Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.221
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Comput Biol Med ; 170: 108053, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325210

RESUMO

Magnetic fluid hyperthermia (MFH) is a technique whose results show promise in the treatment against cancer, but which still faces obstacles such as controlling the spatial distribution of temperature. The present study developed an agent-based model in order to simulate the temperature changes in an aqueous environment submitted to the magnetic fluid hyperthermia technique. The developed model was built with its parameters based on the clinical treatment protocol for glioblastoma multiforme (GBM). Using thermodynamic properties of magnetic fluid and tissues, we define a specific thermal parameter (α) and evaluate its influence, together with the intensity of the external magnetic field (H), on the dynamics of the temperature of the cancer environment. The temperature evolution generated by the model was in accordance with experimental results known from the subject literature. The parameters evaluation indicates that the temperature stabilization of the tumor environment during MFH treatment is due to the local interactions of energy diffusion, as well as indicating that the α-parameter is a key factor for controlling the temperature and heating speed.


Assuntos
Hipertermia Induzida , Neoplasias , Humanos , Temperatura , Hipertermia Induzida/métodos , Magnetismo , Campos Magnéticos , Neoplasias/terapia
2.
J Mater Chem B ; 12(10): 2628-2638, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38376513

RESUMO

Magnetic nanomaterial-mediated magnetic hyperthermia is a localized heating treatment modality that has been applied to treat aggressive cancer in clinics. In addition to being taken up by tumor cells to function in cancer therapy, magnetic nanomaterials can also be internalized by immune cells in the tumor microenvironment, which may contribute to regulating the anti-tumor immune effects. However, there exists little studies on the distribution of magnetic nanomaterials in different types of cells within tumor tissue. Herein, ferrimagnetic vortex-domain iron oxide nanorings (FVIOs) with or without the liver-cancer-targeting peptide SP94 have been successfully synthesized as a model system to investigate the effect of surface modification of FVIOs (with or without SP94) on the distribution of tumor cells and different immune cells in hepatocellular carcinoma (HCC) microenvironment of a mouse. The distribution ratio of FVIO-SP94s in tumor cells was 1.3 times more than that of FVIOs. Immune cells in the liver tumor microenvironment took up fewer FVIO-SP94s than FVIOs. In addition, myeloid cells were found to be much more amenable than lymphoid cells in terms of their ability to phagocytose nanoparticles. Specifically, the distributions of FVIOs/FVIO-SP94s in tumor-associated macrophages, dendritic cells, and myeloid-derived suppressor cells were 13.8%/12%, 3.7%/0.9%, and 6.3%/1.2%, respectively. While the distributions of FVIOs/FVIO-SP94s in T cells, B cells, and natural killer cells were 5.5%/0.7%, 3.0%/0.7%, and 0.4%/0.3%, respectively. The results described in this article enhance our understanding of the distribution of nanomaterials in the tumor microenvironment and provide a strategy for rational design of magnetic hyperthermia agents that can effectively regulate anti-tumor immune effects.


Assuntos
Carcinoma Hepatocelular , Hipertermia Induzida , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Hipertermia Induzida/métodos , Magnetismo , Fenômenos Magnéticos , Microambiente Tumoral
3.
ACS Appl Mater Interfaces ; 16(9): 11305-11314, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38406866

RESUMO

A black phosphorus (BP)-based reusable biosensor platform is developed for the repeated and real-time detection of cortisol using antibody-conjugated magnetic particle (MP) structures as a refreshable receptor. Here, we took advantage of the low-noise characteristics of a mechanically exfoliated BP-based field-effect transistor (FET) and hybridized it with anti-cortisol antibody-functionalized MPs to build a highly sensitive cortisol sensor. This strategy allowed us to detect cortisol down to 1 aM in real time and discriminate cortisol from other hormones. In this case, we could easily remove MPs with used antibodies from the surface of a BP-FET and reuse the chip for up to eight repeated sensing operations. Moreover, since our platform could be fabricated using conventional photolithography techniques and the sensor can be reused multiple times, one should be able to significantly reduce operation costs for practical applications. Furthermore, this method could be utilized to detect different hormones with high sensitivity and selectivity in complex environments such as artificial saliva solutions. In this respect, our reusable BP-FET biosensing platform can be a powerful tool for versatile applications such as clinical diagnosis and basic biological analysis by conjugating various antibodies.


Assuntos
Técnicas Biossensoriais , Hidrocortisona , Hidrocortisona/análise , Saliva/química , Fósforo , Magnetismo , Anticorpos
4.
Adv Mater ; 36(18): e2311154, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38174953

RESUMO

Bioelectronic implants delivering electrical stimulation offer an attractive alternative to traditional pharmaceuticals in electrotherapy. However, achieving simple, rapid, and cost-effective personalization of these implants for customized treatment in unique clinical and physical scenarios presents a substantial challenge. This challenge is further compounded by the need to ensure safety and minimal invasiveness, requiring essential attributes such as flexibility, biocompatibility, lightness, biodegradability, and wireless stimulation capability. Here, a flexible, biodegradable bioelectronic paper with homogeneously distributed wireless stimulation functionality for simple personalization of bioelectronic implants is introduced. The bioelectronic paper synergistically combines i) lead-free magnetoelectric nanoparticles (MENs) that facilitate electrical stimulation in response to external magnetic field and ii) flexible and biodegradable nanofibers (NFs) that enable localization of MENs for high-selectivity stimulation, oxygen/nutrient permeation, cell orientation modulation, and biodegradation rate control. The effectiveness of wireless electrical stimulation in vitro through enhanced neuronal differentiation of neuron-like PC12 cells and the controllability of their microstructural orientation are shown. Also, scalability, design flexibility, and rapid customizability of the bioelectronic paper are shown by creating various 3D macrostructures using simple paper crafting techniques such as cutting and folding. This platform holds promise for simple and rapid personalization of temporary bioelectronic implants for minimally invasive wireless stimulation therapies.


Assuntos
Implantes Absorvíveis , Magnetismo , Medicina de Precisão , Tecnologia sem Fio , Papel , Medicina de Precisão/instrumentação , Humanos , Masculino , Animais , Ratos , Encéfalo , Eletrônica Médica/instrumentação
5.
Small ; 20(5): e2304848, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37732364

RESUMO

Nowadays, magnetic nanoparticles (MNPs) are applied in numerous fields, especially in biomedical applications. Since biofluidic samples and biological tissues are nonmagnetic, negligible background signals can interfere with the magnetic signals from MNPs in magnetic biosensing and imaging applications. In addition, the MNPs can be remotely controlled by magnetic fields, which make it possible for magnetic separation and targeted drug delivery. Furthermore, due to the unique dynamic magnetizations of MNPs when subjected to alternating magnetic fields, MNPs are also proposed as a key tool in cancer treatment, an example is magnetic hyperthermia therapy. Due to their distinct surface chemistry, good biocompatibility, and inducible magnetic moments, the material and morphological structure design of MNPs has attracted enormous interest from a variety of scientific domains. Herein, a thorough review of the chemical synthesis strategies of MNPs, the methodologies to modify the MNPs surface for better biocompatibility, the physicochemical characterization techniques for MNPs, as well as some representative applications of MNPs in disease diagnosis and treatment are provided. Further portions of the review go into the diagnostic and therapeutic uses of composite MNPs with core/shell structures as well as a deeper analysis of MNP properties to learn about potential biomedical applications.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas de Magnetita/química , Sistemas de Liberação de Medicamentos/métodos , Magnetismo/métodos , Hipertermia Induzida/métodos , Campos Magnéticos
6.
J Mater Chem B ; 12(2): 286-331, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37955235

RESUMO

The Curie temperature is an important thermo-characteristic of magnetic materials, which causes a phase transition from ferromagnetic to paramagnetic by changing the spontaneous re-arrangement of their spins (intrinsic magnetic mechanism) due to an increase in temperature. The self-control-temperature (SCT) leads to the conversion of ferro/ferrimagnetic materials to paramagnetic materials, which can extend the temperature-based applications of these materials from industrial nanotechnology to the biomedical field. In this case, magnetic induction hyperthermia (MIH) with self-control-temperature has been proposed as a physical thermo-therapeutic method for killing cancer tumors in a biologically safe environment. Specifically, the thermal source of MIH is magnetic nanoparticles (MNPs), and thus their biocompatibility and Curie temperature are two important properties, where the former is required for their clinical application, while the latter acts as a switch to automatically control the temperature of MIH. In this review, we focus on the Curie temperature of magnetic materials and provide a complete overview beginning with basic magnetism and its inevitable relation with Curie's law, theoretical prediction and experimental measurement of the Curie temperature. Furthermore, we discuss the significance, evolution from different types of alloys to ferrites and impact of the shape, size, and concentration of particles on the Curie temperature considering the proposed SCT-based MIH together with their biocompatibility. Also, we highlight the thermal efficiency of MNPs in destroying tumor cells and the significance of a low Curie temperature. Finally, the challenges, concluding remarks, and future perspectives in promoting self-control-temperature based MIH to clinical application are discussed.


Assuntos
Hipertermia Induzida , Neoplasias , Humanos , Temperatura , Hipertermia Induzida/métodos , Magnetismo , Imãs , Hipertermia
7.
J Phys Chem Lett ; 14(40): 9112-9117, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37792541

RESUMO

The role of the properties of magnetic nanoparticles in the remote magneto-mechanical actuation of biomolecules under the influence of external magnetic fields is still of particular interest. Here, a specially designed strategy based on the mechanical destruction of short oligonucleotide duplexes is used to demonstrate the effect of magnetic nanoparticles with different sizes (5-99 nm) on the magnitude of the magneto-mechanical actuations in a low-frequency alternating magnetic field. The results show that the mechanical destruction of complementary chains of duplexes, caused by the rotational-vibrational movements of nanoparticles upon exposure to a magnetic field, has a nonmonotonic dependence on the nanoparticle core size. The main hypothesis of this phenomenon is associated with a key role of magneto-dipole interactions between individual nanoparticles, which blocks the movements of nanoparticles in dense clusters. This result will allow fine-tuning of the magnetic nanoparticle properties for addressing specific magneto-mechanical tasks.


Assuntos
Nanopartículas de Magnetita , Magnetismo , Fenômenos Físicos , Campos Magnéticos
8.
Nanoscale ; 15(44): 17946-17955, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37905375

RESUMO

Conventional magnetic nanoagents in cancer hyperthermia therapy suffer from a low magnetic heating efficiency. To address this issue, researchers have pursued magnetic nanoparticles with topological magnetic domain structures, such as the vortex-domain structure, to enhance the magnetic heating performance of conventional nanoparticles while maintaining excellent biocompatibility. In this study, we synthesized hollow spherical Mn0.5Zn0.5Fe2O4 (MZF-HS) nanoparticles using a straightforward solvothermal method, yielding samples with an average outer diameter of approximately 350 nm and an average inner diameter of about 220 nm. The heating efficiency of the nanoparticles was experimentally verified, and the specific absorption rate (SAR) value of the hollow MZF was found to be approximately 1.5 times that of solid MZF. The enhanced heating performance is attributed to the vortex states in the hollow MZF structure as validated with micromagnetic simulation studies. In vitro studies demonstrated the lower cell viability of breast cancer cells (MCF-7, BT549, and 4T1) after MHT in the presence of MZF-HS. The synthesized MZF caused 51% cell death after MHT, while samples of MZF-HS resulted in 77% cell death. Our findings reveal that magnetic particles with a vortex state demonstrate superior heating efficiency, highlighting the potential of hollow spherical particles as effective heat generators for MHT applications.


Assuntos
Hipertermia Induzida , Nanopartículas , Nanopartículas/química , Magnetismo , Hipertermia Induzida/métodos , Fenômenos Magnéticos , Zinco
9.
Int J Nanomedicine ; 18: 3535-3575, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409027

RESUMO

Chemotherapy is the most prominent route in cancer therapy for prolonging the lifespan of cancer patients. However, its non-target specificity and the resulting off-target cytotoxicities have been reported. Recent in vitro and in vivo studies using magnetic nanocomposites (MNCs) for magnetothermal chemotherapy may potentially improve the therapeutic outcome by increasing the target selectivity. In this review, magnetic hyperthermia therapy and magnetic targeting using drug-loaded MNCs are revisited, focusing on magnetism, the fabrication and structures of magnetic nanoparticles, surface modifications, biocompatible coating, shape, size, and other important physicochemical properties of MNCs, along with the parameters of the hyperthermia therapy and external magnetic field. Due to the limited drug-loading capacity and low biocompatibility, the use of magnetic nanoparticles (MNPs) as drug delivery system has lost traction. In contrast, MNCs show higher biocompatibility, multifunctional physicochemical properties, high drug encapsulation, and multi-stages of controlled release for localized synergistic chemo-thermotherapy. Further, combining various forms of magnetic cores and pH-sensitive coating agents can generate a more robust pH, magneto, and thermo-responsive drug delivery system. Thus, MNCs are ideal candidate as smart and remotely guided drug delivery system due to a) their magneto effects and guide-ability by the external magnetic fields, b) on-demand drug release performance, and c) thermo-chemosensitization under an applied alternating magnetic field where the tumor is selectively incinerated without harming surrounding non-tumor tissues. Given the important effects of synthesis methods, surface modifications, and coating of MNCs on their anticancer properties, we reviewed the most recent studies on magnetic hyperthermia, targeted drug delivery systems in cancer therapy, and magnetothermal chemotherapy to provide insights on the current development of MNC-based anticancer nanocarrier.


Assuntos
Hipertermia Induzida , Neoplasias , Humanos , Hipertermia Induzida/métodos , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Magnetismo , Campos Magnéticos
10.
Int J Hyperthermia ; 40(1): 2211269, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37474116

RESUMO

INTRODUCTION: The temperature control of magnetic hyperthermia therapy mainly relies on circulating water cooling and regulating magnetic field intensity, which increases complexity in clinical applications. Using magnetic materials with appropriate Curie temperature has become an effective means to solve temperature monitoring and potentially achieve self-regulating temperature. METHODS: A self-temperature-regulating Fe83Zr10B7 magnetic material was prepared. Based on this material, a simplified model of magnetic hyperthermia for arm tumors was established and verified using the finite- element method. The influence of magnetic field intensity and frequency on the heating power and temperature rise rate of different-sized and shaped magnetic media was studied. Additionally, factors such as the size, quantity, and spatial arrangement of the magnetic media were analyzed for their impact on the damage to tumors with different volumes and shapes. RESULTS: Spherical shape is the most suitable for magnetic hyperthermia media, and the radius of the spherical magnetic media can be chosen according to the size of the tumor. For tumors with a radius below 10 mm, using magnetic media with a particle size of 3.5 mm is recommended. The optimal magnetic field conditions are H0 (10-12 kA/m) and f (110-120 kHz). CONCLUSION: Based on the good magnetic properties and heating performance of the Fe83Zr10B7 magnetic material, it is feasible to use it as a magnetic medium for magnetic hyperthermia. The results of this study provide references for the selection of thermal seed size and magnetic field parameters in magnetic hyperthermia.


Assuntos
Hipertermia Induzida , Neoplasias , Humanos , Temperatura , Hipertermia Induzida/métodos , Magnetismo , Neoplasias/terapia , Campos Magnéticos
11.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511504

RESUMO

Magneto-responsive textiles have emerged lately as an important carrier in various fields, including biomedical engineering. To date, most research has been performed on single magnetic fibers and focused mainly on the physical characterization of magnetic textiles. Herein, from simple woven and non-woven textiles we engineered materials with magnetic properties that can become potential candidates for a smart magnetic platform for heating treatments. Experiments were performed on tissue-mimicking materials to test the textiles' heating efficiency in the site of interest. When the heat was induced with magneto-responsive textiles, the temperature increase in tissue-mimicking phantoms depended on several factors, such as the type of basic textile material, the concentration of magnetic nanoparticles deposited on the textile's surface, and the number of layers covering the phantom. The values of temperature elevation, achieved with the use of magnetic textiles, are sufficient for potential application in magnetic hyperthermia therapies and as heating patches or bandages.


Assuntos
Calefação , Hipertermia Induzida , Têxteis , Temperatura Alta , Magnetismo
12.
Phys Med Biol ; 68(15)2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37385264

RESUMO

Objective.Magnetorelaxomety imaging (MRXI) is a noninvasive imaging technique for quantitative detection of magnetic nanoparticles (MNPs). The qualitative and quantitative knowledge of the MNP distribution inside the body is a prerequisite for a number of arising biomedical applications, such as magnetic drug targeting and magnetic hyperthermia therapy. It was shown throughout numerous studies that MRXI is able to successfully localize and quantify MNP ensembles in volumes up to the size of a human head. However, deeper regions that lie far from the excitation coils and the magnetic sensors are harder to reconstruct due to the weaker signals from the MNPs in these areas. On the one hand, stronger magnetic fields need to be applied to produce measurable signals from such MNP distributions to further upscale MRXI, on the other hand, this invalidates the assumption of a linear relation between applied magnetic field and particle magnetization in the current MRXI forward model which is required for the imaging procedure.Approach.We tackle this problem by introducing a nonlinear MRXI forward model that is also valid for strong magnetic excitation fields.Main results.We demonstrate in our experimental feasibility study that scaling up the imaging region to the size of a human torso using nonlinear MRXI is possible. Despite the extreme simplicity of the imaging setup applied in this study, an immobilized MNP sample with 6.3 cm3and 12 mg Fe could be localized and quantified with an acceptable quality.Significance.A well-engineered MRXI setup could provide much better imaging qualities in shorter data acquisition times, making nonlinear MRXI a viable option for the supervision of MNP related therapies in all regions of the human body, specifically magnetic hyperthermia.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Nanopartículas , Humanos , Diagnóstico por Imagem , Magnetismo , Campos Magnéticos
13.
Int J Hyperthermia ; 40(1): 2223371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37357335

RESUMO

OBJECTIVE: Magnetic nanowires (MNWs) are potential candidates for heating in biomedical applications that require rapid and uniform heating rates, such as warming cryopreserved organs and hyperthermia treatment of cancer cells. Therefore, it is essential to determine which materials and geometries will provide the optimal heating using available alternating magnetic fields (AMF). METHOD: Micromagnetic simulations are used to investigate the heating ability of MNWs by predicting their hysteretic behavior. MNWs composed of iron (Fe), nickel (Ni), cobalt (Co) or permalloy (FeNi alloy, Py) with different diameters (10-200 nm) are simulated using object oriented micromagnetic framework (OOMMF). RESULTS: Hysteresis loops are obtained for each simulated MNW, and the 2D/3D magnetic moment map is simulated to show the reversal mechanism. The heating ability, in terms of specific loss power (SLP), is calculated from the area of the hysteresis loop times frequency for each MNW for comparison with others. CONCLUSION: It is estimated that a theoretical optimal heating ability of 2730 W/g can be provided by isolated Co MNWs with 50 nm diameters using a typical AMF system that can supply 72 kA/m field amplitude and 50 kHz in frequency. Generalized correlation between coercivity and size/material of MNWs is provided as a guidance for researchers to choose the most appropriate MNW as a heater for their AMF system and vice versa.


Assuntos
Hipertermia Induzida , Nanofios , Calefação , Magnetismo , Campos Magnéticos
14.
Nanoscale ; 15(24): 10342-10350, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37288522

RESUMO

Understanding and predicting the heat released by magnetic nanoparticles is central to magnetic hyperthermia treatment planning. In most cases, nanoparticles form aggregates when injected in living tissues, thereby altering their response to the applied alternating magnetic field and preventing the accurate prediction of the released heat. We performed a computational analysis to investigate the heat released by nanoparticle aggregates featuring different sizes and fractal geometry factors. By digitally mirroring aggregates seen in biological tissues, we found that the average heat released per particle stabilizes starting from moderately small aggregates, thereby facilitating making estimates for their larger counterparts. Additionally, we studied the heating performance of particle aggregates over a wide range of fractal parameters. We compared this result with the heat released by non-interacting nanoparticles to quantify the reduction of heating power after being instilled into tissues. This set of results can be used to estimate the expected heating in vivo based on the experimentally determined nanoparticle properties.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Nanopartículas , Calefação , Hipertermia Induzida/métodos , Campos Magnéticos , Magnetismo , Nanopartículas de Magnetita/uso terapêutico
15.
Sci Total Environ ; 886: 163923, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37156378

RESUMO

Green synthesized magnetic nanoparticles were impregnated into biochar matrix (EWTWB) to produce biochar-supported magnetic nanocomposite (GSMB). Instead of chemicals, organic matters in white tea waste extract were used as reductant, surfactant and functional capping materials. Magnetic biochar produced from traditional methods of pyrolysis (PMB) and co-precipitation (Co-PreMB) were prepared to compare their properties with GSMB. Xray Diffraction confirmed the main component of green synthesized particles is Fe3O4. When compared with PMB and Co-PreMB, the Fe3O4 produced by co-precipitation method has higher purity while the products from green synthesis method are complex and contain a small portion of other iron-containing compounds. As a consequence, Co-PreMB has higher saturation magnetisation value than GSMB, which are 31.3 and 11.5 Am2/kg, respectively. GSMB was also found to be less stable in acidic conditions (pH ≤ 4) than Co-PreMB. However, the SEM results exhibited that spherical magnetic nanoparticles (20-50 nm) were successfully formed and distributed on the surface of biochar via green synthesis method while serious aggregation occurred on the surface of Co-PreMB. According to the result of BET, the surface area of GSMB increased dramatically from 0.2 m2/g to 59.7 m2/g. Fourier Transform Infrared spectroscopy and Xray photoelectron spectroscopy results showed the presence of rich oxygen-containing functional groups on the GSMB, The high surface area coupled with rich functional groups on the GSMB made the whole synthesis process an environmentally friendly and greener, to prepare magnetic biochar for application in wastewater treatment.


Assuntos
Compostos de Ferro , Nanocompostos , Magnetismo , Carvão Vegetal/química , Adsorção , Fenômenos Magnéticos , Chá/química , Espectroscopia de Infravermelho com Transformada de Fourier
16.
ACS Appl Mater Interfaces ; 15(13): 16505-16514, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36947132

RESUMO

MXenes have received lots of attention since discovered and have been applied in various fields. In this work, Ti3C2-Fe3O4 composites with exposed non-modified Ti3C2 MXene nanosheets were designed and prepared by an in situ growth strategy and then applied in the enrichment of phosphopeptides. The two-dimensional composites could interact with the phosphopeptides through a metal oxide affinity chromatography mechanism provided by Ti-O and Fe-O bonds and a hydrophilic interaction chromatography mechanism by surface hydroxyl groups. This magnetic nanomaterial with a specific surface area of 66.1 m2·g-1 had high sensitivity to phosphopeptides (0.5 nmol·L-1) and high selectivity (1:1000 of the molar ratio of ß-casein to bovine serum albumin). Non-fat milk was adopted as a real sample to preliminarily examine the applicability of the Ti3C2-Fe3O4-based protocol. Subsequently, Qingkailing injection, a kind of traditional Chinese medicine injection, was introduced to further explore the suitability of the nanocomposites for phosphopeptide enrichment from more complex matrices and satisfactory results were obtained.


Assuntos
Fosfopeptídeos , Titânio , Fosfopeptídeos/química , Titânio/química , Magnetismo , Fenômenos Magnéticos , Cromatografia de Afinidade/métodos
17.
Expert Opin Drug Deliv ; 20(2): 189-204, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36608938

RESUMO

INTRODUCTION: Cancer has one of the highest mortality rates globally. The traditional therapies used to treat cancer have harmful adverse effects. Considering these facts, researchers have explored new therapeutic possibilities with enhanced benefits. Nanoparticle development for cancer detection, in addition to therapy, has shown substantial progress over the past few years. AREA COVERED: Herein, the latest research regarding cancer treatment employing magnetic nanoparticles (MNPs) in chemo-, immuno-, gene-, and radiotherapy along with hyperthermia is summarized, in addition to their physio-chemical features, advantages, and limitations for clinical translation have also been discussed. EXPERT OPINION: MNPs are being extensively investigated and developed into effective modules for cancer therapy. They are highly functional tools aimed at cancer therapy owing to their excellent superparamagnetic, chemical, biocompatible, physical, and biodegradable properties.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Nanopartículas , Neoplasias , Humanos , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas de Magnetita/química , Neoplasias/tratamento farmacológico , Magnetismo , Terapia Combinada
18.
Nat Protoc ; 18(3): 783-809, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36707724

RESUMO

Magnetic nanoparticles are increasingly used in medical applications, including cancer treatment by magnetic hyperthermia. This protocol describes a solvothermal-based process to prepare, at the gram scale, ferrite nanoparticles with well-defined shape, i.e., nanocubes, nanostars and other faceted nanoparticles, and with fine control of structural/magnetic properties to achieve point-of-reference magnetic hyperthermia performance. This straightforward method comprises simple steps: (i) making a homogeneous alcoholic solution of a surfactant and an alkyl amine; (ii) adding an organometallic metal precursor together with an aldehyde molecule, which acts as the key shape directing agent; and (iii) reacting the mixture in an autoclave for solvothermal crystallization. The shape of the ferrite nanoparticles can be controlled by the structure of the aldehyde ligand. Benzaldehyde and its aromatic derivatives favor the formation of cubic ferrite nanoparticles while aliphatic aldehydes result in spherical nanoparticles. The replacement of the primary amine, used in the nanocubes synthesis, with a secondary/tertiary amine results in nanoparticles with star-like shape. The well-defined control in terms of shape, narrow size distribution (below 5%), compositional tuning and crystallinity guarantees the preparation, at the gram scale, of nanocubes/star-like nanoparticles that possess, under magnetic field conditions of clinical use, specific adsorption rates comparable to or even superior to those obtained through thermal decomposition methods, which are typically prepared at the milligram scale. Here, gram-scale nanoparticle products with benchmark features for magnetic hyperthermia applications can be prepared in ~10 h with an average level of expertise in chemistry.


Assuntos
Benchmarking , Hipertermia Induzida , Magnetismo , Hipertermia Induzida/métodos , Campos Magnéticos
19.
J Theor Biol ; 561: 111372, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36496186

RESUMO

We describe a novel mathematical model for blood flow, delivery of nanoparticles, and heat transport in vascularised tumour tissue. The model, which is derived via the asymptotic homogenisation technique, provides a link between the macroscale behaviour of the system and its underlying, tortuous micro-structure, as parametrised in Penta and Ambrosi (2015). It consists of a double Darcy's law, coupled with a double advection-diffusion-reaction system describing heat transport, and an advection-diffusion-reaction equation for transport and adhesion of particles. Particles are assumed sufficiently large and do not extravasate to the tumour interstitial space but blood and heat can be exchanged between the two compartments. Numerical simulations of the model are performed using a finite element method to investigate cancer hyperthermia induced by the application of magnetic field applied to injected iron oxide nanoparticles. Since tumour microvasculature is more tortuous than that of healthy tissue and thus suboptimal in terms of fluid and drug transport, we study the influence of the vessels' geometry on tumour temperature. Effective and safe hyperthermia treatment requires tumour temperature within certain target range, generally estimated between 42 °C and 46 °C, for a certain target duration, typically 0.5h to 2h. As temperature is difficult to measure in situ, we use our model to determine the ranges of tortuosity of the microvessels, magnetic intensity, injection time, wall shear stress rate, and concentration of nanoparticles required to achieve given target conditions.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Neoplasias , Humanos , Temperatura Alta , Nanopartículas de Magnetita/uso terapêutico , Neoplasias/terapia , Hipertermia Induzida/métodos , Magnetismo
20.
Sensors (Basel) ; 22(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36433476

RESUMO

The characterization of nanoparticles is crucial in several medical applications, such as hyperthermic therapy, which heats superparamagnetic nanoparticles with an external electromagnetic field. The knowledge of heating ability (magnetic losses) in AC magnetic field frequency function allows for selecting the optimal excitation. A hybrid system for the characterization of superparamagnetic nanoparticles was designed and tested. The proposed setup consists of an excitation coil and two sensing probes: calorimetric and magnetic. The measurements of the imaginary part of the complex magnetic susceptibility of superparamagnetic nanoparticles are possible in the kilohertz range. The system was verified using a set of nanoparticles with different diameters. The measurement procedure was described and verified. The results confirmed that an elaborated sensor system and measuring procedures could properly characterize the magnetic characteristics of nanoparticles. The main advantage of this system is the ability to compare both characteristics and confirm the selection of optimal excitation parameters.


Assuntos
Hipertermia Induzida , Nanopartículas , Magnetismo , Hipertermia Induzida/métodos , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Ferro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA