Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Appl Microbiol Biotechnol ; 107(4): 1159-1176, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36633624

RESUMO

We report the fabrication of highly pure magnetosomes that are synthesized by magnetotactic bacteria (MTB) using pharmaceutically compatible growth media, i.e., without compounds of animal origin (yeast extracts), carcinogenic, mutagenic, or toxic for reproduction (CMR) products, and other heavy metals than iron. To enable magnetosome medical applications, these growth media are reduced and amended compared with media commonly used to grow these bacteria. Furthermore, magnetosomes are made non-pyrogenic by being extracted from these micro-organisms and heated above 400 °C to remove and denature bacterial organic material and produce inorganic magnetosome minerals. To be stabilized, these minerals are further coated with citric acid to yield M-CA, leading to fully reconstructed chains of magnetosomes. The heating properties and anti-tumor activity of highly pure M-CA are then studied by bringing M-CA into contact with PC3-Luc tumor cells and by exposing such assembly to an alternating magnetic field (AMF) of 42 mT and 195 kHz during 30 min. While in the absence of AMF, M-CA are observed to be non-cytotoxic, they result in a 35% decrease in cell viability following AMF application. The treatment efficacy can be associated with a specific absorption rate (SAR) value of M-CA, which is relatively high in cellular environment, i.e., SARcell = 253 ± 11 W/gFe, while being lower than the M-CA SAR value measured in water, i.e., SARwater = 1025 ± 194 W/gFe, highlighting that a reduction in the Brownian contribution to the SAR value in cellular environment does not prevent efficient tumor cell destruction with these nanoparticles. KEY POINTS : • Highly pure magnetosomes were produced in pharmaceutically compatible growth media • Non-pyrogenic and stable magnetosomes were prepared for human injection • Magnetosomes efficiently destroyed prostate tumor cells in magnetic hyperthermia.


Assuntos
Hipertermia Induzida , Magnetossomos , Magnetospirillum , Neoplasias da Próstata , Masculino , Animais , Humanos , Linhagem Celular Tumoral , Neoplasias da Próstata/terapia , Bactérias
2.
ACS Appl Mater Interfaces ; 15(1): 566-577, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36563339

RESUMO

Magnetotactic bacteria Magnetospirillum magneticum AMB-1 have been cultured using three different media: magnetic spirillum growth medium with Wolfe's mineral solution (MSGM + W), magnetic spirillum growth medium without Wolfe's mineral solution (MSGM - W), and flask standard medium (FSM). The influence of the culture medium on the structural, morphological, and magnetic characteristics of the magnetosome chains biosynthesized by these bacteria has been investigated by using transmission electron microscopy, X-ray absorption spectroscopy, and X-ray magnetic circular dichroism. All bacteria exhibit similar average size for magnetosomes, 40-45 nm, but FSM bacteria present slightly longer subchains. In MSGM + W bacteria, Co2+ ions present in the medium substitute Fe2+ ions in octahedral positions with a total Co doping around 4-5%. In addition, the magnetic response of these bacteria has been thoroughly studied as functions of both the temperature and the applied magnetic field. While MSGM - W and FSM bacteria exhibit similar magnetic behavior, in the case of MSGM + W, the incorporation of the Co ions affects the magnetic response, in particular suppressing the Verwey (∼105 K) and low temperature (∼40 K) transitions and increasing the coercivity and remanence. Moreover, simulations based on a Stoner-Wolhfarth model have allowed us to reproduce the experimentally obtained magnetization versus magnetic field loops, revealing clear changes in different anisotropy contributions for these bacteria depending on the employed culture medium. Finally, we have related how these magnetic changes affect their heating efficiency by using AC magnetometric measurements. The obtained AC hysteresis loops, measured with an AC magnetic field amplitude of up to 90 mT and a frequency, f, of 149 kHz, reveal the influence of the culture medium on the heating properties of these bacteria: below 35 mT, MSGM - W bacteria are the best heating mediators, but above 60 mT, FSM and MSGM + W bacteria give the best heating results, reaching a maximum heating efficiency or specific absorption rate (SAR) of SAR/f ≈ 12 W g-1 kHz-1.


Assuntos
Hipertermia Induzida , Magnetossomos , Magnetospirillum , Magnetospirillum/química , Magnetospirillum/metabolismo , Magnetossomos/química , Fenômenos Magnéticos
3.
J Hazard Mater ; 437: 129376, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35897184

RESUMO

The U(VI) bioassociation on Magnetospirillum magneticum AMB-1 cells was investigated using a multidisciplinary approach combining wet chemistry, microscopy, and spectroscopy methods to provide deeper insight into the interaction of U(VI) with bioligands of Gram-negative bacteria for a better molecular understanding. Our findings suggest that the cell wall plays a prominent role in the bioassociation of U(VI). In time-dependent bioassociation studies, up to 95 % of the initial U(VI) was removed from the suspension and probably bound on the cell wall within the first hours due to the high removal capacity of predominantly alive Magnetospirillum magneticum AMB-1 cells. PARAFAC analysis of TRLFS data highlights that peptidoglycan is the most important ligand involved, showing a stable immobilization of U(VI) over a wide pH range with the formation of three characteristic species. In addition, in-situ ATR FT-IR reveals the predominant strong binding to carboxylic functionalities. At higher pH polynuclear species seem to play an important role. This comprehensive molecular study may initiate in future new remediation strategies on effective immobilization of U(VI). In combination with the magnetic properties of the bacteria, a simple technical water purification process could be realized not only for U(VI), but probably also for other heavy metals.


Assuntos
Urânio , Parede Celular , Magnetospirillum , Peptidoglicano , Espectroscopia de Infravermelho com Transformada de Fourier , Urânio/química
4.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419059

RESUMO

Interest has grown in harnessing biological agents for cancer treatment as dynamic vectors with enhanced tumor targeting. While bacterial traits such as proliferation in tumors, modulation of an immune response, and local secretion of toxins have been well studied, less is known about bacteria as competitors for nutrients. Here, we investigated the use of a bacterial strain as a living iron chelator, competing for this nutrient vital to tumor growth and progression. We established an in vitro co-culture system consisting of the magnetotactic strain Magnetospirillum magneticum AMB-1 incubated under hypoxic conditions with human melanoma cells. Siderophore production by 108 AMB-1/mL in human transferrin (Tf)-supplemented media was quantified and found to be equivalent to a concentration of 3.78 µM ± 0.117 µM deferoxamine (DFO), a potent drug used in iron chelation therapy. Our experiments revealed an increased expression of transferrin receptor 1 (TfR1) and a significant decrease of cancer cell viability, indicating the bacteria's ability to alter iron homeostasis in human melanoma cells. Our results show the potential of a bacterial strain acting as a self-replicating iron-chelating agent, which could serve as an additional mechanism reinforcing current bacterial cancer therapies.


Assuntos
Desferroxamina/farmacologia , Magnetospirillum/metabolismo , Neoplasias/tratamento farmacológico , Receptores da Transferrina/metabolismo , Transferrina/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Quelantes de Ferro/farmacologia , Neoplasias/metabolismo , Neoplasias/patologia , Sideróforos/metabolismo , Sideróforos/farmacologia
5.
J Mater Sci Mater Med ; 31(8): 75, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32761252

RESUMO

Our study investigates the effect of magnetosome mediated oral Insulin delivery on diabetic induced rat models. The study involves the development of Magnetosome-Insulin (MI) conjugates by direct and indirect (by means of PEG) coupling method and further characterized by microscopic and spectroscopic analysis. The in vivo oral delivery of magnetosome-Insulin conjugate against streptozotocin-induced rat models and its efficiency was investigated. The impact of MI showed a remarkable change in the reduction of FBG levels up to 65% than the standard (Insulin). Similarly, the serum parameters: triglycerides (43.81%), AST&ALT (39.4 and 57.2%), total cholesterol (43.8%) showed significant changes compared to the diabetic control. The histological results of MI treated rats were found similar to control rats. Thus, these significantly notable results on diabetic rats depicts that magnetosomes can be employed as a potential approach and a very promising alternative for the parenteral route of Insulin delivery.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Portadores de Fármacos/química , Insulina/administração & dosagem , Magnetossomos/química , Administração Oral , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus/sangue , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Liberação Controlada de Fármacos , Insulina/farmacocinética , Magnetossomos/metabolismo , Magnetospirillum/metabolismo , Masculino , Ratos , Ratos Wistar , Estreptozocina
6.
J Nanobiotechnology ; 17(1): 126, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31870376

RESUMO

BACKGROUND: An important but rarely addressed question in nano-therapy is to know whether bio-degraded nanoparticles with reduced sizes and weakened heating power are able to maintain sufficient anti-tumor activity to fully eradicate a tumor, hence preventing tumor re-growth. To answer it, we studied magnetosomes, which are nanoparticles synthesized by magnetotactic bacteria with sufficiently large sizes (~ 30 nm on average) to enable a follow-up of nanoparticle sizes/heating power variations under two different altering conditions that do not prevent anti-tumor activity, i.e. in vitro cellular internalization and in vivo intra-tumor stay for more than 30 days. RESULTS: When magnetosomes are internalized in U87-Luc cells by being incubated with these cells during 24 h in vitro, the dominant magnetosome sizes within the magnetosome size distribution (DMS) and specific absorption rate (SAR) strongly decrease from DMS ~ 40 nm and SAR ~ 1234 W/gFe before internalization to DMS ~ 11 nm and SAR ~ 57 W/gFe after internalization, a behavior that does not prevent internalized magnetosomes to efficiently destroy U87-Luc cell, i.e. the percentage of U87-Luc living cells incubated with magnetosomes decreases by 25% between before and after alternating magnetic field (AMF) application. When 2 µl of a suspension containing 40 µg of magnetosomes are administered to intracranial U87-Luc tumors of 2 mm3 and exposed (or not) to 15 magnetic sessions (MS), each one consisting in 30 min application of an AMF of 27 mT and 198 kHz, DMS and SAR decrease between before and after the 15 MS from ~ 40 nm and ~ 4 W/gFe down to ~ 29 nm and ~ 0 W/gFe. Although the magnetosome heating power is weakened in vivo, i.e. no measurable tumor temperature increase is observed after the sixth MS, anti-tumor activity remains persistent up to the 15th MS, resulting in full tumor disappearance among 50% of treated mice. CONCLUSION: Here, we report sustained magnetosome anti-tumor activity under conditions of significant magnetosome size reduction and complete loss of magnetosome heating power.


Assuntos
Antineoplásicos/química , Neoplasias Encefálicas/tratamento farmacológico , Nanopartículas de Magnetita/química , Magnetossomos/química , Magnetospirillum/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Calefação , Humanos , Hipertermia Induzida , Campos Magnéticos , Camundongos , Camundongos Nus , Tamanho da Partícula , Nanomedicina Teranóstica/métodos , Distribuição Tecidual
7.
Small ; 15(41): e1902626, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31454160

RESUMO

Magnetotactic bacteria are aquatic microorganisms that internally biomineralize chains of magnetic nanoparticles (called magnetosomes) and use them as a compass. Here it is shown that magnetotactic bacteria of the strain Magnetospirillum gryphiswaldense present high potential as magnetic hyperthermia agents for cancer treatment. Their heating efficiency or specific absorption rate is determined using both calorimetric and AC magnetometry methods at different magnetic field amplitudes and frequencies. In addition, the effect of the alignment of the bacteria in the direction of the field during the hyperthermia experiments is also investigated. The experimental results demonstrate that the biological structure of the magnetosome chain of magnetotactic bacteria is perfect to enhance the hyperthermia efficiency. Furthermore, fluorescence and electron microscopy images show that these bacteria can be internalized by human lung carcinoma cells A549, and cytotoxicity studies reveal that they do not affect the viability or growth of the cancer cells. A preliminary in vitro hyperthermia study, working on clinical conditions, reveals that cancer cell proliferation is strongly affected by the hyperthermia treatment, making these bacteria promising candidates for biomedical applications.


Assuntos
Hipertermia Induzida , Campos Magnéticos , Magnetospirillum/fisiologia , Células A549 , Sobrevivência Celular , Fluorescência , Humanos , Neoplasias Pulmonares/microbiologia , Neoplasias Pulmonares/ultraestrutura , Magnetossomos/química , Magnetossomos/ultraestrutura , Magnetospirillum/ultraestrutura , Temperatura , Fatores de Tempo
8.
Iran Biomed J ; 23(3): 209-19, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30797225

RESUMO

Background: Magnetotactic bacteria are a heterogeneous group of Gram-negative prokaryote cells that produce linear chains of magnetic particles called magnetosomes, intracellular organelles composed of magnetic iron particles. Many important applications have been defined for magnetic nanoparticles in biotechnology, such as cell separation applications, as well as acting as carriers of enzymes, antibodies, or anti-cancer drugs. Since the bacterial growth is difficult and the yield of magnetosome production is low, the application of magnetosome has not been developed on a commercial scale. Methods: Magnetospirillum gryphiswaldense strain MSR-1 was used in a modified current culture medium supplemented by different concentrations of oxygen, iron, carbon, and nitrogen, to increase the yield of magnetosomes. Results: Our improved MSR-1 culture medium increased magnetosome yield, magnetosome number per bacterial cell, magnetic response, and bacterial cell growth yield significantly. The yield of magnetosome increased approximately four times. The optimized culture medium containing 25 mM of Na-pyruvate, 40 mM of NaNO3, 200 µM of ferrous sulfate, and 5-10 ppm of dissolved oxygen (DO) resulted in 186.67 mg of magnetosome per liter of culture medium. The iron uptake increased significantly, and the magnetic response of the bacteria to the magnetic field was higher than threefold as compared to the previously reported procedures. Conclusion: This technique not only decreases the cultivation time but also reduces the production cost. In this modified method, the iron and DO are the major factors affecting the production of magnetosome by M. gryphiswaldense strain MSR-1. However, refining this technique will enable a further yield of magnetosome and cell density.


Assuntos
Meio Ambiente , Magnetossomos/metabolismo , Magnetospirillum/metabolismo , Carbono/farmacologia , Ferro/farmacologia , Magnetossomos/efeitos dos fármacos , Magnetossomos/ultraestrutura , Magnetospirillum/efeitos dos fármacos , Magnetospirillum/crescimento & desenvolvimento , Magnetospirillum/ultraestrutura , Nitrogênio/farmacologia , Oxigênio/farmacologia , Ácido Pirúvico/farmacologia
9.
J Nanobiotechnology ; 15(1): 74, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29041937

RESUMO

BACKGROUND: Biologics magnetics nanoparticles, magnetosomes, attract attention because of their magnetic characteristics and potential applications. The aim of the present study was to develop and characterize novel magnetosomes, which were extracted from magnetotactic bacteria, purified to produce apyrogen magnetosome minerals, and then coated with Chitosan, Neridronate, or Polyethyleneimine. It yielded stable magnetosomes designated as M-Chi, M-Neri, and M-PEI, respectively. Nanoparticle biocompatibility was evaluated on mouse fibroblast cells (3T3), mouse glioblastoma cells (GL-261) and rat glioblastoma cells (RG-2). We also tested these nanoparticles for magnetic hyperthermia treatment of tumor in vitro on two tumor cell lines GL-261 and RG-2 under the application of an alternating magnetic field. Heating, efficacy and internalization properties were then evaluated. RESULTS: Nanoparticles coated with chitosan, polyethyleneimine and neridronate are apyrogen, biocompatible and stable in aqueous suspension. The presence of a thin coating in M-Chi and M-PEI favors an arrangement in chains of the magnetosomes, similar to that observed in magnetosomes directly extracted from magnetotactic bacteria, while the thick matrix embedding M-Neri leads to structures with an average thickness of 3.5 µm2 per magnetosome mineral. In the presence of GL-261 cells and upon the application of an alternating magnetic field, M-PEI and M-Chi lead to the highest specific absorption rates of 120-125 W/gFe. Furthermore, while M-Chi lead to rather low rates of cellular internalization, M-PEI strongly associate to cells, a property modulated by the application of an alternating magnetic field. CONCLUSIONS: Coating of purified magnetosome minerals can therefore be chosen to control the interactions of nanoparticles with cells, organization of the minerals, as well as heating and cytotoxicity properties, which are important parameters to be considered in the design of a magnetic hyperthermia treatment of tumor.


Assuntos
Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/uso terapêutico , Glioma/terapia , Magnetossomos/química , Nanopartículas/química , Nanopartículas/uso terapêutico , Células 3T3 , Animais , Linhagem Celular Tumoral , Quitosana/química , Quitosana/uso terapêutico , Difosfonatos/química , Difosfonatos/uso terapêutico , Hipertermia Induzida , Campos Magnéticos , Magnetospirillum/química , Camundongos , Polietilenoimina/química , Polietilenoimina/uso terapêutico , Ratos
10.
Biomaterials ; 141: 210-222, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28689117

RESUMO

Magnetic hyperthermia was reported to increase the survival of patients with recurrent glioblastoma by 7 months. This promising result may potentially be further improved by using iron oxide nanoparticles, called magnetosomes, which are synthesized by magnetotactic bacteria, extracted from these bacteria, purified to remove most endotoxins and organic material, and then coated with poly-l-lysine to yield a stable and non-pyrogenic nanoparticle suspension. Due to their ferrimagnetic behavior, high crystallinity and chain arrangement, these magnetosomes coated with poly-l-lysine (M-PLL) are characterized by a higher heating power than their chemically synthesized counterparts currently used in clinical trials. M-PLL-enhanced antitumor efficacy was demonstrated by administering 500-700 µg in iron of M-PLL to intracranial U87-Luc tumors of 1.5 mm3 and by exposing mice to 27 magnetic sessions each lasting 30 min, during which an alternating magnetic field of 202 kHz and 27 mT was applied. Treatment conditions were adjusted to reach a typical hyperthermia temperature of 42 °C during the first magnetic session. In 100% of treated mice, bioluminescence due to living glioblastoma cells fully disappeared 68 days following tumor cell implantation (D68). These mice were all still alive at D350. Histological analysis of their brain tissues revealed an absence of tumor cells, suggesting that they were fully cured. In comparison, antitumor efficacy was less pronounced in mice treated by the administration of IONP followed by 23 magnetic sessions, leading to full tumor bioluminescence disappearance in only 20% of the treated mice.


Assuntos
Neoplasias Encefálicas/terapia , Materiais Revestidos Biocompatíveis/uso terapêutico , Óxido Ferroso-Férrico/uso terapêutico , Glioblastoma/terapia , Hipertermia Induzida/métodos , Magnetossomos/química , Polilisina/uso terapêutico , Células 3T3 , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Materiais Revestidos Biocompatíveis/química , Feminino , Óxido Ferroso-Férrico/química , Glioblastoma/patologia , Humanos , Campos Magnéticos , Magnetossomos/ultraestrutura , Magnetospirillum/química , Camundongos , Camundongos Nus , Polilisina/análogos & derivados
11.
Biochim Biophys Acta Gen Subj ; 1861(6): 1507-1514, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28093197

RESUMO

BACKGROUND: The magnetosome biosynthesis is a genetically controlled process but the physical properties of the magnetosomes can be slightly tuned by modifying the bacterial growth conditions. METHODS: We designed two time-resolved experiments in which iron-starved bacteria at the mid-logarithmic phase are transferred to Fe-supplemented medium to induce the magnetosomes biogenesis along the exponential growth or at the stationary phase. We used flow cytometry to determine the cell concentration, transmission electron microscopy to image the magnetosomes, DC and AC magnetometry methods for the magnetic characterization, and X-ray absorption spectroscopy to analyze the magnetosome structure. RESULTS: When the magnetosomes synthesis occurs during the exponential growth phase, they reach larger sizes and higher monodispersity, displaying a stoichiometric magnetite structure, as fingerprinted by the well defined Verwey temperature. On the contrary, the magnetosomes synthesized at the stationary phase reach smaller sizes and display a smeared Verwey transition, that suggests that these magnetosomes may deviate slightly from the perfect stoichiometry. CONCLUSIONS: Magnetosomes magnetically closer to stoichiometric magnetite are obtained when bacteria start synthesizing them at the exponential growth phase rather than at the stationary phase. GENERAL SIGNIFICANCE: The growth conditions influence the final properties of the biosynthesized magnetosomes. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editors: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.


Assuntos
Magnetossomos/metabolismo , Magnetospirillum/crescimento & desenvolvimento , Magnetospirillum/metabolismo , Citometria de Fluxo , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Magnetossomos/química , Magnetossomos/ultraestrutura , Magnetospirillum/ultraestrutura , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Tamanho da Partícula , Fatores de Tempo , Espectroscopia por Absorção de Raios X
12.
Biomaterials ; 104: 352-60, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27487574

RESUMO

The bacterial magnetic nanoparticles (BMPs) are biomineralized by the magnetotactic bacteria and naturally covered with a layer of biomembrane. Herein, BMPs were isolated and firstly used for the photothermal therapy (PTT) of cancer under the guidance of magnetic resonance imaging (MRI) in vitro and in vivo. The results showed that BMPs could rapidly convert the energy of 808 nm near-infrared (NIR) light into heat. After internalization by the HepG2 tumor cells, BMPs with good biocompatibility could induce an efficient killing effect after NIR light irradiation, along with a change of mitochondrial membrane potential (ΔΨm) and level of intracellular reactive oxygen species (ROS). The in vivo therapy also confirms that PTT with BMPs could effectively and completely ablate the tumor in mice without inducing observable toxicity. T2-weighted MRI showed a clear tumor boundary and a 25% enhancement of negative contrast enhancement at the tumor site, suggesting that BMPs can act as an effective MRI contrast agent for guiding the PTT. Our results indicate that BMPs could be a potential theranostic agent for simultaneous MRI and PTT of cancer.


Assuntos
Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/uso terapêutico , Magnetospirillum/metabolismo , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/terapia , Fototerapia/métodos , Nanomedicina Teranóstica/métodos , Animais , Feminino , Células Hep G2 , Humanos , Hipertermia Induzida/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/microbiologia , Magnetospirillum/química , Camundongos , Camundongos Endogâmicos ICR , Resultado do Tratamento
13.
Environ Microbiol Rep ; 8(3): 371-81, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27043321

RESUMO

Magnetosome synthesis ability of Magnetospirillum gryphiswaldense MSR-1 in an autofermentor can be precisely controlled through strict control of dissolved oxygen concentration. In this study, using transcriptome data we discovered gene transcriptional differences and compared physiological characteristics of MSR-1 cells cultured under aerobic (high-oxygen) and micro-aerobic (low-oxygen) conditions. The results showed that 77 genes were up-regulated and 95 genes were down-regulated significantly under micro-aerobic situation. These genes were involved primarily in the categories of cell metabolism, transport, regulation and unknown-function proteins. The nutrient transport and physiological metabolism were slowed down under micro-aerobic condition, whereas dissimilatory denitrification pathways were activated and it may supplemental energy was made available for magnetosome synthesis. The result suggested that the genes of magnetosome membrane proteins (Mam and Mms) are not directly regulated by oxygen level, or are constitutively expressed. A proposed regulatory network of differentially expressed genes reflects the complexity of physiological metabolism in MSR-1, and suggests that some yet-unknown functional proteins play important roles such as ferric iron uptake and transport during magnetosome synthesis. The transcriptome data provides a holistic view of the responses of MSR-1 cells to differing oxygen levels. This approach will give new insights into general principles of magnetosome formation.


Assuntos
Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Magnetossomos/metabolismo , Magnetospirillum/genética , Magnetospirillum/metabolismo , Aerobiose , Anaerobiose , Redes Reguladoras de Genes , Redes e Vias Metabólicas/genética
14.
Appl Environ Microbiol ; 81(23): 8044-53, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26386052

RESUMO

Magnetotactic bacteria are capable of forming nanosized, membrane-enclosed magnetosomes under iron-rich and oxygen-limited conditions. The complete genomic sequence of Magnetospirillum gryphiswaldense strain MSR-1 has been analyzed and found to contain five fur homologue genes whose protein products are predicted to be involved in iron homeostasis and the response to oxidative stress. Of these, only the MGMSRv2_3149 gene (irrB) was significantly downregulated under high-iron and low-oxygen conditions, during the transition of cell growth from the logarithmic to the stationary phase. The encoded protein, IrrB, containing the conserved HHH motif, was identified as an iron response regulator (Irr) protein belonging to the Fur superfamily. To investigate the function of IrrB, we constructed an irrB deletion mutant (ΔirrB). The levels of cell growth and magnetosome formation were lower in the ΔirrB strain than in the wild type (WT) under both high-iron and low-iron conditions. The ΔirrB strain also showed lower levels of iron uptake and H2O2 tolerance than the WT. Quantitative real-time reverse transcription-PCR analysis indicated that the irrB mutation reduced the expression of numerous genes involved in iron transport, iron storage, heme biosynthesis, and Fe-S cluster assembly. Transcription studies of the other fur homologue genes in the ΔirrB strain indicated complementary functions of the Fur proteins in MSR-1. IrrB appears to be directly responsible for iron metabolism and homeostasis and to be indirectly involved in magnetosome formation. We propose two IrrB-regulated networks (under high- and low-iron conditions) in MSR-1 cells that control the balance of iron and oxygen metabolism and account for the coexistence of five Fur homologues.


Assuntos
Proteínas Reguladoras de Ferro/genética , Ferro/metabolismo , Magnetossomos/metabolismo , Magnetospirillum/genética , Estresse Oxidativo , Oxigênio/metabolismo , Sequência de Aminoácidos , Regulação para Baixo , Óxido Ferroso-Férrico/metabolismo , Proteínas Reguladoras de Ferro/química , Proteínas Reguladoras de Ferro/metabolismo , Magnetospirillum/metabolismo , Alinhamento de Sequência , Deleção de Sequência
15.
PLoS One ; 9(10): e108959, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25289664

RESUMO

Magnetic nanoparticles (MNPs) are capable of generate heating power under the influence of alternating magnetic fields (AMF); this behaviour recently opened new scenarios for advanced biomedical applications, mainly as new promising tumor therapies. In this paper we have tested magnetic nanoparticles called magnetosomes (MNs): a class of MNPs naturally produced by magnetotactic bacteria. We extracted MNs from Magnetospirillum gryphiswaldense strain MSR-1 and tested the interaction with cellular elements and anti-neoplastic activity both in vitro and in vivo, with the aim of developing new therapeutic approaches for neoplastic diseases. In vitro experiments performed on Human Colon Carcinoma HT-29 cell cultures demonstrated a strong uptake of MNs with no evident signs of cytotoxicity and revealed three phases in the interaction: adherence, transport and accumulation in Golgi vesicles. In vivo studies were performed on subcutaneous tumors in mice; in this model MNs are administered by direct injection in the tumor volume, then a protocol consisting of three exposures to an AMF rated at 187 kHz and 23kA/m is carried out on alternate days, over a week. Tumors were monitored by Magnetic Resonance Imaging (MRI) to obtain information about MNs distribution and possible tissue modifications induced by hyperthermia. Histological analysis showed fibrous and necrotic areas close to MNs injection sites in mice subjected to a complete thermotherapy protocol. These results, although concerning a specific tumor model, could be useful to further investigate the feasibility and efficacy of protocols based on MFH. Magnetic nanoparticles naturally produced and extracted from bacteria seem to be promising candidates for theranostic applications in cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/patologia , Nanopartículas de Magnetita/administração & dosagem , Magnetospirillum , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/tratamento farmacológico , Modelos Animais de Doenças , Sinergismo Farmacológico , Células HT29 , Humanos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Magnetossomos/química , Magnetossomos/metabolismo , Masculino , Camundongos , Termodinâmica
16.
J Bacteriol ; 195(4): 876-85, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23243303

RESUMO

The bacterial strain Magnetospirillum gryphiswaldense MSR-1 does not produce siderophores, but it absorbs a large amount of ferric iron and synthesizes magnetosomes. We demonstrated previously the presence of six types of ferric reductase isozymes (termed FeR1 through FeR6) in MSR-1. Of these isozymes, FeR5 was the most abundant and FeR6 showed the highest ferric reductase activity. In the present study, we cloned the fer5 and fer6 genes from MSR-1 and expressed them separately in Escherichia coli. FeR5 and FeR6 were shown to be bifunctional enzymes through analysis of amino acid sequence homologies, structural predictions (using data from GenBank), and detection of enzyme activities. FeR5 is a thioredoxin reductase and FeR6 is a flavin reductase, in addition to being ferric reductases. To elucidate the functions of the enzymes, we constructed two single-gene-deletion mutant strains (Δfer5 and Δfer6 mutants) and a double-gene-deletion mutant strain (Δfer5 Δfer6 [Δfer5+6] mutant) along with its complemented strains (C5 and C6). An evaluation of phenotypic and physiological properties did not reveal significant differences between the wild-type and single-gene-deletion strains, whereas the double-gene-deletion strain showed reduced iron absorption and no magnetosome synthesis. Complementation of the double-gene-deletion strain using either fer5 or fer6 resulted in the partial recovery of magnetosome synthesis. Quantitative real-time PCR analysis of fer5 and fer6 transcriptional levels in the wild-type and complemented strains demonstrated consistent transcription of the two genes and confirmed that FeR5 and FeR6 are bifunctional enzymes that play complementary roles during the process of magnetosome synthesis in MSR-1.


Assuntos
Proteínas de Bactérias/metabolismo , Compostos Férricos/metabolismo , Magnetossomos/metabolismo , Magnetospirillum/enzimologia , Magnetospirillum/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/fisiologia , Magnetospirillum/citologia , Magnetospirillum/genética , Dados de Sequência Molecular , Oxirredução , Plasmídeos , Entorses e Distensões
17.
Int J Pharm ; 434(1-2): 444-52, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22698862

RESUMO

Chains of magnetosomes isolated from Magnetospirillum magneticum strain AMB-1 magnetotactic bacteria by sonication at 30 W during 2 h are tested for magnetic hyperthermia treatment of tumors. These chains are composed of magnetosomes, which are bound to each other by a filament made of proteins. When they are incubated in the presence of cancer cells and exposed to an alternating magnetic field of frequency 198 kHz and average magnetic field strength of 20 or 30 mT, they produce efficient inhibition of cancer cell proliferation. This behavior is explained by a high cellular internalization, a good stability in solution and a homogenous distribution of the magnetosome chains, which enables efficient heating. When the chains are heated during 5 h at 90°C in the presence of 1% SDS, the filament binding the magnetosomes together is denatured and individual magnetosomes are obtained. By contrast to the chains of magnetosomes, the individual magnetosomes are prone to aggregation, are not stable in solution and do not produce efficient inhibition of cancer cell proliferation under application of an alternating magnetic field.


Assuntos
Hipertermia Induzida/métodos , Campos Magnéticos , Magnetossomos/química , Neoplasias/terapia , Linhagem Celular Tumoral , Proliferação de Células , Células HeLa , Temperatura Alta , Humanos , Magnetospirillum/química , Neoplasias/patologia , Sonicação
18.
Micron ; 43(12): 1331-5, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22578947

RESUMO

Atomic force microscopy (AFM) was used in concert with transmission electron microscopy (TEM) to image magnetotactic bacteria (Magnetospirillum gryphiswaldense MSR-1 and Magnetospirillum magneticum AMB-1), magnetosomes, and purified Mms6 proteins. Mms6 is a protein that is associated with magnetosomes in M. magneticum AMB-1 and is believed to control the synthesis of magnetite (Fe(3)O(4)) within the magnetosome. We demonstrated how AFM can be used to capture high-resolution images of live bacteria and achieved nanometer resolution when imaging Mms6 protein molecules on magnetite. We used AFM to acquire simultaneous topography and amplitude images of cells that were combined to provide a three-dimensional reconstructed image of M. gryphiswaldense MSR-1. TEM was used in combination with AFM to image M. gryphiswaldense MSR-1 and magnetite-containing magnetosomes that were isolated from the bacteria. AFM provided information, such as size, location and morphology, which was complementary to the TEM images.


Assuntos
Óxido Ferroso-Férrico , Magnetossomos/ultraestrutura , Magnetospirillum/ultraestrutura , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão
19.
Environ Microbiol ; 14(7): 1722-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22360568

RESUMO

Magnetotactic bacteria synthesize magnetic particles called magnetosomes that cause them to orient to their external magnetic fields. However, the physiological significance and other possible functions of these magnetosomes have not been explored in detail. In this study, we have investigated the biological functions of magnetosomes with respect to their ability to scavenge reactive oxygen species (ROS) in Magnetospirillum gryphiswaldense MSR-1. To assess the changes in ROS levels under different conditions, cells were cultured under aerobic or micro-aerobic conditions in medium containing high and low amounts of iron. To ensure that the observed results were not due to nonspecific interactions, reactions were carried out using a mutant deficient in synthesizing magnetite (mamO-deficient mutant), its complementary strain or the wild-type MSR-1. We observed that the levels of intercellular ROS under micro-aerobic conditions with high-iron medium were much higher when the non-synthetic Fe(3) O(4) crystals mutant Mu21-415 was employed for the assay, compared with the wild-type or complementary strain, or when conditions were aerobic with low-iron medium. These results indicated that magnetosomes function in the scavenging of intracellular ROS. Furthermore, we have demonstrated that the magnetosomes exhibit peroxidase-like properties, by using the earlier reported in vitro horseradish peroxidase assay for artificial magnetic nanoparticles. In addition to possessing peroxidase-like activity, the magnetosomes also exhibited a more enzymatic kinetic response, suggesting that proteins on the membranes of the magnetosomes likely contribute to the enzymatic activity. This is the first study to demonstrate that magnetosomes play an important role in decreasing or eliminating ROS.


Assuntos
Ferro/metabolismo , Magnetossomos/metabolismo , Magnetospirillum/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Bactérias/metabolismo , Meios de Cultura/química , Óxido Ferroso-Férrico/metabolismo , Concentração de Íons de Hidrogênio , Peroxidase/metabolismo , Temperatura
20.
Korean Circulation Journal ; : 390-396, 2012.
Artigo em Inglês | WPRIM | ID: wpr-33168

RESUMO

BACKGROUND AND OBJECTIVES: Poor homing efficiency is one of the major limitations of current stem cell therapy. Magnetic bionanoparticles (MPs) obtained from Magnetospirillum sp. AMB-1 have a lipid bilayer membrane and ferromagnetic properties. We evaluated a novel priming strategy using MPs to enhance the homing of transplanted progenitor cells to target tissue. MATERIALS AND METHODS: Effects of MP on proliferation, viability, and migration of late human endothelial progenitor cells (EPCs) were examined in vitro. Additionally, effects of MP on gene and protein expression related to survival and adhesion were evaluated. Homing and angiogenic efficiency of MP transferred late EPCs was evaluated in nude mouse hindlimb ischemia model. RESULTS: Below threshold concentration, MP transfer did not influence proliferation or survival of late EPCs, but enhanced migration and trans-endothelial migration of late EPCs toward magnet. Below threshold concentration, MP transfer did not influence gene and protein expression related to survival. In the mouse hindlimb ischemia model, late EPCs treated with high dose MP (5 ug/mL) showed enhanced homing of injected late EPCs in the ischemic limb by magnet, compared to low dose MP (1 ug/mL) treated late EPCs. In addition, high dose MP transferred EPC showed significantly better improvement of perfusion in ischemic limb compared to untreated EPC. CONCLUSION: MP transfer with magnet application can be a promising novel strategy to enhance homing efficacy and outcomes of current stem cell therapy.


Assuntos
Animais , Humanos , Camundongos , Extremidades , Membro Posterior , Isquemia , Bicamadas Lipídicas , Magnetismo , Magnetospirillum , Imãs , Membranas , Camundongos Nus , Nanopartículas , Perfusão , Fosforilcolina , Células-Tronco , Transplantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA