Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Sci Rep ; 14(1): 8133, 2024 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584186

RESUMO

In weeds, disturbance has been found to affect life history traits and mediate trophic interactions. In urban landscapes, mowing is an important disturbance, and we previously showed that continuous mowing leads to enhanced fitness and defense traits in Solanum elaeagnifolium, Silverleaf Nightshade (SLN). However, most studies have been focused on foliar defenses, ignoring floral defenses. In this study we examined whether continuous mowing affected floral defenses in SLN using mowed and unmowed populations in South Texas, their native range. We found flowers of mowed SLN plants larger but lighter than unmowed plants. Additionally, flowers on plants that were mowed frequently were both heavier and larger. Mowed plants had higher spine density and consequently unmowed flowers had higher herbivore damage. Additionally, early instar Manduca sexta fed on mowed flower-based artificial diets showed no difference in mass than the control and unmowed; however, later instars caterpillars on unmowed diets gained significantly more mass than the mowed treatment and control. Mowed plants had higher spine density which may shed light on why unmowed flowers experienced higher herbivore damage. We found caterpillars fed on high mowing frequency diets were heavier than those on low mowing frequency diets. Collectively, we show that mowing compromises floral traits and enhances plant defenses against herbivores and should be accounted for in management.


Assuntos
Manduca , Solanum , Animais , Plantas Daninhas , Flores , Herbivoria
2.
Am J Bot ; 109(11): 1875-1892, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36063430

RESUMO

PREMISE: In the absence of hawkmoth pollinators, chasmogamous (CH) flowers of Ruellia humilis self-pollinate by two secondary mechanisms. Other floral visitors might exert selection on CH floral traits to restore outcrossing, but at the same time preferential predation of CH seeds generates selection to increase the allocation of resources to cleistogamous (CL) flowers. METHODS: To assess the potential for an evolutionary response to these competing selection pressures, we estimated additive genetic variances ( σ A 2 ${\sigma }_{{\rm{A}}}^{2}$ ) and covariances for 14 reproductive traits and three fitness components in a Missouri population lacking hawkmoth pollinators. RESULTS: We found significant σ A 2 ${\sigma }_{{\rm{A}}}^{2}$ for all 11 floral traits and two measures of resource allocation to CL flowers, indicating the potential for a short-term response to selection on most reproductive traits. Selection generated by seed predators is predicted to increase the percentage of CL flowers by 0.24% per generation, and mean stigma-anther separation is predicted to decrease as a correlated response, increasing the fraction of plants that engage in prior selfing. However, the initial response to this selection is opposed by strong directional dominance. CONCLUSIONS: The predicted evolutionary decrease in the number of CH flowers available for potential outcrossing, combined with the apparent preclusion of potential diurnal pollinators by the pollen-harvesting activities of sweat bees, suggest that 100% cleistogamy is the likely outcome of evolution in the absence of hawkmoths. However, rare mutations with large effects, such as delaying budbreak until after sunrise, could provide pathways for the restoration of outcrossing that are not reachable by gradual quantitative-genetic evolution.


Assuntos
Acanthaceae , Manduca , Abelhas , Animais , Polinização/fisiologia , Flores/genética , Pólen/genética , Acanthaceae/fisiologia , Reprodução
3.
J Chem Ecol ; 46(10): 978-986, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32876829

RESUMO

Herbivory can induce chemical changes throughout plant tissues including flowers, which could affect pollinator-pathogen interactions. Pollen is highly defended compared to nectar, but no study has examined whether herbivory affects pollen chemistry. We assessed the effects of leaf herbivory on nectar and pollen alkaloids in Nicotiana tabacum, and how herbivory-induced changes in nectar and pollen affect pollinator-pathogen interactions. We damaged leaves of Nicotiana tabacum using the specialist herbivore Manduca sexta and compared nicotine and anabasine concentrations in nectar and pollen. We then pooled nectar and pollen by collection periods (within and after one month of flowering), fed them in separate experiments to bumble bees (Bombus impatiens) infected with the gut pathogen Crithidia bombi, and assessed infections after seven days. We did not detect alkaloids in nectar, and leaf damage did not alter the effect of nectar on Crithidia counts. In pollen, herbivory induced higher concentrations of anabasine but not nicotine, and alkaloid concentrations rose and then fell as a function of days since flowering. Bees fed pollen from damaged plants had Crithidia counts 15 times higher than bees fed pollen from undamaged plants, but only when pollen was collected after one month of flowering, indicating that both damage and time since flowering affected interaction outcomes. Within undamaged treatments, bees fed late-collected pollen had Crithidia counts 10 times lower than bees fed early-collected pollen, also indicating the importance of time since flowering. Our results emphasize the role of herbivores in shaping pollen chemistry, with consequences for interactions between pollinators and their pathogens.


Assuntos
Abelhas/parasitologia , Crithidia/fisiologia , Flores/química , Herbivoria , Interações Hospedeiro-Parasita , Nicotiana/química , Anabasina/análise , Animais , Comportamento Alimentar/fisiologia , Manduca/fisiologia , Nicotina/análise , Folhas de Planta/química , Néctar de Plantas/química , Pólen/química , Polinização , Fatores de Tempo
4.
Am J Bot ; 107(2): 286-297, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31944272

RESUMO

PREMISE: Plant maternal effects on offspring phenotypes are well documented. However, little is known about how herbivory on maternal plants affects offspring fitness. Furthermore, while inbreeding is known to reduce plant reproductive output, previous studies have not explored whether and how such effects may extend across generations. Here, we addressed the transgenerational consequences of herbivory and maternal plant inbreeding on the reproduction of Solanum carolinense offspring. METHODS: Manduca sexta caterpillars were used to inflict weekly damage on inbred and outbred S. carolinense maternal plants. Cross-pollinations were performed by hand to produce seed from herbivore-damaged outbred plants, herbivore-damaged inbred plants, undamaged outbred plants, and undamaged inbred plants. The resulting seeds were grown in the greenhouse to assess emergence rate and flower production in the absence of herbivores. We also grew offspring in the field to examine reproductive output under natural conditions. RESULTS: We found transgenerational effects of herbivory and maternal plant inbreeding on seedling emergence and reproductive output. Offspring of herbivore-damaged plants had greater emergence, flowered earlier, and produced more flowers and seeds than offspring of undamaged plants. Offspring of outbred maternal plants also had greater seedling emergence and reproductive output than offspring of inbred maternal plants, even though all offspring were outbred. Moreover, the effects of maternal plant inbreeding were more severe when plant offspring were grown in field conditions. CONCLUSIONS: This study demonstrates that both herbivory and inbreeding have fitness consequences that extend across generations even in outbred progeny.


Assuntos
Manduca , Solanum , Animais , Herbivoria , Endogamia , Reprodução
5.
Philos Trans R Soc Lond B Biol Sci ; 374(1785): 20190278, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31544611

RESUMO

Immune-nociceptor connections are found in animals across phyla. Local inflammation and/or damage results in increased nociceptive sensitivity of the affected area. However, in mammals, immune responses far from peripheral nociceptors, such as immune responses in the gut, produce a general increase in peripheral nociceptive sensitivity. This phenomenon has not, to our knowledge, been found in other animal groups. We found that consuming heat-killed pathogens reduced the tactile force needed to induce a defensive strike in the caterpillar Manduca sexta. This increase in the nociceptive sensitivity of the body wall is probably part of the reconfiguration of behaviour and physiology that occurs during an immune response (e.g. sickness behaviour). This increase may help enhance anti-predator behaviour as molecular resources are shifted towards the immune system. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.


Assuntos
Manduca/imunologia , Nociceptividade , Animais , Trato Gastrointestinal/imunologia , Larva/crescimento & desenvolvimento , Larva/imunologia , Manduca/crescimento & desenvolvimento
6.
J Vis Exp ; (147)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31157779

RESUMO

The multitrophic nature of gene expression studies of insect herbivory demands large numbers of biological replicates, creating the need for simpler, more streamlined herbivory protocols. Perturbations of chewing insects are usually studied in whole plant systems. While this whole organism strategy is popular, it is not necessary if similar observations can be replicated in a single detached leaf. The assumption is that basic elements required for signal transduction are present within the leaf itself. In the case of early events in signal transduction, cells need only to receive the signal from the perturbation and transmit that signal to neighboring cells which are assayed for gene expression. The proposed method simply changes the timing of the detachment. In whole plant experiments, larvae are confined to a single leaf which is eventually detached from the plant and assayed for gene expression. If the order of excision is reversed, from last in whole plant studies, to first in the detached study, the feeding experiment is simplified. Solanum tuberosum var. Kennebec is propagated by nodal transfer in a simple tissue culture medium and transferred to soil for further growth if desired. Leaves are excised from the parent plant and relocated to Petri dishes where the feeding assay is conducted with the larval stages of M. sexta. Damaged leaf tissue is assayed for the expression of relatively early events in signal transduction. Gene expression analysis identified infestation-specific Cys2-His2 (C2H2) transcription factors, confirming the success of using detached leaves in early response studies. The method is easier to perform than whole plant infestations and uses less space.


Assuntos
Bioensaio/métodos , Regulação da Expressão Gênica de Plantas , Herbivoria/fisiologia , Manduca/fisiologia , Folhas de Planta/genética , Folhas de Planta/parasitologia , Solanum tuberosum/genética , Solanum tuberosum/parasitologia , Animais , Larva/fisiologia , Transdução de Sinais , Gravação em Vídeo
7.
Ecology ; 100(1): e02553, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30411786

RESUMO

Flower signaling and orientation are key characteristics that determine a flower's pollinator guild. However, many flowers actively move during their daily cycle, changing both their detectability and accessibility to pollinators. The flowers of the wild tobacco Nicotiana attenuata orientate their corolla upward at sunset and downward after sunrise. Here, we investigated the effect of different flower orientations on a major pollinator of N. attenuata, the hawkmoth Manduca sexta. We found that although flower orientation influenced the flight altitude of the moth in respect to the flower, it did not alter the moth's final flower choice. These behavioral observations were consistent with the finding that orientation did not systematically change the spatial distribution of floral volatiles, which are major attractants for the moths. Moreover, hawkmoths invested the same amount of time into probing flowers at different orientations, even though they were only able to feed and gather pollen from horizontally and upward-oriented flowers, but not from downward-facing flowers. The orientation of the flower was hence crucial for a successful interaction between N. attenuata and its hawkmoth pollinator. Additionally, we also investigated potential adverse effects of exposing flowers at different orientations to natural daylight levels, finding that anther temperature of upward-oriented flowers was more than 7°C higher than for downward-oriented flowers. This increase in temperature likely caused the significantly reduced germination success that was observed for pollen grains from upward-oriented flowers in comparison to those of downward and horizontally oriented flowers. These results highlight the importance of flower reorientation to balance pollen protection and a successful interaction of the plant with its insect pollinators by maintaining the association between flower volatiles and flower accessibility to the pollinator.


Assuntos
Manduca , Mariposas , Animais , Flores , Pólen , Polinização
8.
Plant Signal Behav ; 13(7): e1489668, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29947577

RESUMO

Tobacco hornworm (Manduca sexta, THW) is a voracious pest of tomato and potato. StZFP2 is a Q-type C2H2 zinc finger transcription factor (TF) that is induced upon wounding and infestation. Previous work has shown that Q-type C2H2 TFs are involved in stress responses and when over expressed, can enhance protection against drought, salinity or pathogen infection. Twelve transgenic lines (S1-S12) were tested that over-express StZFP2. Feeding S6 or S8 to THW significantly lowered larval weight (21-37%) as well as increased expression of StPIN2 in comparison to untransformed Kennebec. The increase in StPIN2, a classic marker for insect defense in potato, is consistent with the decreases in larval weight gain.


Assuntos
Manduca/patogenicidade , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/parasitologia , Solanum tuberosum/metabolismo , Solanum tuberosum/parasitologia , Animais , Larva/patogenicidade , Solanum lycopersicum/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/parasitologia , Solanum tuberosum/genética
9.
BMC Res Notes ; 11(1): 398, 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921330

RESUMO

OBJECTIVE: Q-type C2H2 transcription factors (TF) play crucial roles in the plant response to stress, often leading to regulation of downstream genes required for tolerance to these challenges. An infestation-responsive Q-type C2H2 TF (StZFP2) is induced by wounding and infestation in potato. While mining the Solanum tuberosum Group Phureja genome for additional members of this family of proteins, five StZFP2-like genes were found on a portion of chromosome 11. The objective of this work was to differentiate these genes in tissue specificity and expression upon infestation. RESULTS: Examination of different tissues showed that young roots had the highest amounts of transcripts for five of the genes. Expression of their transcripts upon excision or infestation by Manduca sexta, showed that all six genes were induced. Overall, each gene showed variations in its response to infestation and specificity for tissue expression. The six genes encode very similar proteins but most likely play unique roles in the plant response to infestation. In contrast, only two homologs have been identified in Arabidopsis and tomato. Overexpression of similar genes has led to enhanced tolerance to, for example, salinity, drought and pathogen stress. Discovery of these new StZFP2 homologs could provide additional resources for potato breeders.


Assuntos
Dedos de Zinco CYS2-HIS2/genética , Expressão Gênica/genética , Genoma de Planta/genética , Proteínas de Plantas/genética , Solanum tuberosum/genética , Solanum tuberosum/parasitologia , Animais , Manduca
10.
J Exp Biol ; 221(Pt 3)2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29217626

RESUMO

Mounting an immune response consumes resources, which should lead to increased feeding. However, activating the immune system reduces feeding (i.e. illness-induced anorexia) in both vertebrates and invertebrates, suggesting that it may be beneficial. We suggest that illness-induced anorexia may be an adaptive response to conflicts between immune defense and food detoxification. We found that activating an immune response in the caterpillar Manduca sexta increased its susceptibility to the toxin permethrin. Conversely, a sublethal dose of permethrin reduced resistance to the bacterium Serratia marcescens, demonstrating a negative interaction between detoxification and immune defense. Immune system activation and toxin challenge each depleted the amount of glutathione in the hemolymph. Increasing glutathione concentration in the hemolymph increased survival for both toxin- and immune+toxin-challenged groups. The results of this rescue experiment suggest that decreased glutathione availability, such as occurs during an immune response, impairs detoxification. We also found that the expression of some detoxification genes were not upregulated during a combined immune-toxin challenge, although they were when animals received a toxin challenge alone. These results suggest that immune defense reduces food detoxification capacity. Illness-induced anorexia may protect animals by decreasing exposure to food toxins when detoxification is impaired.


Assuntos
Antibiose , Imunidade Inata , Inseticidas/toxicidade , Manduca/imunologia , Manduca/microbiologia , Permetrina/toxicidade , Serratia marcescens/fisiologia , Animais , Ingestão de Alimentos , Larva/imunologia , Larva/microbiologia , Manduca/crescimento & desenvolvimento , Desintoxicação Metabólica Fase I
11.
Biol Lett ; 13(5)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28490447

RESUMO

The spines of flowering plants are thought to function primarily in defence against mammalian herbivores; however, we previously reported that feeding by Manduca sexta caterpillars on the leaves of horsenettle plants (Solanum carolinense) induces increased development of internode spines on new growth. To determine whether and how spines impact caterpillar feeding, we conducted assays with three Solanaceous plant species that vary in spine numbers (S. carolinense, S. atropurpureum and S. aethiopicum) and also manipulated spine numbers within each species. We found that M. sexta caterpillars located experimentally isolated target leaves much more quickly on plants with experimentally removed spines compared with plants with intact spines. Moreover, it took caterpillars longer to defoliate species with relatively high spine numbers (S. carolinense and particularly Satropurpureum) compared with S. aethiopicum, which has fewer spines. These findings suggest that spines may play a significant role in defence against insect herbivores by restricting herbivore movement and increasing the time taken to access feeding sites, with possible consequences including longer developmental periods and increased vulnerability or apparency to predators.


Assuntos
Herbivoria , Animais , Insetos , Larva , Manduca , Folhas de Planta , Solanum
12.
Proc Biol Sci ; 284(1849)2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28228510

RESUMO

Plant trichomes constitute a first line of defence against insect herbivores. The pre- and post-ingestive defensive functions of glandular trichomes are well documented and include direct toxicity, adhesion, antinutrition and defence gene induction. By contrast, the defensive functions of non-glandular trichomes are less well characterized, although these structures are thought to serve as physical barriers that impede herbivore feeding and movement. We experimentally varied the density of stellate non-glandular trichomes in several ways to explore their pre- and post-ingestive effects on herbivores. Larvae of Manduca sexta (Sphingidae) initiated feeding faster and gained more weight on Solanum carolinense (Solanaceae) leaves having lower trichome densities (or experimentally removed trichomes) than on leaves having higher trichome densities. Adding trichomes to artificial diet also deterred feeding and adversely affected caterpillar growth relative to controls. Scanning electron and light microscopy revealed that the ingestion of stellate trichomes by M. sexta caterpillars caused extensive damage to the peritrophic membrane, a gut lining that is essential to digestion and pathogen isolation. These findings suggest that, in addition to acting as a physical barrier to deter feeding, trichomes can inhibit caterpillar growth and development via post-ingestive effects.


Assuntos
Herbivoria , Manduca , Folhas de Planta/anatomia & histologia , Solanum , Tricomas/anatomia & histologia , Animais , Sistema Digestório/patologia
13.
Insect Biochem Mol Biol ; 81: 1-9, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27986638

RESUMO

Transferrins are secreted proteins that bind iron. The well-studied transferrins are mammalian serum transferrin, which is involved in iron transport, and mammalian lactoferrin, which functions as an immune protein. Lactoferrin and lactoferrin-derived peptides have bactericidal activity, and the iron-free form of lactoferrin has bacteriostatic activity due to its ability to sequester iron. Insect transferrin is similar in sequence to both serum transferrin and lactoferrin, and its functions are not well-characterized; however, many studies of insect transferrin indicate that it has some type of immune function. The goal of this study was to determine the specific immune functions of transferrin from Manduca sexta (tobacco hornworm). We verified that transferrin expression is upregulated in response to infection in M. sexta larvae and determined that the concentration of transferrin in hemolymph increases from 2 µM to 10 µM following an immune challenge. It is also present in molting fluid and prepupal midgut fluid, two extracellular fluids with immune capabilities. No immune-induced proteolytic cleavage of transferrin in hemolymph was observed; therefore, M. sexta transferrin does not appear to be a source of antimicrobial peptides. Unlike iron-saturated lactoferrin, iron-saturated transferrin had no detectable antibacterial activity. In contrast, 1 µM iron-free transferrin inhibited bacterial growth, and this inhibition was blocked by supplementing the culture medium with 1 µM iron. Our results suggest that M. sexta transferrin does not have bactericidal activity, but that it does have a bacteriostatic function that depends on its iron sequestering ability. This study supports the hypothesis that insect transferrin participates in an iron withholding strategy to protect insects from infectious bacteria.


Assuntos
Manduca/imunologia , Transferrina/fisiologia , Animais , Líquido Extracelular/metabolismo , Ferro/metabolismo , Testes de Sensibilidade Microbiana , Transferrina/química , Transferrina/isolamento & purificação
14.
Am J Bot ; 103(11): 1950-1963, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27803000

RESUMO

PREMISE OF THE STUDY: Land-use change is cited as a primary driver of global biodiversity loss, with myriad consequences for species, populations, and ecosystems. However, few studies have examined its impact on species interactions, particularly pollination. Furthermore, when the effects of land-use change on pollination have been studied, the focus has largely been on species pollinated by diurnal pollinators, namely, bees and butterflies. Here, we focus on Oenothera harringtonii, a night-flowering, disturbance-adapted species that has experienced a range-wide gradient of land-use change. We tested the hypothesis that the negative impacts of land-use change are mitigated by long-distance pollination. METHODS: Our study included both temporal (4 yr) and spatial (19 populations range-wide, and 1, 2, and 5 km from the population center) data, providing a comprehensive understanding of the role of land-use change on pollination biology and reproduction. KEY RESULTS: We first confirmed that O. harringtonii is self-incompatible and reliant on pollinators for reproduction. We then showed that hawkmoths (primarily Hyles lineata) are highly reliable and effective pollinators in both space and time. Unlike other studies, we did not detect an effect of population size, increased isolation, or a reduction in suitable habitat in areas with evidence of land-use change on pollination (visitation, pollen removal and deposition). Furthermore, the proportion of suitable habitat and other fragmentation metrics examined were not associated with population size or density in this plant species. CONCLUSIONS: We conclude that nocturnal pollination of Oenothera harringtonii via hawkmoths is robust to the negative impacts of land-use change.


Assuntos
Manduca/fisiologia , Polinização , Animais , Biodiversidade , Demografia , Ecossistema , Flores/fisiologia , Oenothera/fisiologia , Pólen/fisiologia , Densidade Demográfica , Reprodução
15.
Plant Signal Behav ; 10(5): e998548, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26039489

RESUMO

Inbreeding commonly occurs in flowering plants and often results in a decline in the plant's defense response. Insects prefer to feed and oviposit on inbred plants more than outbred plants--suggesting that selecting inbred host plants offers them fitness benefits. Until recently, no studies have examined the effects of host plant inbreeding on insect fitness traits such as growth and dispersal ability. In a recent article, we documented that tobacco hornworm (Manduca sexta L.) larvae that fed on inbred horsenettle (Solanum carolinense L.) plants exhibited accelerated larval growth and increased adult flight capacity compared to larvae that fed on outbred plants. Here we report that M. sexta mortality decreased by 38.2% when larvae were reared on inbred horsenettle plants compared to larvae reared on outbreds. Additionally, inbred plants showed a notable reduction in the average relative expression levels of lipoxygenease-D (LoxD) and 12-oxophytodienoate reductase-3 (OPR3), two genes in the jasmonic acid signaling pathway that are upregulated in response to herbivore damage. Our study presents evidence that furthers our understanding of the biochemical mechanism responsible for differences in insect performance on inbred vs. outbred host plants.


Assuntos
Herbivoria , Endogamia , Manduca/fisiologia , Solanum/genética , Animais , Expressão Gênica , Larva/fisiologia , Lipoxigenase/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo
16.
Ecology ; 95(6): 1633-41, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25039227

RESUMO

Plant defense traits can be shaped by evolutionary and physiological constraints, as well as local ecological selection. We assessed the relative importance of these factors in shaping defense trait variation across the wild tomato clade (a group of 13 closely related species) using an herbivore bioassay (Manduca sexta). With phylogenetic comparative methods, we evaluated patterns of constitutive and induced defense variation, and the extent of coupling between alternative defense strategies. We detected substantial variation among species and found no evidence for phylogenetic conservatism among defensive traits, unlike for two other ecologically relevant (reproductive) traits. In addition, constitutive and induced defense syndromes were unassociated. These data indicate that, in this group, there is no evidence for either phylogenetic conservatism of shared consumer guilds that shape defense traits, or for constraints on defense trait evolution, including mechanistic trade-offs between defense strategies. Our data suggest that defense trait variation in this clade instead results from rapid responses to local ecological conditions.


Assuntos
Herbivoria , Manduca/fisiologia , Filogenia , Solanum/genética , Solanum/fisiologia , Animais , Predisposição Genética para Doença , Larva/fisiologia , Especificidade da Espécie
17.
Plant Physiol Biochem ; 80: 226-33, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24811678

RESUMO

While C2H2 zinc finger transcription factors (TF) are often regulated by abiotic stress, their role during insect infestation has been overlooked. This study demonstrates that the transcripts of the zinc finger transcription factors StZFP1 and StZFP2 are induced in potato (Solanum tuberosum L.) upon infestation by either the generalist tobacco hornworm (THW, Manduca sexta L.) or the specialist Colorado potato beetle (CPB, Leptinotarsa decemlineata Say). StZFP1 has been previously characterized as conferring salt tolerance to transgenic tobacco and its transcript is induced by Phytophthora infestans and several abiotic stresses. StZFP2 has not been characterized previously, but contains the hallmarks of a C2H2 zinc finger TF, with two conserved zinc finger domains and DLN motif, which encodes a transcriptional repressor domain. Expression studies demonstrate that StZFP2 transcript is also induced by tobacco hornworm and Colorado potato beetle. These observations expand the role of the C2H2 transcription factor in potato to include the response to chewing insect pests.


Assuntos
Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Dedos de Zinco/fisiologia , Animais , Besouros/patogenicidade , Regulação da Expressão Gênica de Plantas , Herbivoria , Manduca/patogenicidade , Phytophthora infestans/patogenicidade , Solanum tuberosum/microbiologia , Solanum tuberosum/parasitologia , Dedos de Zinco/genética
18.
Am J Bot ; 101(2): 376-80, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24509799

RESUMO

PREMISE OF THIS STUDY: The mediation of plant-insect interactions by plant odors has been studied extensively, but most previous work has focused on documenting the role of constitutive and herbivore- or pathogen-induced plant volatiles as foraging cues for insect herbivores and their natural enemies. Relatively little work has explored genotypic variation in plant-odor profiles within species, and few studies have addressed the perception and use of olfactory cues by lepidopteran larvae or other herbivores during feeding. METHODS: We examined the effects of plant breeding (inbred vs. outbred individuals) and plant exposure to prior herbivory on the preferences of caterpillars (Manduca sexta) for odors of Solanum carolinense in leaf-disc and whole-plant choice assays. KEY RESULTS: Second- and third-instar larvae of M. sexta clearly and consistently preferred undamaged over herbivore-damaged plants of both breeding types and also consistently preferred inbred over outbred plants that had the same damage status. Similar preferences were observed even when plants were covered with bridal-veil cloth to mask visual cues, demonstrating that olfactory cues influence larval preferences. CONCLUSIONS: The observed preferences are consistent with our previous findings regarding the constitutive and induced volatile profiles of inbred and outbred horsenettle plants and their effects on plant-herbivore interactions. They furthermore correspond to differences in host-plant quality predicted by previous work and, thus, suggest that naive larvae of M. sexta can accurately assess aspects of host-plant quality via olfactory cues perceived at a distance.


Assuntos
Herbivoria , Endogamia , Larva , Manduca , Odorantes , Folhas de Planta , Solanum/fisiologia , Animais , Doenças das Plantas , Solanum/genética , Solanum/metabolismo , Compostos Orgânicos Voláteis/metabolismo
19.
Am J Bot ; 100(6): 1014-21, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23545253

RESUMO

PREMISE OF THE STUDY: A growing number of studies document effects of inbreeding on plant interactions with insect herbivores, including deleterious effects on direct and indirect plant defenses. However, our understanding of the specific mechanisms mediating such effects remains limited. Here we examine how inbreeding affects constitutive and induced expression of structural defenses (spines and trichomes) in common horsenettle, Solanum carolinense. • METHODS: Inbred and outbred progeny from nine maternal families of horsenettle were assigned to three treatments: control, Manduca sexta caterpillar damage, or mechanical damage. Numbers of internode spines and the density of abaxial and adaxial trichomes were assessed before and after (21 d) damage treatments. Data on internode length, flowering time, and total flower production was also collected to explore the costs of defense induction. • KEY RESULTS: Inbreeding adversely affected constitutive and induced physical/structural defenses: undamaged outbred plants produced more abaxial and adaxial leaf trichomes and internode spines than did inbred plants. Foliar damage by M. sexta larvae also induced more trichomes (on new leaves) and internode spines on outbred plants. Both inbred and outbred plants exposed to mechanical or caterpillar damage had shorter internodes than did control plants, but inbred damaged plants had longer internodes than did outbred damaged plants. Control outbred plants produced significantly more flowers than did control inbred plants or damaged plants of either breeding type. • CONCLUSIONS: Constitutive and induced structural defenses in horsenettle were negatively affected by inbreeding. Reduced flower production and internode length on damaged plants compared to controls suggests that defense induction entails significant costs.


Assuntos
Herbivoria/fisiologia , Endogamia , Manduca/fisiologia , Solanum/genética , Solanum/fisiologia , Animais , Larva/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/fisiologia
20.
Proc Biol Sci ; 280(1757): 20130020, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23446531

RESUMO

Plant volatiles serve as key foraging and oviposition cues for insect herbivores as well as their natural enemies, but little is known about how genetic variation within plant populations influences volatile-mediated interactions among plants and insects. Here, we explore how inbred and outbred plants from three maternal families of the native weed horsenettle (Solanum carolinense) vary in the emission of volatile organic compounds during the dark phase of the photoperiod, and the effects of this variation on the oviposition preferences of Manduca sexta moths, whose larvae are specialist herbivores of Solanaceae. Compared with inbred plants, outbred plants consistently released more total volatiles at night and more individual compounds-including some previously reported to repel moths and attract predators. Female moths overwhelmingly chose to lay eggs on inbred (versus outbred) plants, and this preference persisted when olfactory cues were presented in the absence of visual and contact cues. These results are consistent with our previous findings that inbred plants recruit more herbivores and suffer greater herbivory under field conditions. Furthermore, they suggest that constitutive volatiles released during the dark portion of the photoperiod can convey accurate information about plant defence status (and/or other aspects of host plant quality) to foraging herbivores.


Assuntos
Endogamia , Manduca/efeitos dos fármacos , Óleos Voláteis/metabolismo , Solanum/genética , Animais , Sinais (Psicologia) , Escuridão , Feminino , Manduca/fisiologia , Análise Multivariada , Óleos Voláteis/farmacologia , Oviposição/efeitos dos fármacos , Solanum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA