected for biochemical analysis. I/R in vitro assays were evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) and flow cytometry assays in Rhesus Monkey Kidney Epithelial Cells (LLC-MK2). The LSEE treatment prevented biochemical and nephrin expression alterations, as well as oxidative stress parameters. In the in vitro assay, LSEE protected against cell death, reduced the reactive oxygen species and increased mitochondrial transmembrane potential. LSEE showed biotechnological potential for a new phytomedicine as a nephroprotective agent.


Assuntos
Animais , Masculino , Ratos , Hypericum/efeitos adversos , Injúria Renal Aguda/induzido quimicamente , Isquemia/classificação , Medicina Herbária/instrumentação , Injúria Renal Aguda/complicações , Citometria de Fluxo/métodos , Macaca mulatta , Antioxidantes/administração & dosagem
15.
PLoS One ; 17(11): e0276866, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36318529

RESUMO

Extracting life history information from mineralized hard tissues of extant and extinct species is an ongoing challenge in evolutionary and conservation studies. Primary lamellar bone is a mineralized tissue with multidien periodicity that begins deposition prenatally and continues until adulthood albeit with concurrent resorption, thus maintaining a record spanning several years of an individual's life. Here, we use field-emission scanning electron microscopy and energy-dispersive X-ray analysis to measure the relative concentrations of calcium, phosphorous, oxygen, magnesium and sodium in the femora of seven rhesus macaque with known medical and life-history information. We find that the concentration of these elements distinguishes parous from nulliparous females; that in females calcium and phosphorus are lower in bone formed during reproductive events; and that significant differences in relative magnesium concentration correlate with breastfeeding in infants.


Assuntos
Cálcio , Magnésio , Animais , Feminino , Magnésio/análise , Macaca mulatta , Cálcio/análise , Fósforo/análise , Sódio/análise
16.
J Med Primatol ; 51(6): 374-380, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36045594

RESUMO

BACKGROUND: Shigella spp. are common enteric pathogens in captive non-human primates. Treatment of symptomatic infections involves supportive care and antibiotic therapy, typically with an empirical choice of antibiotic. METHODS: Twenty-four clinically ill, Shigella PCR-positive animals were randomly assigned to one of four treatment groups: single-dose ceftiofur crystalline free acid (CCFA), single-dose azithromycin gavage, a 5-day tapering azithromycin dose, or 7-day course of enrofloxacin. We hypothesized that all antimicrobial therapies would have similar efficacy. RESULTS: Animals in all groups cleared Shigella, based on fecal PCR, and had resolution of clinical signs 2 weeks after treatment. Eight out of nine clinically ill and PCR-positive animals tested negative by fecal culture. CONCLUSIONS: Single-dose CCFA, single-dose azithromycin, and a 5-day tapering course of azithromycin all performed as well as a 7-day course of enrofloxacin in eliminating Shigella infection. Fecal PCR may be a better diagnostic than culture for Shigella.


Assuntos
Disenteria Bacilar , Shigella , Animais , Disenteria Bacilar/tratamento farmacológico , Disenteria Bacilar/veterinária , Macaca mulatta , Macaca nemestrina , Antibacterianos/uso terapêutico , Enrofloxacina/uso terapêutico , Azitromicina/uso terapêutico
17.
Front Immunol ; 13: 915393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874738

RESUMO

Sleep deprivation (SD) has become a health problem in the modern society. Although probiotics supplementation has been proven to improve SD-induced gut dysbiosis, the potential neuroendocrine mechanisms remain elusive. In this study, thirty rhesus monkeys (RMs) were recruited. Paradoxical sleep, bright light, and noise were used to build an RM SD model. We examined the plasma γ-aminobutyric acid (GABA), stress hormones, and inflammatory cytokines using ELISAs. 16S ribosomal DNA sequencing and untargeted metabolomics sequencing were employed to detect gut microbial community and metabolites, respectively. The results of our study showed that RMs subjected to SD had elevated plasma stress hormones (such as cortisol and norepinephrine) and proinflammatory cytokines (such as TNF-α, IL-6, and IL-8), and a decreased anti-inflammatory cytokine IL-10 level. Additionally, SD could give rise to a significant change in gut microbiota and metabolites. The differential gut microbiota and metabolites caused by SD were enriched in the signaling pathways related to GABA metabolism. Pearson correlation analysis revealed that there is a significant correlation between plasma GABA and SD-induced stress responses and gut dysbiosis. The supplementation of GABA-producing probiotics could significantly increase the relative abundance of Lactobacillus and plasma GABA levels, and reverse SD-induced stress responses and gut dysbiosis. Therefore, we speculated that SD-induced stress response and gut dysbiosis might be an outcome of reduced gut-derived GABA absorption. The supplementation of GABA-producing Lactobacillus might be beneficial for the treatment of SD-induced intestinal dysfunction.


Assuntos
Disbiose , Lactobacillus , Animais , Citocinas , Disbiose/terapia , Hormônios , Macaca mulatta , Privação do Sono , Ácido gama-Aminobutírico
18.
Cognition ; 228: 105225, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35843135

RESUMO

Humans form mental images and manipulate them in ways that mirror physical transformations of objects. Studies of nonhuman animals will inform our understanding of the evolution and distribution among species of mental imagery. Across three experiments, we found mostly converging evidence that rhesus monkeys formed and rotated mental images. In Experiment 1, monkeys discriminated rotations of sample images from mirror images, and showed longer response latencies with greater rotation as is characteristic of human mental rotation. In Experiment 2 monkeys used a rotation cue that indicated how far to mentally rotate sample images before tests, indicating a precision of better than 30° in discriminating rotations. Experiment 3 yielded mixed evidence on whether the rotation cue shortened decision times as has been found in humans. These results show that rhesus monkeys manipulate mental images.


Assuntos
Macaca mulatta , Animais , Humanos , Tempo de Reação/fisiologia
19.
Sci Rep ; 12(1): 9210, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654875

RESUMO

Auditory steady-state responses (ASSRs) are basic neural responses used to probe the ability of auditory circuits to produce synchronous activity to repetitive external stimulation. Reduced ASSR has been observed in patients with schizophrenia, especially at 40 Hz. Although ASSR is a translatable biomarker with a potential both in animal models and patients with schizophrenia, little is known about the features of ASSR in monkeys. Herein, we recorded the ASSR from humans, rhesus monkeys, and marmosets using the same method to directly compare the characteristics of ASSRs among the species. We used auditory trains on a wide range of frequencies to investigate the suitable frequency for ASSRs induction, because monkeys usually use stimulus frequency ranges different from humans for vocalization. We found that monkeys and marmosets also show auditory event-related potentials and phase-locking activity in gamma-frequency trains, although the optimal frequency with the best synchronization differed among these species. These results suggest that the ASSR could be a useful translational, cross-species biomarker to examine the generation of gamma-band synchronization in nonhuman primate models of schizophrenia.


Assuntos
Callithrix , Potenciais Evocados Auditivos , Estimulação Acústica/métodos , Animais , Biomarcadores , Eletroencefalografia/métodos , Potenciais Evocados Auditivos/fisiologia , Humanos , Macaca mulatta , Couro Cabeludo
20.
Sci Rep ; 12(1): 7491, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523797

RESUMO

Defective gastrointestinal barrier function and, in turn, microbial translocation have been identified as significant contributors to persistent inflammation in antiretroviral (ARV)-treated people living with HIV. Metabolic supplementation of short-chain fatty acids (SCFAs), generally produced by the commensal microbiome, may improve these outcomes. Butyrate is a SCFA that is essential for the development and maintenance of intestinal immunity and has a known role in supporting epithelial integrity. Herein we assessed whether supplementation with the dietary supplement sodium butyrate would improve immune reconstitution and reduce inflammation in ARV-treated, simian immunodeficiency virus (SIV)-infected rhesus macaques. We demonstrate that butyrate supplementation does not significantly improve immune reconstitution, with no differences observed in systemic CD4+ T-cell frequencies, T-cell functionality or immune activation, microbial translocation, or transcriptional regulation. Our findings demonstrate that oral administration of sodium butyrate is insufficient to reduce persistent inflammation and microbial translocation in ARV-treated, SIV-infected macaques, suggesting that this therapeutic may not reduce co-morbidities and co-mortalities in treated people living with HIV.


Assuntos
Infecções por HIV , Reconstituição Imune , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Ácido Butírico/farmacologia , Ácido Butírico/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Macaca mulatta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA