Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cancer Res ; 84(14): 2282-2296, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38657120

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited therapeutic options. IL1 receptor type 2 (IL1R2) promotes breast tumor-initiating cell (BTIC) self-renewal and tumor growth in TNBC, indicating that targeting it could improve patient treatment. In this study, we observed that IL1R2 blockade strongly attenuated macrophage recruitment and the polarization of tumor-associated macrophages (TAM) to inhibit BTIC self-renewal and CD8+ T-cell exhaustion, which resulted in reduced tumor burden and prolonged survival in TNBC mouse models. IL1R2 activation by TAM-derived IL1ß increased PD-L1 expression by interacting with the transcription factor Yin Yang 1 (YY1) and inducing YY1 ubiquitination and proteasomal degradation in both TAMs and TNBC cells. Loss of YY1 alleviated the transcriptional repression of c-Fos, which is a transcriptional activator of PDL-1. Combined treatment with an IL1R2-neutralizing antibodies and anti-PD-1 led to enhanced antitumor efficacy and reduced TAMs, BTICs, and exhausted CD8+ T cells. These results suggest that IL1R2 blockade might be a strategy to potentiate immune checkpoint blockade efficacy in TNBC to improve patient outcomes. Significance: IL1R2 in both macrophages and breast cancer cells orchestrates an immunosuppressive tumor microenvironment by upregulating PD-L1 expression and can be targeted to enhance the efficacy of anti-PD-1 in triple-negative breast cancer.


Assuntos
Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Camundongos , Humanos , Feminino , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos , Linhagem Celular Tumoral , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Fator de Transcrição YY1/metabolismo , Fator de Transcrição YY1/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos
2.
ACS Nano ; 18(17): 11025-11041, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626916

RESUMO

ALK-positive NSCLC patients demonstrate initial responses to ALK tyrosine kinase inhibitor (TKI) treatments, but eventually develop resistance, causing rapid tumor relapse and poor survival rates. Growing evidence suggests that the combination of drug and immune therapies greatly improves patient survival; however, due to the low immunogenicity of the tumors, ALK-positive patients do not respond to currently available immunotherapies. Tumor-associated macrophages (TAMs) play a crucial role in facilitating lung cancer growth by suppressing tumoricidal immune activation and absorbing chemotherapeutics. However, they can also be programmed toward a pro-inflammatory tumor suppressive phenotype, which represents a highly active area of therapy development. Iron loading of TAMs can achieve such reprogramming correlating with an improved prognosis in lung cancer patients. We previously showed that superparamagnetic iron oxide nanoparticles containing core-cross-linked polymer micelles (SPION-CCPMs) target macrophages and stimulate pro-inflammatory activation. Here, we show that SPION-CCPMs stimulate TAMs to secrete reactive nitrogen species and cytokines that exert tumoricidal activity. We further show that SPION-CCPMs reshape the immunosuppressive Eml4-Alk lung tumor microenvironment (TME) toward a cytotoxic profile hallmarked by the recruitment of CD8+ T cells, suggesting a multifactorial benefit of SPION-CCPM application. When intratracheally instilled into lung cancer-bearing mice, SPION-CCPMs delay tumor growth and, after first line therapy with a TKI, halt the regrowth of relapsing tumors. These findings identify SPIONs-CCPMs as an adjuvant therapy, which remodels the TME, resulting in a delay in the appearance of resistant tumors.


Assuntos
Crizotinibe , Neoplasias Pulmonares , Nanopartículas Magnéticas de Óxido de Ferro , Microambiente Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Nanopartículas Magnéticas de Óxido de Ferro/química , Humanos , Camundongos , Crizotinibe/farmacologia , Crizotinibe/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Linhagem Celular Tumoral , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino
3.
Sci Rep ; 14(1): 3778, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355711

RESUMO

Our research found that vitamin D3 (VD3) treatment increased lung metastasis in mice with 4T1 murine breast cancer (BC). This study aims to investigate the impact of VD3 on the activation of tumor-associated macrophages (TAMs) in BC. Mice bearing 4T1, E0771, 67NR BC cells, and healthy mice, were fed diets with varying VD3 contents (100-deficient, 1000-normal, and 5000 IU/kg-elevated). Some mice in the 1000 and 100 IU/kg groups received calcitriol. We studied bone metastasis and characterized TAMs and bone marrow-derived macrophages (BMDMs). 4T1 cells had higher bone metastasis potential in the 5000 IU/kg and calcitriol groups. In the same mice, an elevated tumor osteopontin level and M2 polarization of TAMs (MHCIIlow CD44high phenotype) were observed. Gene expression analysis confirmed M2 polarization of 4T1 (but not 67NR) TAMs and BMDMs, particularly in the 100 IU + cal group (increased Mrc1, Il23, and Il6). This polarization was likely due to COX-2/PGE2 induction in 4T1 calcitriol-treated cells, leading to increased proinflammatory cytokines like IL-6 and IL-23. Future studies will explore COX-2/PGE2 as a primary mediator of calcitriol-stimulated inflammation in the BC microenvironment, especially relevant for BC patients with VD3 deficiency and supplementation.


Assuntos
Neoplasias da Mama , Glândulas Mamárias Humanas , Humanos , Animais , Camundongos , Feminino , Citocinas/metabolismo , Calcitriol/farmacologia , Macrófagos Associados a Tumor/metabolismo , Ciclo-Oxigenase 2/genética , Glândulas Mamárias Humanas/metabolismo , Linhagem Celular Tumoral , Neoplasias da Mama/patologia , Microambiente Tumoral
4.
J Transl Med ; 22(1): 62, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229160

RESUMO

Metastasis is the leading cause of high mortality in colorectal cancer (CRC), which is not only driven by changes occurring within the tumor cells, but is also influenced by the dynamic interaction between cancer cells and components in the tumor microenvironment (TME). Currently, the exploration of TME remodeling and its impact on CRC metastasis has attracted increasing attention owing to its potential to uncover novel therapeutic avenues. Noteworthy, emerging studies suggested that tumor-associated macrophages (TAMs) within the TME played important roles in CRC metastasis by secreting a variety of cytokines, chemokines, growth factors and proteases. Moreover, TAMs are often associated with poor prognosis and drug resistance, making them promising targets for CRC therapy. Given the prognostic and clinical value of TAMs, this review provides an updated overview on the origin, polarization and function of TAMs, and discusses the mechanisms by which TAMs promote the metastatic cascade of CRC. Potential TAM-targeting techniques for personalized theranostics of metastatic CRC are emphasized. Finally, future perspectives and challenges for translational applications of TAMs in CRC development and metastasis are proposed to help develop novel TAM-based strategies for CRC precision medicine and holistic healthcare.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Macrófagos/metabolismo , Neoplasias do Colo/patologia , Citocinas/metabolismo , Prognóstico , Microambiente Tumoral , Neoplasias Colorretais/patologia
5.
Zhongguo Zhong Yao Za Zhi ; 48(22): 6142-6153, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114221

RESUMO

This study aims to investigate the intervention effect and mechanism of Tongxie Yaofang in regulating tumor-associated macrophage polarization on colorectal cancer under chronic stress. BALB/C mice were randomized into blank, control, model, mifepristone, and low-, medium-, and high-dose Tongxie Yaofang groups. The other groups except the blank and model groups were subjected to chronic restraint stress and subcutaneous implantation of colon cancer cells for the modeling of colon cancer under stress. Du-ring this period, the body mass and tumor size of each group of mice were recorded. The degree of depression in mice was assessed by behavioral changes. Enzyme-linked immunosorbent assay was employed to determine the levels of cortisol(CORT), 5-hydroxytryptamine(5-HT), norepinephrine(NE), M1-associated inflammatory cytokines [interleukin(IL)-1ß, IL-12, and tumor necrosis factor(TNF)-α], and M2-associated inflammatory cytokines(IL-4 and IL-10) in the serum. The tumor growth of mice in each group was regularly monitored by in vivo imaging. The histopathological changes of tumors in each group of mice were observed by hematoxylin-eosin staining. The proportions of CD86 and CD206 in the tumor tissue were detected by flow cytometry and immunofluorescence staining. Western blot was employed to determine the protein levels of Janus kinase(JAK)1, JAK2, JAK3, signal transducer and activator of transcription(STAT)3, and STAT6 in the tumor tissue. The results showed that chronic stress increased the immobility time of mice, elevated the serum levels of CORT, IL-4, and IL-10, lowered the levels of 5-HT, NE, IL-1ß, IL-12, and TNF-α, and promoted the growth of subcutaneous tumors. The tumor cells in the tumor tissue grew actively, with obvious atypia and up-regulated protein levels of CD206, JAK1, JAK2, JAK3, STAT3, and STAT6, and down-regulated protein level of CD86. The treatment with Tongxie Yaofang shortened the immobility time of mice, lowered the serum levels of CORT, IL-4, and IL-10, elevated the serum levels of 5-HT, NE, IL-1ß, IL-12, and TNF-α, and inhibited the growth of subcutaneous tumors in mice. Moreover, the treatment caused different degrees of necrosis in the tumor tissues, down-regulated the protein levels of CD206, JAK1, JAK2, JAK3, STAT3, and STAT6, and up-regulated the protein level of CD86. In summary, Tongxie Yaofang can promote the transformation of M2 macrophages to M1 macrophages and change the tumor microenvironment under chronic stress to inhibit the development of colorectal cancer, which may be related to the JAK/STAT signaling pathway.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Camundongos , Animais , Interleucina-10 , Macrófagos Associados a Tumor/metabolismo , Fator de Necrose Tumoral alfa , Interleucina-4 , Serotonina , Camundongos Endogâmicos BALB C , Citocinas/metabolismo , Interleucina-12 , Microambiente Tumoral
6.
Zhongguo Zhong Yao Za Zhi ; 48(8): 2000-2009, 2023 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-37282890

RESUMO

Lung cancer is one of the common malignant tumors in the world, and its incidence and mortality is increasing year by year. Interactions between tumor cells and immune cells in the tumor microenvironment(TME) affect tumor proliferation, infiltration, and metastasis. Tumor-associated macrophages(TAMs) are prominent components of TME, and they have dual regulation effects on malignant progression of lung cancer. The number, activity, and function of M2 macrophages are related to the poor prognosis of lung cancer, and M2 macrophages participate in tumor angiogenesis and immune escape. It has been proved that traditional Chinese medicines(TCMs) and their active ingredients can enhance the antitumor effects, reduce the toxicity of chemotherapy and radiotherapy, and prolong the survival rates of patients with cancer. This paper summarized the role of TAMs in the lung cancer initiation and progression, explored the molecular mechanism of TCM in regulating the recruitment, polarization phenotype, activity, and expression of related factors and proteins of TAMs, and discussed related signal pathways in the prevention and treatment of lung cancer based on the TCM theory of "reinforcing healthy qi and eliminating pathogen". This paper is expected to provide new ideas for the immunotherapy of targeted TAMs.


Assuntos
Neoplasias Pulmonares , Macrófagos Associados a Tumor , Humanos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Medicina Tradicional Chinesa , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Macrófagos , Imunoterapia , Microambiente Tumoral
7.
Mar Drugs ; 21(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36827121

RESUMO

Although the tumor bulk is initially reduced by 5-fluorouracil (5-FU), chemoresistance developed due to prolonged chemotherapy in colorectal cancer (CRC). The enrichment of cancer stem cells (CSCs) and the infiltration of tumor-associated macrophages (TAMs) contribute to chemoresistance and poor outcomes. A docosahexaenoic acid derivative developed by our group, 7S,15R-dihydroxy-16S,17S-epoxy-docosapentaenoic acid (diHEP-DPA), exerts antitumor effects against TAMs infiltration and CSCs enrichment in our previous study. The current study aimed to investigate whether diHEP-DPA was able to overcome chemoresistance to 5-FU in CRCs, together with the potential synergistic mechanisms in a CT26-BALB/c mouse model. Our results suggested that although 5-FU inhibited tumor growth, 5-FU enriched CSCs via the WNT/ß-catenin signaling pathway, resulting in chemoresistance in CRCs. However, we revealed that 5-FU promoted the infiltration of TAMs via the NF-kB signaling pathway and improved epithelial-mesenchymal transition (EMT) via the signal transducer and activator of the transcription 3 (STAT3) signaling pathway; these traits were believed to contribute to CSC activation. Furthermore, supplementation with diHEP-DPA could overcome drug resistance by decreasing the CSCs, suppressing the infiltration of TAMs, and inhibiting EMT progression. Additionally, the combinatorial treatment of diHEP-DPA and 5-FU effectively enhanced phagocytosis by blocking the CD47/signal regulatory protein alpha (SIRPα) axis. These findings present that diHEP-DPA is a potential therapeutic supplement to improve drug outcomes and suppress chemoresistance associated with the current 5-FU-based therapies for colorectal cancer.


Assuntos
Neoplasias Colorretais , Fluoruracila , Camundongos , Animais , Humanos , Fluoruracila/farmacologia , Resistencia a Medicamentos Antineoplásicos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Xenoenxertos , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Via de Sinalização Wnt , Células-Tronco Neoplásicas
8.
Phytomedicine ; 109: 154559, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610151

RESUMO

BACKGROUND: Tumor-associated macrophages (TAMs) are important constituent parts of tumor microenvironment that connected with tumor metastasis in melanoma. Connexin 43 (Cx43) was expressed in all the immune cells which modulated different aspects of immune response. However, the concrete molecular mechanism maintains unclear. PURPOSE: The study aimed to find a natural drug monomer effectively reversed the polarity of tumor-associated macrophages inhibiting melanoma metastasis and improving survival time. METHODS: Flow cytometry was used to determine the effects of dioscin on the macrophage phenotype. Western bolt and ELISA were performed to explore the underlying mechanism of dioscin and a co-culture experiment in vitro was applied to assess the role of dioscin on TAMs-mediated melanoma proliferation, invasion and migration. Moreover, in vivo melanoma metastasis models were established for examining effects of dioscin on TAMs-mediated melanoma metastasis. RESULTS: Dioscin repolarized macrophages from M2 towards M1-like phenotype. Dioscin suppressed M2-like phenotype macrophages through enhanced the expression and transport function of Cx43. Furthermore, the stimulation IFN-γ/STAT1 pathway and suppression IL-4/JAK2/STAT3 pathway were major mechanism of dioscin. Importantly, dioscin suppressed Cx43G21R mutation TAMs induced proliferation, invasion, migration and metastasis of melanoma cells. It worthily noting that dioscin ameliorated tumor-associated-macrophages-mediated melanoma metastasis in vitro and vivo. CONCLUSION: Dioscin re-polarized macrophages from M2 to M1 phenotype through activation of Cx43-gap-junction-intercellular-communications (Cx43-GJs)/IFN-γ/STAT1 pathway and inhibition of Cx43-GJs/IL-4/JAK2/STAT3 suppressing migration, invasion and metastasis of melanoma, which provided a theoretical and experimental basis for treating melanoma metastasis.


Assuntos
Conexina 43 , Melanoma , Humanos , Conexina 43/metabolismo , Macrófagos Associados a Tumor/metabolismo , Interleucina-4/metabolismo , Macrófagos , Melanoma/patologia , Linhagem Celular Tumoral , Microambiente Tumoral
9.
Pharm Biol ; 59(1): 1533-1539, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34726570

RESUMO

CONTEXT: Astragalus polysaccharin (APS), an extract of Astragalus propinquus Schischk, exerts antitumor effects in hepatocellular carcinoma (HCC). OBJECTIVE: This study investigated the mechanism of action of APS in HCC. MATERIALS AND METHODS: Tumour-associated macrophages (TAMs) were treated with APS (0, 8, 16 mg/mL) for 24 h. APS (16 mg/mL)-treated TAMs were co-cultured with MHCC97H/Huh7 cells for 24 h. Finally, BALB/c nude mice were divided into PBS, APS (50 mg/kg), APS (100 mg/kg), APS (200 mg/kg) groups: mice were inoculated with Huh7 cells to construct tumour xenograft model, followed by administration of APS (50, 100, 200 mg/kg) or PBS daily for 30 days. Cell proliferation, migration, invasion, tumour growth, macrophage markers and proportions were measured. RESULTS: APS 16 mg/mL treatment enhanced the expression of M1 macrophage markers (iNOS, IL-1ß and TNF-α) and M1 macrophage proportions, while reducing the expression of M2 macrophage markers (IL-10, Arg-1) and M2 macrophage proportions in TAMs. Moreover, the APS-mediated M1 phenotype of TAMs significantly repressed cell proliferation, migration and invasion of MHCC97H and Huh7 cells. Moreover, APS (50, 100, 200 mg/kg) enhanced M1 macrophage proportions and reduced M2 macrophage proportions in the tumour tissues, and thus inhibited tumour growth of HCC. DISCUSSION AND CONCLUSIONS: APS inhibits HCC-like phenotypes in a murine HCC model through repression of M2 polarization of TAMs. This work provides a novel theoretical basis for the application of APS in the clinical treatment of HCC.


Assuntos
Astragalus propinquus/química , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fenótipo , Extratos Vegetais/administração & dosagem , Macrófagos Associados a Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Toxicol Appl Pharmacol ; 432: 115755, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34673087

RESUMO

The polarization of macrophages has been previously demonstrated to be closely related to immune and inflammatory processes in the tumorigenesis and progression of breast cancer. In the present study, Anemoside A3 (A3), an active compound from Pulsatilla saponins, was screened out and polarized M0 macrophages into the classically activated macrophages (M1-phenotype). We found that A3 is an activator of TLR4/NF-κB/MAPK signaling pathway. A3 increased the expression of CD86+ (a marker of M1 macrophage) in M0 macrophage, and increased the typical M1 macrophage pro-inflammatory cytokines TNF-α, and IL-12 expression in a TLR4-dependent manner. A macrophage-cancer cell co-culture system was established to evaluate whether A3 can could switch tumor-associated macrophages (TAMs) to the M1-phenotype. In the co-culture system, A3 increased the expression of IL-12 in macrophages, whereby suppressing MCF-7 breast cancer cell line proliferation and VEGF-mediated angiogenesis. Moreover, A3 induced M1 macrophage polarization in the 4 T1 murine breast cancer model and effectively inhibited tumor growth and tumor angiogenesis. Collectively, these findings indicated that A3 induced M1 macrophages polarization to repress breast tumorigenesis via targeting the TLR4/NF-κB/MAPK signaling pathway. This study provides a rationale for utilizing traditional Chinese medicine extracts in the immunotherapy of breast cancer.


Assuntos
Inibidores da Angiogênese/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neovascularização Patológica , Saponinas/farmacologia , Receptor 4 Toll-Like/agonistas , Triterpenos/farmacologia , Macrófagos Associados a Tumor/efeitos dos fármacos , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Citocinas/metabolismo , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fenótipo , Transdução de Sinais , Células THP-1 , Receptor 4 Toll-Like/metabolismo , Carga Tumoral/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo
11.
Biomed Pharmacother ; 143: 112105, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34560533

RESUMO

Although the main focus of immuno-oncology has been manipulating the adaptive immune system, tumor associated macrophages (TAMs) are the main infiltrating component in the tumor microenvironment (TME) and play a critical role in cancer progression. TAMs are mainly divided into two different subtypes: macrophages with antitumor or killing activity are called M1 while tumor-promoting or healing macrophages are named M2. Therefore, controlling the polarization of TAMs is an important strategy for cancer treatment, but there is no particularly effective means to regulate the polarization process. Here, combined systems pharmacology targets and pathways analysis strategy, we uncovered Scutellariae Radix (SR) has the potential to regulate TAMs polarization to inhibit the growth of non-small cell lung cancer (NSCLC). Firstly, systems pharmacology approach was used to reveal the active components of SR targeting macrophages in TME through compound target prediction and target-microenvironment phenotypic association analysis. Secondly, in vitro experiment verified that WBB (wogonin, baicalein and baicalin), major active ingredients of SR are significantly related to macrophages and survival, initiated macrophages programming to M1-like macrophages to promoted the apoptosis of tumor cells. Finally, we evidenced that WBB effectively inhibited tumor growth in LLC (Lewis lung carcinoma) tumor-bearing mice and increased the infiltration of M1-type macrophages in TME. Overall, the systems pharmacology strategy offers a paradigm to understand the mechanism of polypharmacology of natural products targeting TME.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Imunidade Inata/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Farmacologia em Rede , Macrófagos Associados a Tumor/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Bases de Dados Genéticas , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Células RAW 264.7 , Carga Tumoral/efeitos dos fármacos , Microambiente Tumoral , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo
12.
Biomed Pharmacother ; 142: 112016, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34385100

RESUMO

BACKGROUND: The incidence and associated mortality of melanoma have increased significantly in recent years but treatment options are plagued with many undesirable side effects. Traditional Chinese herbal medicine polysaccharides are gaining increasing attention due to their potential role in the treatment of chronic diseases including tumors and the regulation of the immune system. METHODS: In this study, the potential effects of Ganoderma lucidum crude polysaccharides (GLCP) and Codonopsis pilosula crude polysaccharides (CPCP) on melanoma in C57 mice were explored. In addition, the inhibition and repolarization effect of digested Codonopsis pilosula polysaccharide (dCPP) on the proliferation of tumor-associated macrophages (TAMs) with M2-like phenotype induced by IL-4 were investigated. RESULTS: The results showed that the various polysaccharides could significantly reduce tumor volume in melanoma mice. GLCP and GLCP + CPCP could further significantly reduce the number of CD68+ macrophages in tumors and also prolong survival in melanoma mice to a certain extent. Significantly, dCPP could inhibit the proliferation of IL-4-induced M2-like TAMs, and significantly increase the mRNA expression levels of IL-1, IL-6, iNOS and TNF-a, thereby promoting the repolarization of M2-like TAMs to M1-like TAMs. CONCLUSION: Overall, it could be deduced that GLCP, CPCP and dCPP hold great potential as safe therapeutic options for melanoma and an immune-modulator which may require further exploration.


Assuntos
Codonopsis/química , Melanoma Experimental/tratamento farmacológico , Polissacarídeos/farmacologia , Reishi/química , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Dacarbazina/administração & dosagem , Dacarbazina/farmacologia , Feminino , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos/administração & dosagem , Polissacarídeos/isolamento & purificação , Carga Tumoral/efeitos dos fármacos , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo
13.
Theranostics ; 11(14): 6860-6872, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093858

RESUMO

Background: Immunotherapy has profoundly changed the landscape of cancer management and represented the most significant breakthrough. Yet, it is a formidable challenge that the majority of cancers - the so-called "cold" tumors - poorly respond to immunotherapy. To find a general immunoregulatory modality that can be applied to a broad spectrum of cancers is an urgent need. Methods: Magnetic hyperthermia (MHT) possesses promise in cancer therapy. We develop a safe and effective therapeutic strategy by using magnetism-mediated targeting MHT-immunotherapy in "cold" colon cancer. A magnetic liposomal system modified with cell-penetrating TAT peptide was developed for targeted delivery of a CSF1R inhibitor (BLZ945), which can block the CSF1-CSF1R pathway and reduce M2 macrophages. The targeted delivery strategy is characterized by its magnetic navigation and TAT-promoting intratumoral penetration. Results: The liposomes (termed TAT-BLZmlips) can induce ICD and cause excessive CRT exposure on the cell surface, which transmits an "eat-me" signal to DCs to elicit immunity. The combination of MHT and BLZ945 can repolarize M2 macrophages in the tumor microenvironment to relieve immunosuppression, normalize the tumor blood vessels, and promote T-lymphocyte infiltration. The antitumor effector CD8+ T cells were increased after treatment. Conclusion: This work demonstrated that TAT-BLZmlips with magnetic navigation and MHT can remodel tumor microenvironment and activate immune responses and memory, thus inhibiting tumor growth and recurrence.


Assuntos
Neoplasias do Colo/terapia , Terapia Combinada/métodos , Hipertermia , Imunoterapia/métodos , Lipossomos/química , Magnetoterapia/métodos , Nanopartículas de Magnetita/química , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Benzotiazóis/farmacocinética , Benzotiazóis/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/imunologia , Feminino , Humanos , Lipossomos/metabolismo , Lipossomos/efeitos da radiação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/terapia , Ácidos Picolínicos/farmacocinética , Ácidos Picolínicos/farmacologia , Ratos , Microambiente Tumoral/efeitos dos fármacos , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Ethnopharmacol ; 274: 113978, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-33716082

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Triple-negative breast cancer (TNBC) is the most aggressive and the worst prognosis breast cancer with limited treatment options. Taraxacum mongolicum (also called dandelion) is a traditional Chinese medicine has been used to treat mastitis, breast abscess, and hyperplasia of mammary glands since ancient times. In modern pharmacological research, dandelion has been proven with anti-breast cancer activities. We previously reported that dandelion extract could induce apoptosis in TNBC cells. However, its anti-tumor effects and mechanisms in the tumor microenvironment have not yet been elucidated. AIM OF THE STUDY: Tumor-associated macrophages (TAMs) play an important role in regulating the interaction between tumor cells and the immune system. The present study aimed to investigate the effects and mechanisms of dandelion extract on TNBC cells under the microenvironment of TAMs, as well as its influence on the polarization of M2 macrophages. MATERIALS AND METHODS: M2 macrophages were induced by phorbol-12-myristate 13-acetate (PMA) and interleukin 4 (IL-4), and verified by flow cytometry, quantitative RT-PCR (qRT-PCR), Western blotting, and ELISA. MDA-MB-231 and MDA-MB-468 TNBC cells were co-cultured with the supernatant of M2 macrophage which providing the TAMs microenvironment. The antitumor activity of dandelion extract in TNBC cells was evaluated by MTT assay. The invasive and migratory capacity of TNBC cells was measured by transwell assays. The expression of protein and gene was assessed by Western blotting and qRT-PCR, respectively. RESULTS: TAMs microenvironment promoted the proliferation, migration, and invasion of TNBC cells. However, dandelion extract inhibited the malignant property of MDA-MB-231 and MDA-MB-468 cells induced by TAMs. Both of TAMs and IL-10 caused STAT3 activation and PD-L1 higher expression, the immunosuppressive molecules in TNBC cells, and this effect can be attenuated by IL-10 neutralizing antibody. Dandelion extract exerted inhibition on STAT3 and PD-L1 in TNBC cells under TAMs microenvironment. Furthermore, in M2 macrophages, dandelion extract remarkably promoted the expression of M1-like marker TNF-α, IL-8, and iNOS, but reduced M2-like marker IL-10, CD206, Arginase-1, and TGF-ß. CONCLUSION: Dandelion extract inhibited the proliferation, migration and invasion of TNBC cells in TAMs microenvironment through suppressing IL-10/STAT3/PD-L1 immunosuppressive signaling pathway. Furthermore, dandelion extract promoted the polarization of macrophages from M2 to M1 phenotype. Thus, our results indicated that dandelion may serve as a promising therapeutic strategy for TNBC by modulating tumor immune microenvironment.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Medicamentos de Ervas Chinesas/farmacologia , Interleucina-10/antagonistas & inibidores , Fator de Transcrição STAT3/antagonistas & inibidores , Taraxacum/química , Neoplasias de Mama Triplo Negativas/metabolismo , Macrófagos Associados a Tumor/metabolismo , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Humanos , Interleucina-10/metabolismo , Macrófagos/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral , Macrófagos Associados a Tumor/efeitos dos fármacos
15.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753481

RESUMO

The CXC chemokine receptor type 4 (CXCR4) receptor and its ligand, CXCL12, are overexpressed in various cancers and mediate tumor progression and hypoxia-mediated resistance to cancer therapy. While CXCR4 antagonists have potential anticancer effects when combined with conventional anticancer drugs, their poor potency against CXCL12/CXCR4 downstream signaling pathways and systemic toxicity had precluded clinical application. Herein, BPRCX807, known as a safe, selective, and potent CXCR4 antagonist, has been designed and experimentally realized. In in vitro and in vivo hepatocellular carcinoma mouse models it can significantly suppress primary tumor growth, prevent distant metastasis/cell migration, reduce angiogenesis, and normalize the immunosuppressive tumor microenvironment by reducing tumor-associated macrophages (TAMs) infiltration, reprogramming TAMs toward an immunostimulatory phenotype and promoting cytotoxic T cell infiltration into tumor. Although BPRCX807 treatment alone prolongs overall survival as effectively as both marketed sorafenib and anti-PD-1, it could synergize with either of them in combination therapy to further extend life expectancy and suppress distant metastasis more significantly.


Assuntos
Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Receptores CXCR4/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Dietilnitrosamina/administração & dosagem , Dietilnitrosamina/toxicidade , Sinergismo Farmacológico , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/imunologia , Neoplasias Hepáticas Experimentais/patologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos , Simulação de Acoplamento Molecular , Ratos , Receptores CXCR4/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Biomed Pharmacother ; 137: 111338, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33578234

RESUMO

Polysaccharide is one of main components in Polygonatum sibiricum (PS), which is an herbal medicine widely used in East Asia. Polysaccharides from Polygonatum sibiricum has been shown to exhibit multiple biological activities, such as anti-diabetes, anti-inflammation, antioxidant, immunity modulation, and anticancer. Since hematopoietic system is one of determinant factors in cancer control, we here explored the effect of polysaccharide-rich extract from Polygonatum sibiricum (PREPS) on hematopoiesis in the mice bearing triple negative breast cancer (TNBC). We found that the 4T1 TNBC tumor significantly increased myeloid cells in peripheral blood, bone marrow and spleen, while decreasing bone marrow hematopoietic stem and progenitor cells (HSPCs), indicative of an inhibition of medullary hematopoiesis. When 4T1 TNBC tumor-bearing mice were treated with PREPS, the percentage of myeloid cells within tumor-infiltrating immune cells was reduced. In addition, PREPS also inhibited hematopoietic cell expansion in the spleen, which was induced by TNBC tumors. Importantly, PREPS markedly increased HSPCs and common lymphoid progenitors in the bone marrow that had been suppressed by TNBC tumors. These findings suggest that PREPS protect hematopoiesis inhibited by TNBC tumors in the bone marrow. Although PREPS alone did not achieve statistical significance in the suppression of TNBC tumor growth, it may have a long-lasting anti-tumor effect to assist TNBC therapies by sustaining hematopoiesis and lymphoid regeneration in bone marrow.


Assuntos
Medula Óssea/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Hematínicos/farmacologia , Hematopoese/efeitos dos fármacos , Polygonatum/química , Polissacarídeos/farmacologia , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/uso terapêutico , Feminino , Hematínicos/isolamento & purificação , Hematínicos/uso terapêutico , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Plantas Medicinais/química , Polissacarídeos/isolamento & purificação , Polissacarídeos/uso terapêutico , Substâncias Protetoras/farmacologia , Baço/efeitos dos fármacos , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo
17.
J Cell Physiol ; 236(1): 193-204, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32495392

RESUMO

Colon cancer is a common and deadly human digestive tract malignant tumor with poor prognosis. Immunotherapy has elicited tremendous success as a treatment modality for multiple solid tumors. Triptolide is extracted from the traditional Chinese medicine Tripterygium wilfordii Hook. F which shows various pharmacological actions including antitumor, anti-inflammatory, antimicrobial, antifibrosis, and antirheumatic. However, the influence of triptolide treatment on remodeling tumor immune microenvironment is still unknown in colon cancer. This study was aimed to investigate the therapeutic effect of triptolide treatment on colon cancer and the impact on tumor immune microenvironment and its underlying mechanism. We used CT26 subcutaneous tumors to conduct in vivo experiments and HT29, CT16, and Raw264.7 cells to perform in vitro assays. Triptolide had a therapeutic effect against colon cancer in vivo. Triptolide treatment distinctly inhibited the proliferation of colon cancer cells and induced apoptosis in vitro. In colon cancer immune microenvironment, triptolide treatment decreased the infiltration of tumor-associated macrophages through downregulating tumor-derived CXCL12 expression via nuclear factor kappa B and extracellular signal-regulated protein kinases 1 and 2 axis to remodel the immune microenvironment. Triptolide-educated colon cancers retarded the macrophages polarize to anti-inflammatory M2 status by decreasing the expression of Arg-1, CD206, and interleukin-10. Moreover, triptolide inhibited the migration of colon cancer cells via decreasing vascular endothelial growth factor expression. Our results identified the role of triptolide treatment in remodeling colon cancer immune microenvironment along with the distinct cytotoxicity function against colon cancer cells, which may provide the evidence for triptolide treatment in clinical.


Assuntos
Quimiocina CXCL12/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Diterpenos/farmacologia , Fenantrenos/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Compostos de Epóxi/farmacologia , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Células RAW 264.7
18.
Front Immunol ; 12: 832942, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111169

RESUMO

Cancer immunotherapy can boost the immune response of patients to eliminate tumor cells and suppress tumor metastasis and recurrence. However, immunotherapy resistance and the occurrence of severe immune-related adverse effects are clinical challenges that remain to be addressed. The tumor microenvironment plays a crucial role in the therapeutic efficacy of cancer immunotherapy. Injectable hydrogels have emerged as powerful drug delivery platforms offering good biocompatibility and biodegradability, minimal invasion, convenient synthesis, versatility, high drug-loading capacity, controlled drug release, and low toxicity. In this review, we summarize the application of injectable hydrogels as a unique platform for targeting the immunosuppressive tumor microenvironment.


Assuntos
Hidrogéis , Hospedeiro Imunocomprometido/efeitos dos fármacos , Terapia de Alvo Molecular , Neoplasias/imunologia , Neoplasias/terapia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Animais , Antineoplásicos/administração & dosagem , Biomarcadores Tumorais , Estudos Clínicos como Assunto , Terapia Combinada/efeitos adversos , Terapia Combinada/métodos , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Humanos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Terapia de Alvo Molecular/métodos , Neoplasias/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/imunologia , Resultado do Tratamento , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo
19.
Molecules ; 25(18)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961987

RESUMO

Resveratrol (3,4',5 trihydroxystilbene) is a naturally occurring non-flavonoid polyphenol. It has various pharmacological effects including antioxidant, anti-diabetic, anti-inflammatory and anti-cancer. Many studies have given special attention to different aspects of resveratrol anti-cancer properties and proved its high efficiency in targeting multiple cancer hallmarks. Tumor microenvironment has a critical role in cancer development and progression. Tumor cells coordinate with a cast of normal cells to aid the malignant behavior of cancer. Many cancer supporting players were detected in tumor microenvironment. These players include blood and lymphatic vessels, infiltrating immune cells, stromal fibroblasts and the extracellular matrix. Targeting tumor microenvironment components is a promising strategy in cancer therapy. Resveratrol with its diverse biological activities has the capacity to target tumor microenvironment by manipulating the function of many components surrounding cancer cells. This review summarizes the targets of resveratrol in tumor microenvironment and the mechanisms involved in this targeting. Studies discussed in this review will participate in building a solid ground for researchers to have more insight into the mechanism of action of resveratrol in tumor microenvironment.


Assuntos
Neoplasias/tratamento farmacológico , Resveratrol/uso terapêutico , Microambiente Tumoral , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Citocinas/metabolismo , Humanos , Neoplasias/patologia , Neoplasias/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Resveratrol/química , Macrófagos Associados a Tumor/citologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
J Dermatol Sci ; 99(3): 146-151, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32600738

RESUMO

Skin diseases bring great psychological and physical impacts on patients, however, a considerable number of skin diseases still lack effective treatments, such as psoriasis, systemic lupus erythematosus, melanoma and so on. Receptor-interacting serine threonine kinase 1 (RIPK1) plays an important role in cell death, especially necroptosis, associated with inflammation and tumor. As many molecules modulate the ubiquitination of RIPK1, disruption of this checkpoint can lead to skin diseases, which can be ameliorated by RIPK1 inhibitors. This review will focus on the molecular mechanism of RIPK1 activation in inflammation as well as the current knowledges on the contribution of RIPK1 in skin diseases.


Assuntos
Dermatite/imunologia , Necroptose/imunologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Neoplasias Cutâneas/imunologia , Animais , Ensaios Clínicos Fase II como Assunto , Dermatite/tratamento farmacológico , Dermatite/genética , Dermatite/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Camundongos , Camundongos Knockout , Necroptose/efeitos dos fármacos , Necroptose/genética , Oxazepinas/farmacologia , Oxazepinas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Ratos , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Resultado do Tratamento , Triazóis/farmacologia , Triazóis/uso terapêutico , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Ubiquitinação/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA