Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de estudo
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 141: 398-403, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30955749

RESUMO

The beaches of Goa state in India are frequently polluted with tarballs, specifically during pre-monsoon and monsoon seasons. Tarballs contain hydrocarbons, including polycyclic aromatic hydrocarbons, which pose significant environmental risks. Microbes associated with tarballs reportedly possess capabilities to degrade toxic hydrocarbons present in tarballs. In this study, bacterial diversity associated with tarballs from Vagator and Morjim beaches of north Goa was analysed based on V3-V4 regions of 16S rRNA gene sequenced using Illumina Miseq Platform. The Proteobacterial members were dominant in both Vagator (≥85.5%) and Morjim (≥94.0%) samples. Many of the identified taxa have been previously reported as hydrocarbon degraders (e.g. Halomonas, Marinobacter) or possible human pathogens (e.g. Acinetobacter, Klebsiella, Rhodococcus, Staphylococcus, Vibrio). This is the first study reported on a metagenomic analysis of bacteria associated with tarballs from Goa.


Assuntos
Monitoramento Ambiental/métodos , Metagenoma/genética , Microbiota/genética , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Humanos , Índia , Marinobacter/genética , Marinobacter/isolamento & purificação , Metagenômica , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética
2.
Mar Pollut Bull ; 130: 229-239, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29866552

RESUMO

Storm-driven transport of MC252 oil, sand and shell aggregates was studied on a low-relief coastal headland beach in Louisiana, USA including measurement of alkylated PAHs and Illumina sequencing of intra-aggregate microbial populations. Weathering ratios, constructed from alkylated PAH data, were used to assess loss of 3-ring phenanthrenes and dibenzothiophenes relative to 4-ring chrysenes. Specific aggregate types showed relatively little weathering of 3-ring PAHs referenced to oil sampled near the Macondo wellhead with the exception of certain SRBs sampled from the supratidal environment and samples from deposition areas north of beach. Aggregates mobilized by these storm-driven washover events contains diverse microbial populations dominated by the class Gammaproteobacteria including PAH-degrading genera such as Halomonas, Marinobacter and Idiomarina. Geochemical assessment of porewater in deposition areas, weathering observations, and microbial data suggest that storm remobilization can contribute to susceptibility of PAHs to biodegradation by moving oil to beach microenvironments with more favorable characteristics. (149).


Assuntos
Microbiota , Poluição por Petróleo/análise , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Movimentos da Água , Biodegradação Ambiental , Gammaproteobacteria/isolamento & purificação , Halomonas/isolamento & purificação , Louisiana , Marinobacter/isolamento & purificação , Fenantrenos/análise , Dióxido de Silício , Tempo (Meteorologia)
3.
Ecotoxicol Environ Saf ; 154: 100-107, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29454985

RESUMO

This study aims to investigate the ability of a biosurfactant produced by Marinobacter hydrocarbonoclasticus strain SdK644 isolated from hydrocarbon contaminated sediment to enhance the solubilization rate of crude oil contaminated seawater. Phylogenetic analysis shows that strain SdK644 was very closely related to M. hydrocarbonoclasticus with 16S rRNA gene sequence similarity of 97.44%. Using waste frying oil as inducer carbon source, the producing biosurfactant by strain SdK644 was applied to improve crude oil solubilization in seawater. The preliminary characterization of the produced biosurfactant by FT-IR analysis indicates its possible classification in a glycolipids group. Results from crude oil solubilization assay showed that SdK644 strain biosurfactant was 2-fold greater than Tween 80 surfactant in crude oil solubilization and 12-fold higher than seawater control, as shown by GC-MS analysis of aliphatic compounds. Furthermore, this bioactive compound was shown to be nontoxic against Artemia larvae in short-term acute toxicity bioassay. Generally, the results showed the possible use of M. hydrocarbonoclasticus strain SdK644 biosurfactant in bioremediation processes of the marine environments.


Assuntos
Marinobacter/crescimento & desenvolvimento , Poluição por Petróleo/prevenção & controle , Petróleo/análise , Água do Mar/química , Tensoativos/química , Poluentes Químicos da Água/análise , Animais , Artemia/efeitos dos fármacos , Biodegradação Ambiental , Marinobacter/isolamento & purificação , Filogenia , RNA Ribossômico 16S/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Tensoativos/isolamento & purificação , Tensoativos/toxicidade
4.
Microb Cell Fact ; 16(1): 186, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29096660

RESUMO

BACKGROUND: The application of chemical dispersants as a response to marine oil spills is raising concerns related to their potential toxicity also towards microbes involved in oil biodegradation. Hence, oil spills occurring under marine environments necessitate the application of biodispersants that are highly active, stable and effective under marine environment context. Biosurfactants from marine bacteria could be good candidates for the development of biodispersant formulations effective in marine environment. This study aimed at establishing a collection of marine bacteria able to produce surface-active compounds and evaluating the activity and stability of the produced compounds under conditions mimicking those found under marine environment context. RESULTS: A total of 43 different isolates were obtained from harbor sediments. Twenty-six of them produced mainly bioemulsifiers when glucose was used as carbon source and 16 were biosurfactant/bioemulsifiers producers after growth in the presence of soybean oil. Sequencing of 16S rRNA gene classified most isolates into the genus Marinobacter. The produced emulsions were shown to be stable up to 30 months monitoring period, in the presence of 300 g/l NaCl, at 4 °C and after high temperature treatment (120 °C for 20 min). The partially purified compounds obtained after growth on soybean oil-based media exhibited low toxicity towards V. fischeri and high capability to disperse crude oil on synthetic marine water. CONCLUSIONS: To the best of our knowledge, stability characterization of bioemulsifiers/biosurfactants from the non-pathogenic marine bacterium Marinobacter has not been previously reported. The produced compounds were shown to have potential for different applications including the environmental sector. Indeed, their high stability in the presence of high salt concentration and low temperature, conditions characterizing the marine environment, the capability to disperse crude oil and the low ecotoxicity makes them interesting for the development of biodispersants to be used in combatting marine oil spills.


Assuntos
Sedimentos Geológicos/microbiologia , Marinobacter/metabolismo , Petróleo/metabolismo , Tensoativos/metabolismo , Biodegradação Ambiental , Marinobacter/genética , Marinobacter/crescimento & desenvolvimento , Marinobacter/isolamento & purificação , Poluição por Petróleo , RNA Ribossômico 16S/química , RNA Ribossômico 16S/isolamento & purificação , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA , Óleo de Soja/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Tensoativos/química
5.
Sci Rep ; 7(1): 12446, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28963537

RESUMO

In this study, time-series samples were taken from a gravel beach to ascertain whether a periodic oil input induced by tidal action at the early stage of an oil spill can be a trigger to stimulate the development of hydrocarbon-degrading bacteria under natural in situ attenuation. High-throughput sequencing shows that the microbial community in beach sediments is characterized by the enrichment of hydrocarbon-degrading bacteria, including Alcanivorax, Dietzia, and Marinobacter. Accompanying the periodic floating-oil input, dynamic successions of microbial communities and corresponding fluctuations in functional genes (alkB and RDH) are clearly indicated in a time sequence, which keeps pace with the ongoing biodegradation of the spilled oil. The microbial succession that accompanies tidal action could benefit from the enhanced exchange of oxygen and nutrients; however, regular inputs of floating oil can be a trigger to stimulate an in situ "seed bank" of hydrocarbon-degrading bacteria. This leads to the continued blooming of hydrocarbon-degrading consortia in beach ecosystems. The results provide new insights into the beach microbial community structure and function in response to oil spills.


Assuntos
Enzimas AlkB/genética , Genes Bacterianos , Hidrocarbonetos Aromáticos/metabolismo , Consórcios Microbianos/fisiologia , Água do Mar/microbiologia , Microbiologia do Solo , Alcanivoraceae/classificação , Alcanivoraceae/enzimologia , Alcanivoraceae/genética , Alcanivoraceae/isolamento & purificação , Enzimas AlkB/metabolismo , Baías , Biodegradação Ambiental , China , DNA Bacteriano/genética , Ecossistema , Expressão Gênica , Hidrocarbonetos Aromáticos/química , Marinobacter/classificação , Marinobacter/enzimologia , Marinobacter/genética , Marinobacter/isolamento & purificação , Petróleo/microbiologia , Poluição por Petróleo/análise , Filogenia
6.
Extremophiles ; 21(1): 211-229, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27915388

RESUMO

Microorganisms have shown their ability to colonize extreme environments including deep subsurface petroleum reservoirs. Physicochemical parameters may vary greatly among petroleum reservoirs worldwide and so do the microbial communities inhabiting these different environments. The present work aimed at the characterization of the microbiota in biodegraded and non-degraded petroleum samples from three Brazilian reservoirs and the comparison of microbial community diversity across oil reservoirs at local and global scales using 16S rRNA clone libraries. The analysis of 620 16S rRNA bacterial and archaeal sequences obtained from Brazilian oil samples revealed 42 bacterial OTUs and 21 archaeal OTUs. The bacterial community from the degraded oil was more diverse than the non-degraded samples. Non-degraded oil samples were overwhelmingly dominated by gammaproteobacterial sequences with a predominance of the genera Marinobacter and Marinobacterium. Comparisons of microbial diversity among oil reservoirs worldwide suggested an apparent correlation of prokaryotic communities with reservoir temperature and depth and no influence of geographic distance among reservoirs. The detailed analysis of the phylogenetic diversity across reservoirs allowed us to define a core microbiome encompassing three bacterial classes (Gammaproteobacteria, Clostridia, and Bacteroidia) and one archaeal class (Methanomicrobia) ubiquitous in petroleum reservoirs and presumably owning the abilities to sustain life in these environments.


Assuntos
Marinobacter/isolamento & purificação , Microbiota , Campos de Petróleo e Gás/microbiologia , Archaea/genética , Archaea/isolamento & purificação , Marinobacter/genética , Petróleo/metabolismo , Filogenia , RNA Ribossômico 16S/genética
7.
Int J Syst Evol Microbiol ; 57(Pt 2): 250-254, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17267959

RESUMO

Two novel strains, SL014B61A(T) and SL014B11A, were isolated from an oil-polluted saline soil from Gudao in the coastal Shengli Oilfield, eastern China. Cells of strains SL014B61A(T) and SL014B11A were motile, Gram-negative and rod-shaped. Growth occurred at NaCl concentrations of between 0 and 15 % and at temperatures of between 10 and 45 degrees C. Strain SL014B61A(T) had Q9 as the major respiratory quinone and C16 : 0 (21.2 %), C18 : 1omega9c (20.3 %), C16 : 1omega7c (7.3 %) and C16 : 1omega9c (6.4 %) as predominant fatty acids. The G+C content of the DNA was 57.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SL014B61A(T) belonged to the genus Marinobacter in the class Gammaproteobacteria. Strain SL014B61A(T) showed the highest 16S rRNA gene sequence similarity with Marinobacter bryozoorum (97.9 %) and showed 97.8 % sequence similarity to Marinobacter lipolyticus. DNA-DNA relatedness to the reference strains Marinobacter bryozoorum and Marinobacter lipolyticus was 35.5 % and 33.8 %, respectively. On the basis of these data, it is proposed that strains SL014B61A(T) and SL014B11A represent a novel species, Marinobacter gudaonensis sp. nov. The type strain is strain SL014B61A(T) (=DSM 18066(T)=LMG 23509(T)=CGMCC 1.6294(T)).


Assuntos
Marinobacter/classificação , Marinobacter/isolamento & purificação , Petróleo , Microbiologia do Solo , Poluentes do Solo/análise , Antibacterianos/farmacologia , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Poluição Ambiental , Ácidos Graxos/análise , Ácidos Graxos/química , Genes de RNAr , Marinobacter/citologia , Marinobacter/fisiologia , Dados de Sequência Molecular , Movimento , Hibridização de Ácido Nucleico , Filogenia , Quinonas/análise , Quinonas/química , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA