Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(18): e2322692121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652744

RESUMO

Food intake and energy balance are tightly regulated by a group of hypothalamic arcuate neurons expressing the proopiomelanocortin (POMC) gene. In mammals, arcuate-specific POMC expression is driven by two cis-acting transcriptional enhancers known as nPE1 and nPE2. Because mutant mice lacking these two enhancers still showed hypothalamic Pomc mRNA, we searched for additional elements contributing to arcuate Pomc expression. By combining molecular evolution with reporter gene expression in transgenic zebrafish and mice, here, we identified a mammalian arcuate-specific Pomc enhancer that we named nPE3, carrying several binding sites also present in nPE1 and nPE2 for transcription factors known to activate neuronal Pomc expression, such as ISL1, NKX2.1, and ERα. We found that nPE3 originated in the lineage leading to placental mammals and remained under purifying selection in all mammalian orders, although it was lost in Simiiformes (monkeys, apes, and humans) following a unique segmental deletion event. Interestingly, ablation of nPE3 from the mouse genome led to a drastic reduction (>70%) in hypothalamic Pomc mRNA during development and only moderate (<33%) in adult mice. Comparison between double (nPE1 and nPE2) and triple (nPE1, nPE2, and nPE3) enhancer mutants revealed the relative contribution of nPE3 to hypothalamic Pomc expression and its importance in the control of food intake and adiposity in male and female mice. Altogether, these results demonstrate that nPE3 integrates a tripartite cluster of partially redundant enhancers that originated upon a triple convergent evolutionary process in mammals and that is critical for hypothalamic Pomc expression and body weight homeostasis.


Assuntos
Peso Corporal , Ingestão de Alimentos , Elementos Facilitadores Genéticos , Hipotálamo , Pró-Opiomelanocortina , Peixe-Zebra , Animais , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/genética , Camundongos , Hipotálamo/metabolismo , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Feminino , Masculino , Camundongos Transgênicos , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Mamíferos/metabolismo , Mamíferos/genética
2.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38447079

RESUMO

Selenocysteine, the 21st amino acid specified by the genetic code, is a rare selenium-containing residue found in the catalytic site of selenoprotein oxidoreductases. Selenocysteine is analogous to the common cysteine amino acid, but its selenium atom offers physical-chemical properties not provided by the corresponding sulfur atom in cysteine. Catalytic sites with selenocysteine in selenoproteins of vertebrates are under strong purifying selection, but one enzyme, glutathione peroxidase 6 (GPX6), independently exchanged selenocysteine for cysteine <100 million years ago in several mammalian lineages. We reconstructed and assayed these ancient enzymes before and after selenocysteine was lost and up to today and found them to have lost their classic ability to reduce hydroperoxides using glutathione. This loss of function, however, was accompanied by additional amino acid changes in the catalytic domain, with protein sites concertedly changing under positive selection across distant lineages abandoning selenocysteine in glutathione peroxidase 6. This demonstrates a narrow evolutionary range in maintaining fitness when sulfur in cysteine impairs the catalytic activity of this protein, with pleiotropy and epistasis likely driving the observed convergent evolution. We propose that the mutations shared across distinct lineages may trigger enzymatic properties beyond those in classic glutathione peroxidases, rather than simply recovering catalytic rate. These findings are an unusual example of adaptive convergence across mammalian selenoproteins, with the evolutionary signatures possibly representing the evolution of novel oxidoreductase functions.


Assuntos
Selênio , Selenocisteína , Animais , Selenocisteína/genética , Selenocisteína/química , Selenocisteína/metabolismo , Cisteína/genética , Cisteína/metabolismo , Selênio/metabolismo , Selenoproteínas/genética , Selenoproteínas/química , Selenoproteínas/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Aminoácidos , Glutationa , Enxofre , Mamíferos/genética , Mamíferos/metabolismo
3.
Phytomedicine ; 125: 155359, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301300

RESUMO

BACKGROUND: Myocardial ischemia/reperfusion injury (MIRI) poses a formidable challenge to cardiac reperfusion therapy due to the absence of effective clinical interventions. Methylation of N6-methyladenosine (m6A), which is the most common post-transcriptional modifications occurring within mammalian mRNA, is believed to be involved in MIRI by modulating autophagy. MicroRNAs (miRNAs) play a crucial role in regulating gene expression at the post-transcriptional level and have been implicated in the regulation of m6A methylation. Suxiao Jiuxin Pill (SJP) is extensively used in China for the clinical treatment of angina pectoris and confers benefits to patients with acute coronary syndrome who have received percutaneous coronary intervention. However, the precise mechanisms underlying SJP intervention in MIRI remain unclear. PURPOSE: This study aimed to demonstrate, both in vivo and in vitro, that SJP could alleviate autophagy in MIRI by regulating miR-193a-3p to target and upregulate the demethylase ALKBH5. METHODS: An in vitro hypoxia/reoxygenation model was established using H9c2 cells, while an in vivo MIRI model was established using Wistar rats. A lentivirus harboring the precursor sequence of miR-193a-3p was employed for its overexpression. Adeno-associated viruses were used to silence both miR-193a-3p and ALKBH5 expressions. Cardiac function, infarct size, and tissue structure in rats were assessed using echocardiography, triphenyl tetrazolium chloride (TTC) staining, and HE staining, respectively. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) was employed to detect the levels of apoptosis in rat cardiac tissue. m6A methylation levels were assessed using colorimetry. GFP-RFP-LC3B was used to monitor autophagic flux and transmission electron microscopy was used to evaluate the development of autophagosomes. Western Blot and qRT-PCR were respectively employed to assess the levels of autophagy-related proteins and miR-193a-3p. RESULTS: SJP alleviated autophagy, preserved cardiac function, and minimized myocardial damage in the hearts of MIRI rats. SJP attenuated autophagy in H/R H9C2 cells. Elevated levels of miR-193a-3p were observed in the cardiac tissues of MIRI rats and H/R H9C2 cells, whereas SJP downregulated miR-193a-3p levels in these models. ALKBH5, a target gene of miR-193, is negatively regulated by miR-193a-3p. Upon overexpression of miR-193a-3p or silencing of ALKBH5, m6A methylation decreased, and the autophagy-attenuating effects of SJP and its components, senkyunolide A and l-borneol, were lost in H/R H9C2 cells, whereas in MIRI rats, these effects were not abolished but merely weakened. Further investigation indicated that the METTL3 inhibitor STM2475, combined with the silencing of miR-193a-3p, similarly attenuated autophagy in the hearts of MIRI rats. This suggests that a reduction in m6A methylation is involved in autophagy alleviation. CONCLUSION: We demonstrated that SJP mitigates autophagy in MIRI by downregulating miR-193a-3p, enhancing ALKBH5 expression, and reducing m6A methylation, a mechanism potentially attributed to its constituents, senkyunolide A and l-borneol.


Assuntos
Canfanos , MicroRNAs , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Humanos , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Ratos Wistar , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Autofagia , Reperfusão , Apoptose , Miócitos Cardíacos/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Metiltransferases/metabolismo , Metiltransferases/farmacologia , Homólogo AlkB 5 da RNA Desmetilase/metabolismo
4.
Gene ; 896: 148056, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38042217

RESUMO

In farmed fish, diets rich in palm oil have been observed to promote abnormal lipid build-up in the liver, subsequently leading to physiological harm and disease onset. Emerging research suggests that integrating phospholipids into the feed could serve as a potent countermeasure against hepatic impairments induced by vegetable oil consumption. Phosphatidylcholine is the most abundant type among phospholipids. In the metabolic processes of mammal, lysophosphatidylcholine acyltransferase 1 (LPCAT1), crucial for phosphatidylcholine remodeling, demonstrates a marked affinity towards palmitic acid (PA). Nonetheless, aspects concerning the cloning, tissue-specific distribution, and affinity of the LPCAT1 gene to diverse oil sources have yet to be elucidated in the large yellow croaker (Larimichthys crocea). Within the scope of this study, we successfully isolated and cloned the cDNA of the LPCAT1 gene from the large yellow croaker. Subsequent analysis revealed distinct gene expression patterns of LPCAT1 across ten different tissues of the species. The fully sequenced coding DNA sequence (CDS) of LPCAT1 spans 1503 bp and encodes a sequence of 500 amino acids. Comparative sequence alignment indicates that LPCAT1 shares a 69.75 % amino acid similarity with its counterparts in other species. Although LPCAT1 manifests across various tissues of the large yellow croaker, its predominance is markedly evident in the liver and gills. Furthermore, post exposure of the large yellow croaker's hepatocytes to varied fatty acids, PA has a strong response to LPCAT1. Upon the addition of appropriate lysolecithin to palm oil feed, the mRNA expression of LPCAT1 in the liver cells of the large yellow croaker showed significant variations compared to other subtypes. Concurrently, the mRNA expression of pro-inflammatory genes il-1ß, il-6, il-8, tnf-α and ifn-γ in the liver tissue of the large yellow croaker decreased. Interestingly, they exhibit the same trend of change. In conclusion, we have cloned the LPCAT1 gene on fish successfully and find the augmented gene response of LPCAT1 in hepatocytes under PA treatment first. The results of this study suggest that LPCAT1 may be associated with liver inflammation in fish and offer new insights into mitigating liver diseases in fish caused by palm oil feed.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , Ácidos Graxos , Perciformes , Animais , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Aciltransferases/metabolismo , Clonagem Molecular , Ácidos Graxos/metabolismo , Proteínas de Peixes/metabolismo , Mamíferos/genética , Óleo de Palmeira/metabolismo , Perciformes/genética , Perciformes/metabolismo , Fosfatidilcolinas/metabolismo , Fosfolipídeos/metabolismo , RNA Mensageiro/genética
5.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5304-5314, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38114120

RESUMO

This study aims to observe the effects of diosgenin on the expression of mammalian target of rapamycin(mTOR), sterol regulatory element-binding protein-1c(SREBP-1c), heat shock protein 60(HSP60), medium-chain acyl-CoA dehydrogenase(MCAD), and short-chain acyl-CoA dehydrogenase(SCAD) in the liver tissue of the rat model of non-alcoholic fatty liver disease(NAFLD) and explore the mechanism of diosgenin in alleviating NAFLD. Forty male SD rats were randomized into five groups: a control group, a model group, low-(150 mg·kg~(-1)·d~(-1)) and high-dose(300 mg·kg~(-1)·d~(-1)) diosgenin groups, and a simvastatin(4 mg·kg~(-1)·d~(-1)) group. The rats in the control group were fed with a normal diet, while those in the other four groups were fed with a high-fat diet. After feeding for 8 weeks, the body weight of rats in the high-fat diet groups increased significantly. After that, the rats were administrated with the corresponding dose of diosgenin or simvastatin by gavage every day for 8 weeks. The levels of triglyceride(TG), total cholesterol(TC), alanine transaminase(ALT), and aspartate transaminase(AST) in the serum were determined by the biochemical method. The levels of TG and TC in the liver were measured by the enzyme method. Oil-red O staining was employed to detect the lipid accumulation, and hematoxylin-eosin(HE) staining to detect the pathological changes in the liver tissue. The mRNA and protein levels of mTOR, SREBP-1c, HSP60, MCAD, and SCAD in the liver tissue of rats were determined by real-time fluorescence quantitative polymerase chain reaction(RT-qPCR) and Western blot, respectively. Compared with the control group, the model group showed increased body weight, food uptake, liver index, TG, TC, ALT, and AST levels in the serum, TG and TC levels in the liver, lipid deposition in the liver, obvious hepatic steatosis, up-regulated mRNA and protein expression levels of mTOR and SREBP-1c, and down-regulated mRNA and protein expression levels of HSP60, MCAD, and SCAD. Compared with the model group, the rats in each treatment group showed obviously decreased body weight, food uptake, liver index, TG, TC, ALT, and AST levels in the serum, TG and TC levels in the liver, lessened lipid deposition in the liver, ameliorated hepatic steatosis, down-regulated mRNA and protein le-vels of mTOR and SREBP-1c, and up-regulated mRNA and protein levels of HSP60, MCAD, and SCAD. The high-dose diosgenin outperformed the low-dose diosgenin and simvastatin. Diosgenin may prevent and treat NAFLD by inhibiting the expression of mTOR and SREBP-1c and promoting the expression of HSP60, MCAD, and SCAD to reduce lipid synthesis, improving mitochondrial function, and promoting fatty acid ß oxidation in the liver.


Assuntos
Diosgenina , Hepatopatia Gordurosa não Alcoólica , Ratos , Masculino , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Dieta Hiperlipídica/efeitos adversos , Diosgenina/metabolismo , Chaperonina 60/metabolismo , Chaperonina 60/farmacologia , Chaperonina 60/uso terapêutico , Ratos Sprague-Dawley , Fígado , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Triglicerídeos , RNA Mensageiro/metabolismo , Sinvastatina/metabolismo , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Peso Corporal , Metabolismo dos Lipídeos , Mamíferos/genética , Mamíferos/metabolismo
6.
Pharmacol Res ; 198: 106999, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37984504

RESUMO

Cell-to-cell communication strategies include extracellular vesicles (EVs) in plants and animals. The bioactive molecules in a diet rich in vegetables and fruits are associated with disease-preventive effects. Plant-derived EVs (PDEVs) are biogenetically and morphologically comparable to mammalian EVs and transport bioactive molecules, including miRNAs. However, the biological functions of PDEVs are not fully understood, and standard isolation protocols are lacking. Here, PDEVs were isolated from four foods with a combination of ultracentrifugation and size exclusion chromatography, and evaluated as vehicles for enhanced transport of synthetic miRNAs. In addition, the role of food-derived EVs as carriers of dietary (poly)phenols and other secondary metabolites was investigated. EVs from broccoli, pomegranate, apple, and orange were efficiently isolated and characterized. In all four sources, 4 miRNA families were present in tissues and EVs. miRNAs present in broccoli and fruit-derived EVs showed a reduced RNase degradation and were ferried inside exposed cells. EVs transfected with a combination of ath-miR159a, ath-miR162a-3p, ath-miR166b-3p, and ath-miR396b-5p showed toxic effects on human cells, as did natural broccoli EVs alone. PDEVs transport trace amounts of phytochemicals, including flavonoids, anthocyanidins, phenolic acids, or glucosinolates. Thus, PDEVs can act as nanocarriers for functional miRNAs that could be used in RNA-based therapy.


Assuntos
Vesículas Extracelulares , MicroRNAs , Animais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Células Cultivadas , Frutas , Mamíferos/genética , Mamíferos/metabolismo
7.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685915

RESUMO

The hypothalamus regulates fundamental aspects of physiological homeostasis and behavior, including stress response, reproduction, growth, sleep, and feeding, several of which are affected in patients with Prader-Willi (PWS) and Schaaf-Yang syndrome (SYS). PWS is caused by paternal deletion, maternal uniparental disomy, or imprinting defects that lead to loss of expression of a maternally imprinted region of chromosome 15 encompassing non-coding RNAs and five protein-coding genes; SYS patients have a mutation in one of them, MAGEL2. Throughout life, PWS and SYS patients suffer from musculoskeletal deficiencies, intellectual disabilities, and hormonal abnormalities, which lead to compulsive behaviors like hyperphagia and temper outbursts. Management of PWS and SYS is mostly symptomatic and cures for these debilitating disorders do not exist, highlighting a clear, unmet medical need. Research over several decades into the molecular and cellular roles of PWS genes has uncovered that several impinge on the neuroendocrine system. In this review, we will discuss the expression and molecular functions of PWS genes, connecting them with hormonal imbalances in patients and animal models. Besides the observed hormonal imbalances, we will describe the recent findings about how the loss of individual genes, particularly MAGEL2, affects the molecular mechanisms of hormone secretion. These results suggest that MAGEL2 evolved as a mammalian-specific regulator of hypothalamic neuroendocrine function.


Assuntos
Ansiedade , Hipotálamo , Animais , Síndrome , Mamíferos/genética , Sistemas Neurossecretores
8.
J Trace Elem Med Biol ; 79: 127204, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37244044

RESUMO

BACKGROUND: Selenium (Se) functions through selenoproteins and is essential to growth and metabolism of vertebrates. The present study was conducted to identify twelve selenoproteins genes (selenoe, selenof, selenoh, selneoi, selenom, selenok, selneon, selenoo, selenot, selenos, selenou and msrb1) from yellow catfish. Their mRNA expression patterns, as well as their response to dietary oxidized fish oils and Se addition were explored. METHODS: We use 3'and 5' RACE PCR to clone full-length cDNA sequence of twelve selenoprotein genes from yellow catfish. Their mRNA expression patterns were assessed via quantitative real-time PCR. Yellow catfish were fed diet adequate Se+ fresh fish oil, adequate Se+ oxidized fish oil, high Se+ fresh fish oil and high Se+ oxidized fish oil, respectively, for 10 weeks. Their kidney, heart, brain and testis were used to assess the mRNA expression of twelve selenoprotein. RESULTS: Twelve selenoprotein genes had similar domains with mammals and the other fish. Their mRNAs were expressed widely in eleven tissues but varied with the tissues. Dietary oxidized fish oils and Se addition influenced their mRNA abundances of twelve selenoproteins in a tissue-dependent manner. CONCLUSION: Our study demonstrated the characterization and expression of twelve selenoproteins, and elucidated their responses in yellow catfish fed diets varying in oxidized fish oils and Se addition, which increased our knowledge into the biological function and regulatory mechanism of Se and selenoproteins in fish.


Assuntos
Peixes-Gato , Selênio , Masculino , Animais , Selênio/farmacologia , Selênio/metabolismo , Óleos de Peixe/metabolismo , Peixes-Gato/genética , Fígado/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Dieta , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
9.
Nat Genet ; 55(4): 706-720, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36864100

RESUMO

Epigenetic reprogramming in the germline contributes to the erasure of epigenetic inheritance across generations in mammals but remains poorly characterized in plants. Here we profiled histone modifications throughout Arabidopsis male germline development. We find that the sperm cell has widespread apparent chromatin bivalency, which is established by the acquisition of H3K27me3 or H3K4me3 at pre-existing H3K4me3 or H3K27me3 regions, respectively. These bivalent domains are associated with a distinct transcriptional status. Somatic H3K27me3 is generally reduced in sperm, while dramatic loss of H3K27me3 is observed at only ~700 developmental genes. The incorporation of the histone variant H3.10 facilitates the establishment of sperm chromatin identity without a strong impact on resetting of somatic H3K27me3. Vegetative nuclei harbor thousands of specific H3K27me3 domains at repressed genes, while pollination-related genes are highly expressed and marked by gene body H3K4me3. Our work highlights putative chromatin bivalency and restricted resetting of H3K27me3 at developmental regulators as key features in plant pluripotent sperm.


Assuntos
Arabidopsis , Cromatina , Masculino , Animais , Cromatina/genética , Cromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Epigênese Genética , Sementes , Pólen/metabolismo , Mamíferos/genética
10.
Chin J Integr Med ; 29(5): 405-412, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36607586

RESUMO

OBJECTIVE: To investigate the role of hippocampal neurodevelopment in the antidepressant effect of baicalin. METHODS: Forty male Institute of Cancer Research mice were divided into control, corticosterone (CORT, 40 mg/kg), CORT+baicalin-L (25 mg/kg), CORT+baicalin-H (50 mg/kg), and CORT+fluoxetine (10 mg/kg) groups according to a random number table. An animal model of depression was established by chronic CORT exposure. Behavioral tests were used to assess the reliability of depression model and the antidepressant effect of baicalin. In addition, Nissl staining and immunofluorescence were used to evaluate the effect of baicalin on hippocampal neurodevelopment in mice. The protein and mRNA expression levels of neurodevelopment-related factors were detected by Western blot analysis and real-time polymerase chain reaction, respectively. RESULTS: Baicalin significantly ameliorated the depressive-like behavior of mice resulting from CORT exposure and promoted the development of dentate gyrus in hippocampus, thereby reversing the depressive-like pathological changes in hippocampal neurons caused by CORT neurotoxicity. Moreover, baicalin significantly decreased the protein and mRNA expression levels of glycogen synthase kinase 3ß (GSK3ß), and upregulated the expression levels of cell cycle protein D1, p-mammalian target of rapamycin (mTOR), doublecortin, and brain-derived neurotrophic factor (all P<0.01). There were no significant differences between baicalin and fluoxetine groups (P>0.05). CONCLUSION: Baicalin can promote the development of hippocampal neurons via mTOR/GSK3ß signaling pathway, thus protect mice against CORT-induced neurotoxicity and play an antidepressant role.


Assuntos
Corticosterona , Fluoxetina , Masculino , Animais , Camundongos , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Fluoxetina/metabolismo , Depressão/tratamento farmacológico , Depressão/induzido quimicamente , Glicogênio Sintase Quinase 3 beta/metabolismo , Reprodutibilidade dos Testes , Antidepressivos/farmacologia , Hipocampo , Serina-Treonina Quinases TOR/metabolismo , RNA Mensageiro/genética , Comportamento Animal , Modelos Animais de Doenças , Mamíferos/genética , Mamíferos/metabolismo
11.
Nucleic Acids Res ; 51(4): 1674-1686, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36660822

RESUMO

ZNF410 is a highly-conserved transcription factor, remarkable in that it recognizes a 15-base pair DNA element but has just a single responsive target gene in mammalian erythroid cells. ZNF410 includes a tandem array of five zinc-fingers (ZFs), surrounded by uncharacterized N- and C-terminal regions. Unexpectedly, full-length ZNF410 has reduced DNA binding affinity, compared to that of the isolated DNA binding ZF array, both in vitro and in cells. AlphaFold predicts a partially-folded N-terminal subdomain that includes a 30-residue long helix, preceded by a hairpin loop rich in acidic (aspartate/glutamate) and serine/threonine residues. This hairpin loop is predicted by AlphaFold to lie against the DNA binding interface of the ZF array. In solution, ZNF410 is a monomer and binds to DNA with 1:1 stoichiometry. Surprisingly, the single best-fit model for the experimental small angle X-ray scattering profile, in the absence of DNA, is the original AlphaFold model with the N-terminal long-helix and the hairpin loop occupying the ZF DNA binding surface. For DNA binding, the hairpin loop presumably must be displaced. After combining biophysical, biochemical, bioinformatic and artificial intelligence-based AlphaFold analyses, we suggest that the hairpin loop mimics the structure and electrostatics of DNA, and provides an additional mechanism, supplementary to sequence specificity, of regulating ZNF410 DNA binding.


Assuntos
Fatores de Transcrição , Animais , Sequência de Aminoácidos , Inteligência Artificial , Mamíferos/genética , Ligação Proteica , Domínios Proteicos , Dedos de Zinco/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
12.
Reprod Fertil Dev ; 35(4): 307-320, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36593258

RESUMO

CONTEXT: Mammalian target of rapamycin complex 1 (mTORC1) is an essential sensor that regulates fundamental biological processes like cell growth, proliferation and energy metabolism. The treatment of disease by sirolimus, a mTORC1 inhibitor, causes adverse effects, such as female fertility disorders. AIMS: The objective of the study was to decipher the reproductive consequences of a downregulation of mTORC1 in the hypothalamus. METHODS: The reduced expression of mTORC1 was induced after intracerebroventricular injection of lentivirus expressing a short hairpin RNA (shRNA) against regulatory associated protein of TOR (raptor) in adult female mice (ShRaptor mice). KEY RESULTS: The ShRaptor mice were fertile and exhibited a 15% increase in the litter size compared with control mice. The histological analysis showed an increase in antral, preovulatory follicles and ovarian cysts. In the hypothalamus, the GnRH mRNA and FSH levels in ShRaptor mice were significantly elevated. CONCLUSIONS: These results support the hypothesis that mTORC1 in the central nervous system participates in the regulation of female fertility and ovarian function by influencing the GnRH neuronal activity. IMPLICATIONS: These results suggest that a lower mTORC1 activity directly the central nervous system leads to a deregulation in the oestrous cycle and an induction of ovarian cyst development.


Assuntos
Cistos Ovarianos , Aves Predatórias , Feminino , Animais , Camundongos , Humanos , Serina-Treonina Quinases TOR/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fatores de Transcrição/metabolismo , RNA Interferente Pequeno , Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Aves Predatórias/genética , Aves Predatórias/metabolismo , Mamíferos/genética
13.
Endocrinology ; 164(3)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36423209

RESUMO

In contrast to mammals, birds have a higher basal metabolic rate and undertake wide range of energy-demanding activities. As a consequence, food deprivation for birds, even for a short period, poses major energy challenge. The energy-regulating hypothalamic homeostatic mechanisms, although extensively studied in mammals, are far from clear in the case of birds. We focus on the interplay between neuropeptide Y (NPY) and thyrotropin-releasing hormone (TRH), 2 of the most important hypothalamic signaling agents, in modulating the energy balance in a bird model, the zebra finch, Taeniopygia guttata. TRH neurons were confined to a few nuclei in the preoptic area and hypothalamus, and fibers widely distributed. The majority of TRH neurons in the hypothalamic paraventricular nucleus (PVN) whose axons terminate in median eminence were contacted by NPY-containing axons. Compared to fed animals, fasting significantly reduced body weight, PVN pro-TRH messenger RNA (mRNA) and TRH immunoreactivity, but increased NPY mRNA and NPY immunoreactivity in the infundibular nucleus (IN, avian homologue of mammalian arcuate nucleus) and PVN. Refeeding for a short duration restored PVN pro-TRH and IN NPY mRNA, and PVN NPY innervation to fed levels. Compared to control tissues, treatment of the hypothalamic superfused slices with NPY or an NPY-Y1 receptor agonist significantly reduced TRH immunoreactivity, a response blocked by treatment with a Y1-receptor antagonist. We describe a detailed neuroanatomical map of TRH-equipped elements, identify new TRH-producing neuronal groups in the avian brain, and demonstrate rapid restoration of the fasting-induced suppression of PVN TRH following refeeding. We further show that NPY via Y1 receptors may regulate PVN TRH neurons to control energy balance in T. guttata.


Assuntos
Tentilhões , Hormônio Liberador de Tireotropina , Animais , Masculino , Hormônio Liberador de Tireotropina/genética , Neuropeptídeo Y/metabolismo , Hipotálamo/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , RNA Mensageiro/metabolismo , Mamíferos/genética
14.
Poult Sci ; 102(2): 102385, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36565630

RESUMO

The incident of lipid metabolism disorders has obviously increased under the undue pursuit of efficiency, which had seriously threatened to the health development of poultry industry. As an important cholesterol-derived intermediate, though dehydroepiandrosterone (DHEA) has the fat-reduction effect in animals and humans, but the underlying mechanism still poorly understood. Herein, the present study aimed to investigate the regulatory effects and its molecular mechanism of DHEA on disturbance of lipid metabolism induced by oleic acid (OA) in primary chicken hepatocytes. The hepatocytes were treated with 0, 0.1, 1, 10 µM DHEA for 4 h, and then supplemented with 0 or 0.5 mM OA stimulation for another 24 h. Our findings demonstrated that DHEA treatment effectively reduced TG content and alleviated lipid droplet deposition in OA-induced hepatocytes. DHEA inhibited the lipogenesis related factors (ACC, FAS, SREBP-1c, and ACLY) mRNA level and increased the lipolysis key factors (CPT-1 and PPARα) mRNA levels. In addition, DHEA obviously elevated the protein levels of CPT-1A, p-ACC, and ECHS1; whereas decreased the protein levels of FAS and SREBP-1 in hepatocytes stimulated by OA. Furthermore, DHEA promoted the phosphorylation of AMP-activated protein kinase (AMPK) and inhibited the phosphorylation of mammalian target of rapamycin (mTOR). Mechanistically, the hepatocytes were pre-treated with AMPK inhibitor compound C or AMPK activator AICAR before addition of DHEA treatment, and the results certified that DHEA activated cAMP/AMPK pathway and which subsequently led the inhibition of mTOR signal, which finally reduced the fat excessive accumulation in OA-stimulated hepatocytes. Collectively, our study unveiled that DHEA protects against the lipid metabolism disorders triggered by OA stimulation through activation of AMPK-mTOR signaling pathway, which prompts the value of DHEA as a potential nutritional supplement in regulating the lipid metabolism and its related disease in poultry.


Assuntos
Proteínas Quinases Ativadas por AMP , Transtornos do Metabolismo dos Lipídeos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Galinhas/genética , Desidroepiandrosterona/farmacologia , Desidroepiandrosterona/metabolismo , Hepatócitos , Metabolismo dos Lipídeos , Transtornos do Metabolismo dos Lipídeos/metabolismo , Transtornos do Metabolismo dos Lipídeos/veterinária , Mamíferos/genética , Ácido Oleico/farmacologia , Ácido Oleico/metabolismo , RNA Mensageiro/genética , Transdução de Sinais , Sirolimo , Serina-Treonina Quinases TOR/metabolismo
15.
J Ethnopharmacol ; 302(Pt A): 115896, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36334815

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Salvia miltiorrhiza (the roots of S. miltiorrhiza Bunge, Danshen in Chinese), a traditional Chinese medicine, has been clinically used to prevent and treat various diseases, such as cardiovascular and cerebrovascular diseases, diabetes, and hepatitis B, in China and some other Asian countries. Lithospermic acid (LA), a polyphenol derived from S. miltiorrhiza, has been reported to exhibit multiple pharmacological properties, such as anti-inflammatory, anti-HIV, and anti-carbon tetrachloride-induced liver injury activities. However, little is known about the anti-hepatitis B virus (HBV) activity of LA. AIM OF THE STUDY: The study was projected to investigate the anti-HBV activity of LA in vitro (HepG2.2.15 and pHBV1.3-transfected HepG2 cells) and in vivo (pAAV-HBV1.2 hydrodynamic injection [HBV-HDI] mice) and explore the potential mechanism as well. MATERIALS AND METHODS: Hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) contents were detected by ELISA kits. HBV DNA and hepatitis B core antigen (HBcAg) levels were evaluated by quantitative real-time polymerase chain reaction and immunohistochemistry assay, respectively. The proteins in autophagy process, lysosomal acidic function, and autophagy-related signaling pathways were examined by Western blot. Transmission electron microscopy was used to observe the number of autophagosomes and autolysosomes. Confocal microscopy was applied to analyze the autophagic flux and lysosomal acidification, using mCherry-enhanced green fluorescent protein (EGFP)-microtubule-associated protein light chain (LC)3 and lysosomal probes, respectively. RESULTS: LA exhibited anti-HBV activity by inhibiting HBV DNA replication in HepG2.2.15 and pHBV-transfected HepG2 cells in dose- and time-dependent manners and hampering HBsAg and HBeAg levels in HepG2.2.15 cells to a certain extent. LA reduced HBV DNA, HBsAg/HBeAg, and HBcAg levels in the serum/liver tissues of HBV-HDI C57BL/6 mice during the 3-week treatment and suppressed the withdrawal rebound of HBV DNA and HBsAg in the mice serum. LA increased LC3-II protein expression and the number of autolysosomes/autophagosomes and promoted the degradation of sequestosome 1(p62) protein in vitro and in vivo. LA enhanced the co-localization of LC3 protein with autolysosomes, further confirming the ability of LA to induce a complete autophagy. Knockdown of autophagy-related gene (Atg) 7 or 5 in vitro and administration of 3-methyladenine (an autophagic inhibitor) in vivo disabled the inhibitory efficacy of LA on HBV DNA replication, suggesting that the anti-HBV efficacy of LA depended on its ability of inducing autophagy. LA could enhance lysosomal acidification and improve the function of lysosomes by promoting the protein expression of lysosomal-associated membrane protein (LAMP)-1, LAMP-2, and mature cathepsin D, which may contribute to the autophagic induction of LA. LA inhibited the activation of AKT and mammalian target of rapamycin (mTOR) induced by HBV, which was reversed by IGF-1 (an agonist of the PI3K/AKT/mTOR signaling pathway), indicating that LA elicited autophagy through hampering the PI3K/AKT/mTOR signaling pathway. CONCLUSION: We revealed the anti-HBV activity and mechanism of LA in vitro and in vivo. This study facilitates a new understanding of the anti-HBV potent components of S. miltiorrhiza and sheds light on LA for further development as an active constituent or candidate used in the therapy against HBV infection.


Assuntos
Hepatite B , Herpesvirus Cercopitecino 1 , Salvia miltiorrhiza , Camundongos , Animais , Vírus da Hepatite B , Antígenos de Superfície da Hepatite B/genética , Antígenos do Núcleo do Vírus da Hepatite B/genética , Polifenóis/metabolismo , Herpesvirus Cercopitecino 1/genética , Herpesvirus Cercopitecino 1/metabolismo , Antígenos E da Hepatite B , DNA Viral/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Replicação Viral/fisiologia , Camundongos Endogâmicos C57BL , Autofagia , Serina-Treonina Quinases TOR/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
16.
Biol Trace Elem Res ; 201(4): 1792-1805, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35553364

RESUMO

Effects of selenoproteins on many renal diseases have been reported. However, their role in renal ischemia-reperfusion (I/R) injury is unclear. The present study was performed to investigate the impact of ebselen and renal I/R injury on the expression of selenoproteins. Sprague-Dawley rats were pretreated with or without ebselen (10 mg/kg) through a daily single oral administration from 3 days before renal I/R surgery. RT-qPCR (real-time quantitative PCR) was performed to determine the mRNA expression of 25 selenoprotein genes in the renal tissues. The expression levels of two selenoproteins, including GPX3 (glutathione peroxidase 3) and DIO1 (iodothyronine deiodinase 1), were evaluated by Western blot or/and IHF (immunohistofluorescence) assays. Furthermore, renal function, renal damage, oxidative stress, and apoptosis were assessed. The results showed that in renal I/R injury, the mRNA levels of 15 selenoprotein genes (GPX1, GPX3, GPX4, DIO1, DIO2, TXNRD2, TXNRD3, SEPHS2, MSRB1, SELENOF, SELENOK, SELENOO, SELENOP, SELENOS, and SELENOT) were decreased, whereas those of eight selenoprotein genes (GPX2, GPX6, DIO3, TXNRD1, SELENOH, SELENOM, SELENOV, and SELENOW) were increased. I/R also induced a reduction in the expression levels of GPX3 and DIO1 proteins. In addition, our results indicated that ebselen reversed the changes in those selenoprotein genes, excluding SELENOH, SELENOM, SELENOP, and SELENOT, in renal I/R injury and alleviated I/R-induced renal dysfunction, tissue damage, oxidative stress, and apoptosis. To our knowledge, this is the first study to investigate the changes of 25 mammalian selenoprotein genes in renal I/R injury kidneys. The present study also provided more evidence for the roles of ebselen against renal I/R injury.


Assuntos
Traumatismo por Reperfusão , Selênio , Ratos , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Selênio/farmacologia , Ratos Sprague-Dawley , Selenoproteínas/genética , Selenoproteínas/metabolismo , Selenoproteína P/metabolismo , Rim/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Tiorredoxina Redutase 2/metabolismo
17.
Food Chem ; 399: 133799, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35998490

RESUMO

Flesh quality is evaluated according to nutritional value and sensory quality. Cinnamaldehyde (CIN) improves mammalian meat quality, but research relating this to aquaculture is scarce. In this study, five doses of CIN (0, 36, 72, 108, 144 mg/kg diet) were fed to grass carp (Ctenopharyngodon idella) for 60 days. The results show that CIN supplementation increased nutritional value by increasing crude protein content. CIN also improved the sensory quality by increasing the pH and collagen content, decreasing shear force, lactate, and cooking loss. These changes may be related to changes in muscle fiber growth by increasing myofiber diameter. The increased myofiber diameter induced by CIN is associated with TOR mRNA and protein levels, and down-regulated FOXO3a mRNA levels, which might be associated with PTP1B/IGF1/PI3K/AKTs-TOR/FOXO3a signaling. Based on muscle crude protein content, optimal CIN supplementation dosage was 88.01 mg/kg.


Assuntos
Carpas , Doenças dos Peixes , Acroleína/análogos & derivados , Ração Animal/análise , Animais , Carpas/genética , Carpas/metabolismo , Dieta , Suplementos Nutricionais , Doenças dos Peixes/genética , Proteínas de Peixes/metabolismo , Imunidade Inata , Mamíferos/genética , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , RNA Mensageiro/genética , Transdução de Sinais
18.
BMC Biol ; 20(1): 261, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36424632

RESUMO

BACKGROUND: Folate is an essential B-group vitamin and a key methyl donor with important biological functions including DNA methylation regulation. Normal neurodevelopment and physiology are sensitive to the cellular folate levels. Either deficiency or excess of folate may lead to neurological disorders. Recently, folate has been linked to tRNA cytosine-5 methylation (m5C) and translation in mammalian mitochondria. However, the influence of folate intake on neuronal mRNA m5C modification and translation remains largely unknown. Here, we provide transcriptome-wide landscapes of m5C modification in poly(A)-enriched RNAs together with mRNA transcription and translation profiles for mouse neural stem cells (NSCs) cultured in three different concentrations of folate. RESULTS: NSCs cultured in three different concentrations of folate showed distinct mRNA methylation profiles. Despite uncovering only a few differentially expressed genes, hundreds of differentially translated genes were identified in NSCs with folate deficiency or supplementation. The differentially translated genes induced by low folate are associated with cytoplasmic translation and mitochondrial function, while the differentially translated genes induced by high folate are associated with increased neural stem cell proliferation. Interestingly, compared to total mRNAs, polysome mRNAs contained high levels of m5C. Furthermore, an integrative analysis indicated a transcript-specific relationship between RNA m5C methylation and mRNA translation efficiency. CONCLUSIONS: Altogether, our study reports a transcriptome-wide influence of folate on mRNA m5C methylation and translation in NSCs and reveals a potential link between mRNA m5C methylation and mRNA translation.


Assuntos
Ácido Fólico , Células-Tronco Neurais , Camundongos , Animais , RNA , Células-Tronco Neurais/metabolismo , Metilação de DNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mamíferos/genética
19.
J Virol ; 96(22): e0121122, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36342299

RESUMO

Viruses utilize host lipids to promote the viral life cycle, but much remains unknown as to how this is regulated. Zinc is a critical element for life, and few studies have linked zinc to lipid homeostasis. We demonstrated that Caenorhabditis elegans infection by Orsay virus is dependent upon lipids and that mutation of the master regulator of lipid biosynthesis, sbp-1, reduced Orsay virus RNA levels by ~236-fold. Virus infection could be rescued by dietary supplementation with lipids downstream of fat-6/fat-7. Mutation of a zinc transporter encoded by sur-7, which suppresses the lipid defect of sbp-1, also rescued Orsay virus infection. Furthermore, reducing zinc levels by chemical chelation in the sbp-1 mutant also increased lipids and rescued Orsay virus RNA levels. Finally, increasing zinc levels by dietary supplementation led to an ~1,620-fold reduction in viral RNA. These findings provide insights into the critical interactions between zinc and host lipids necessary for virus infection. IMPORTANCE Orsay virus is the only known natural virus pathogen of Caenorhabditis elegans, which shares many evolutionarily conserved pathways with humans. We leveraged the powerful genetic tractability of C. elegans to characterize a novel interaction between zinc, lipids, and virus infection. Inhibition of the Orsay virus replication in the sbp-1 mutant animals, explained by the lipid depletion, can be rescued by a genetic and pharmacological approach that reduces the zinc accumulation and rescues the lipid levels in this mutant animal. Interestingly, the human ortholog of sbp-1, srebp-1, has been reported to play a role for virus infection, and zinc has been shown to inhibit the virus replication of multiple viruses. However, the mechanism through which zinc is acting is not well understood. These results suggest that the lipid regulation mediated by zinc may play a relevant role during mammalian virus infection.


Assuntos
Proteínas de Caenorhabditis elegans , Nodaviridae , Viroses , Vírus , Animais , Humanos , Caenorhabditis elegans , Zinco/metabolismo , Nodaviridae/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Vírus/genética , RNA Viral/genética , RNA Viral/metabolismo , Lipídeos , Mamíferos/genética
20.
Genes (Basel) ; 13(10)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36292565

RESUMO

Corticotropin (ACTH) is a pituitary hormone playing important roles in stress response within the hypothalamus-pituitary-adrenal (HPA) axis. The biosynthesis and secretion of ACTH are controlled by multiple factors, including corticotropin-releasing hormone (CRH). As a key hypothalamus-derived regulator, CRH binds to corticotropin-releasing hormone receptor 1 (CRHR1) in the anterior pituitary gland to regulate ACTH synthesis and release. Thus, CRH-binding protein (CRHBP), which binds CRH with high affinity to inhibit CRH-induced ACTH secretion from pituitary cells, draws wide attention. In contrast to the extensive investigation of CRHBP in mammals and other lower vertebrates, the gene structure, tissue expression and physiological functions of CRHBP in birds remain largely unknown. In the present study, using chicken (c-) as our animal model, we examined the gene structure, tissue expression and functionality of CRHBP. Our results showed that: (1) cCRHBP cDNA encodes a 345 amino acid precursor, which shares high sequence identity with that of mammals, reptiles, frogs and fish; (2) cCRHBP is abundantly expressed in the brain (cerebrum and hypothalamus), pituitary and ovary; (3) cCRHBP inhibits the signaling of cCRHRs induced by cCRH, thus reducing the cCRH-induced ACTH secretion from cultured chick pituitary cells; (4) stress mediators (e.g., glucocorticoids) and stress significantly upregulate CRHBP mRNA expression in chickens, supporting its role as a negative feedback regulator in the HPA axis. The present study enriches our understanding of the conserved roles of CRHBP across vertebrates. In addition, chicken is an important poultry animal with multiple economic traits which are tightly controlled by the HPA axis. The characterization of the chicken CRHBP gene helps to reveal the molecular basis of the chicken HPA axis and is thus beneficial to the poultry industry.


Assuntos
Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Feminino , Animais , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Galinhas/genética , Galinhas/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Distribuição Tecidual , Retroalimentação , DNA Complementar , Hormônio Adrenocorticotrópico/genética , Hipotálamo/metabolismo , RNA Mensageiro/metabolismo , Clonagem Molecular , Aminoácidos/genética , Mamíferos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA