Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(22): e2310211, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460166

RESUMO

The precise targeted delivery of therapeutic agents to deep regions of the brain is crucial for the effective treatment of various neurological diseases. However, achieving this goal is challenging due to the presence of the blood‒brain barrier (BBB) and the complex anatomy of the brain. Here, a biomimetic self-propelled nanomotor with cascade targeting capacity is developed for the treatment of neurological inflammatory diseases. The self-propelled nanomotors are designed with biomimetic asymmetric structures with a mesoporous SiO2 head and multiple MnO2 tentacles. Macrophage membrane biomimetic modification endows nanomotors with inflammatory targeting and BBB penetration abilities The MnO2 agents catalyze the degradation of H2O2 into O2, not only by reducing brain inflammation but also by providing the driving force for deep brain penetration. Additionally, the mesoporous SiO2 head is loaded with curcumin, which actively regulates macrophage polarization from the M1 to the M2 phenotype. All in vitro cell, organoid model, and in vivo animal experiments confirmed the effectiveness of the biomimetic self-propelled nanomotors in precise targeting, deep brain penetration, anti-inflammatory, and nervous system function maintenance. Therefore, this study introduces a platform of biomimetic self-propelled nanomotors with inflammation targeting ability and active deep penetration for the treatment of neurological inflammation diseases.


Assuntos
Biomimética , Barreira Hematoencefálica , Dióxido de Silício , Animais , Dióxido de Silício/química , Camundongos , Biomimética/métodos , Barreira Hematoencefálica/metabolismo , Compostos de Manganês/química , Materiais Biomiméticos/química , Sistemas de Liberação de Medicamentos/métodos , Óxidos/química , Curcumina/uso terapêutico , Curcumina/farmacologia , Modelos Animais de Doenças , Doenças Neuroinflamatórias , Inflamação , Macrófagos , Encéfalo/metabolismo , Nanopartículas/química
2.
Adv Healthc Mater ; 13(15): e2302074, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38499190

RESUMO

Atherosclerosis still represents a major driver of cardiovascular diseases worldwide. Together with accumulation of lipids in the plaque, inflammation is recognized as one of the key players in the formation and development of atherosclerotic plaque. Systemic anti-inflammatory treatments are successful in reducing the disease burden, but are correlated with severe side effects, underlining the need for targeted formulations. In this work, curcumin is chosen as the anti-inflammatory payload model and further loaded in lignin-based nanoparticles (NPs). The NPs are then coated with a tannic acid (TA)- Fe (III) complex and further cloaked with fragments derived from platelet cell membrane, yielding NPs with homogenous size. The two coatings increase the interaction between the NPs and cells, both endothelial and macrophages, in steady state or inflamed status. Furthermore, NPs are cytocompatible toward endothelial, smooth muscle and immune cells, while not inducing immune activation. The anti-inflammatory efficacy is demonstrated in endothelial cells by real-time quantitative polymerase chain reaction and ELISA assay where curcumin-loaded NPs decrease the expression of Nf-κb, TGF-ß1, IL-6, and IL-1ß in lipopolysaccharide-inflamed cells. Overall, due to the increase in the cell-NP interactions and the anti-inflammatory efficacy, these NPs represent potential candidates for the targeted anti-inflammatory treatment of atherosclerosis.


Assuntos
Anti-Inflamatórios , Aterosclerose , Plaquetas , Curcumina , Nanopartículas , Curcumina/química , Curcumina/farmacologia , Aterosclerose/tratamento farmacológico , Humanos , Nanopartículas/química , Plaquetas/metabolismo , Plaquetas/efeitos dos fármacos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Células Endoteliais da Veia Umbilical Humana , Taninos/química , Taninos/farmacologia , Células RAW 264.7 , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo
3.
Chemistry ; 30(31): e202304338, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38538540

RESUMO

Glioma, the most common primary brain tumor, is highly invasive and grows rapidly. As such, the survival of glioma patients is relatively short, highlighting the vital importance of timely diagnosis and treatment of glioma. However, the blood brain barrier (BBB) and the non-targeting delivery systems of contrast agents and drugs greatly hinder the effective glioma imaging and therapy. Fortunately, in recent years, investigators have constructed various biomimetic delivery platforms utilizing the exceptional advantages of biomimetic nanocomposites, such as immune evasion, homologous targeting ability, and BBB penetrating ability, to achieve efficient and precise delivery of substances to glioma sites for improved diagnosis and treatment. In this concept, we present the application of these biomimetic nanocomposites in fluorescence imaging (FI), magnetic resonance imaging (MRI), and multi-modal imaging, as well as in chemotherapy, phototherapy, and combined therapy for glioma. Lastly, we provide our perspective on this research field.


Assuntos
Materiais Biomiméticos , Barreira Hematoencefálica , Neoplasias Encefálicas , Glioma , Imageamento por Ressonância Magnética , Nanocompostos , Glioma/diagnóstico por imagem , Glioma/terapia , Humanos , Nanocompostos/química , Nanocompostos/uso terapêutico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Materiais Biomiméticos/química , Barreira Hematoencefálica/metabolismo , Meios de Contraste/química , Imagem Óptica , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Animais , Sistemas de Liberação de Medicamentos , Fototerapia , Biomimética/métodos
4.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163411

RESUMO

The ability of Pluronic F127 (PF127) conjugated with tetrapeptide Gly-Arg-Gly-Asp (GRGD) as a sequence of Arg-Gly-Asp (RGD) peptide to form the investigated potential hydrogel (hereafter referred to as 3DG bioformer (3BE)) to produce spheroid, biocompatibility, and cell invasion ability, was assessed in this study. The fibroblast cell line (NIH 3T3), osteoblast cell line (MG-63), and human breast cancer cell line (MCF-7) were cultured in the 3BE hydrogel and commercial product (Matrigel) for comparison. The morphology of spheroid formation was evaluated via optical microscopy. The cell viability was observed through cell counting Kit-8 assay, and cell invasion was investigated via Boyden chamber assay. Analytical results indicated that 3BE exhibited lower spheroid formation than Matrigel. However, the 3BE appeared biocompatible to NIH 3T3, MG-63, and MCF-7 cells. Moreover, cell invasion ability and cell survival rate after invasion through the 3BE was displayed to be comparable to Matrigel. Thus, these findings demonstrate that the 3BE hydrogel has a great potential as an alternative to a three-dimensional cell culture for drug screening applications.


Assuntos
Materiais Biocompatíveis/química , Materiais Biomiméticos/química , Hidrogéis/química , Oligopeptídeos/química , Poloxâmero/química , Animais , Avaliação Pré-Clínica de Medicamentos , Humanos , Células MCF-7 , Camundongos , Células NIH 3T3
5.
ACS Appl Mater Interfaces ; 14(4): 6028-6038, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35044157

RESUMO

The microstructured surfaces of bioelectrical dry electrodes are important aspects of dry electrode design. However, traditional surfaces for microstructured bioelectrical dry electrodes are costly to produce and require complex fabrication methods. In this study, a novel stacked-template method is proposed for the first time, rapidly producing microstructured dry electrodes at a low cost and with a large surface area. Three types of microstructured Ag/AgCl thermoplastic polyurethane (TPU) electrodes with a Fructus xanthii-inspired barb structure (FXbs) are prepared using this method; then, the dynamic friction, hair interference resistance, electrochemical, and electrocardiogram (ECG) signal acquisition performance of the electrodes are tested, and the dynamic noise characteristics of the electrodes are comprehensively evaluated with simulated instruments. Compared to the plate structure, the dynamic friction coefficient of the FXbs electrode improved by about 38.8%, exhibiting strong hair interference resistance. In addition, the FXbs electrode exhibits low dynamic noise and comparable performance to the wet electrode, in terms of signal acquisition, when it is tested using simulated instruments. Therefore, the prepared FXbs electrode increases the friction coefficient between the electrode and the skin, which effectively resolves issues related to dynamic noise in bioelectrical signals, making it suitable for dynamic measurements.


Assuntos
Materiais Biomiméticos/química , Eletrocardiografia/instrumentação , Poliuretanos/química , Compostos de Prata/química , Prata/química , Adulto , Impedância Elétrica , Eletrodos , Humanos , Masculino , Fenômenos Fisiológicos da Pele , Xanthium/anatomia & histologia
6.
J Mater Chem B ; 10(4): 637-645, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34991154

RESUMO

Chemodynamic therapy (CDT) is an emerging approach to treat cancer based on the tumor microenvironment (TME), but its limited content of endogenous hydrogen peroxide (H2O2) weakens the anticancer effects. Herein, a multifunctional biomimetic nanozyme (Se@SiO2-Mn@Au/DOX, named as SSMA/DOX) is fabricated, which undergoes TME responsive self-cascade catalysis to facilitate MRI guided enhanced chemo/chemodynamic therapy. The SSMA/DOX nanocomposites (NCs) responsively degrade in acidic conditions of tumor to release Se, DOX, Au and Mn2+. Mn2+ not only enables MRI to guided therapy, but also catalyzes the endogenous H2O2 into hydroxyl radical (˙OH) for CDT. In addition, the Au NPs continuously catalyze glucose to generate H2O2, enhancing CDT by supplementing a sufficiently reactive material and cutting off the energy supply of the tumor by consuming glucose. Simultaneously, Se enhances the chemotherapy of doxorubicin hydrochloride (DOX) and CDT by upregulating ROS in the tumor cells, achieving remarkable inhibition effect towards tumor. Moreover, SSMA/DOX NCs have good biocompatibility and degradability, which avoid long-term toxicity and side effects. Overall, the degradable SSMA/DOX NCs provide an innovative strategy for tumor microenvironment responsive self-cascade catalysis to enhance tumor therapy.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Terapia Fototérmica , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Antineoplásicos/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Catálise , Linhagem Celular , Doxorrubicina/química , Feminino , Ouro/química , Ouro/farmacologia , Humanos , Manganês/química , Manganês/farmacologia , Teste de Materiais , Ratos , Ratos Sprague-Dawley , Selênio/química , Selênio/farmacologia , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Microambiente Tumoral/efeitos dos fármacos
7.
J Nanobiotechnology ; 19(1): 382, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809618

RESUMO

BACKGROUND: Inflammatory osteolysis, a major complication of total joint replacement surgery, can cause prosthesis failure and necessitate revision surgery. Macrophages are key effector immune cells in inflammatory responses, but excessive M1-polarization of dysfunctional macrophages leads to the secretion of proinflammatory cytokines and severe loss of bone tissue. Here, we report the development of macrophage-biomimetic porous SiO2-coated ultrasmall Se particles (porous Se@SiO2 nanospheres) to manage inflammatory osteolysis. RESULTS: Macrophage membrane-coated porous Se@SiO2 nanospheres(M-Se@SiO2) attenuated lipopolysaccharide (LPS)-induced inflammatory osteolysis via a dual-immunomodulatory effect. As macrophage membrane decoys, these nanoparticles reduced endotoxin levels and neutralized proinflammatory cytokines. Moreover, the release of Se could induce macrophage polarization toward the anti-inflammatory M2-phenotype. These effects were mediated via the inhibition of p65, p38, and extracellular signal-regulated kinase (ERK) signaling. Additionally, the immune environment created by M-Se@SiO2 reduced the inhibition of osteogenic differentiation caused by proinflammation cytokines, as confirmed through in vitro and in vivo experiments. CONCLUSION: Our findings suggest that M-Se@SiO2 have an immunomodulatory role in LPS-induced inflammation and bone remodeling, which demonstrates that M-Se@SiO2 are a promising engineered nanoplatform for the treatment of osteolysis occurring after arthroplasty.


Assuntos
Materiais Biomiméticos , Fatores Imunológicos , Macrófagos , Nanocompostos/química , Osteólise/metabolismo , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Imunoterapia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Porosidade , Células RAW 264.7 , Selênio/química , Selênio/farmacologia , Dióxido de Silício/química , Dióxido de Silício/farmacologia
8.
J Nanobiotechnology ; 19(1): 360, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749742

RESUMO

In addition to early detection, early diagnosis, and early surgery, it is of great significance to use new strategies for the treatment of hepatocellular carcinoma (HCC). Studies showed that the combination of sorafenib (SFN) and triptolide (TPL) could reduce the clinical dose of SFN and maintain good anti-HCC effect. But the solubility of SFN and TPL in water is low and both drugs have certain toxicity. Therefore, we constructed a biomimetic nanosystem based on cancer cell-platelet (PLT) hybrid membrane camouflage to co-deliver SFN and TPL taking advantage of PLT membrane with long circulation functions and tumor cell membrane with homologous targeting. The biomimetic nanosystem, SFN and TPL loaded cancer cell-PLT hybrid membrane-camouflaged liquid crystalline lipid nanoparticles ((SFN + TPL)@CPLCNPs), could simultaneously load SFN and TPL at the molar ratio of SFN to TPL close to 10:1. (SFN + TPL)@CPLCNPs achieved long circulation function and tumor targeting at the same time, promoting tumor cell apoptosis, inhibiting tumor growth, and achieving a better "synergy and attenuation effect", which provided new ideas for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Diterpenos , Lipossomos , Neoplasias Hepáticas/metabolismo , Nanopartículas , Fenantrenos , Sorafenibe , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Materiais Biomiméticos/química , Plaquetas/química , Linhagem Celular Tumoral , Membrana Celular/química , Diterpenos/química , Diterpenos/farmacocinética , Diterpenos/farmacologia , Compostos de Epóxi/química , Compostos de Epóxi/farmacocinética , Compostos de Epóxi/farmacologia , Humanos , Lipossomos/química , Lipossomos/farmacocinética , Lipossomos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanomedicina , Nanopartículas/química , Nanopartículas/toxicidade , Fenantrenos/química , Fenantrenos/farmacocinética , Fenantrenos/farmacologia , Células RAW 264.7 , Sorafenibe/química , Sorafenibe/farmacocinética , Sorafenibe/farmacologia
9.
Drug Deliv ; 28(1): 2085-2099, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34596000

RESUMO

Phototherapy, with minimally invasive and cosmetic effect, has received considerable attention and been widely studied in cancer treatment, especially in biomaterials field. However, most nanomaterials applied for the delivery of phototherapy agents are usually recognized by the immune system or cleared by liver and kidney, thus hindering their clinical applications. To overcome these limitations, bionic technology stands out by virtue of its low antigenicity and targeting properties, including membrane bionics and bionic enzymes. In this review, we will summarize the up-to-date progress in the development of biomimetic camouflage-based nanomaterials for phototherapy, from synthesis to application, and their future in cancer treatment.


Assuntos
Materiais Biomiméticos/química , Neoplasias/terapia , Fototerapia/métodos , Materiais Biomiméticos/metabolismo , Biomimética , Plaquetas/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Eritrócitos/metabolismo , Nanopartículas/química , Tecnologia Farmacêutica
10.
Molecules ; 26(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34361723

RESUMO

Genito-urinary tract infections have a high incidence in the general population, being more prevalent among women than men. These diseases are usually treated with antibiotics, but very frequently, they are recurrent and lead to the creation of resistance and are associated with increased morbidity and mortality. For this reason, it is necessary to develop new compounds for their treatment. In this work, our objective is to review the characteristics of the compounds of a new formulation called Itxasol© that is prescribed as an adjuvant for the treatment of UTIs and composed of ß-arbutin, umbelliferon and n-acetyl cysteine. This formulation, based on biomimetic principles, makes Itxasol© a broad-spectrum antibiotic with bactericidal, bacteriostatic and antifungal properties that is capable of destroying the biofilm and stopping its formation. It also acts as an anti-inflammatory agent, without the adverse effects associated with the recurrent use of antibiotics that leads to renal nephrotoxicity and other side effects. All these characteristics make Itxasol© an ideal candidate for the treatment of UTIs since it behaves like an antibiotic and with better characteristics than other adjuvants, such as D-mannose and cranberry extracts.


Assuntos
Acetilcisteína/uso terapêutico , Arbutina/uso terapêutico , Produtos Biológicos/uso terapêutico , Umbeliferonas/uso terapêutico , Infecções Urinárias/tratamento farmacológico , Acetilcisteína/química , Antibacterianos/química , Antibacterianos/uso terapêutico , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Antifúngicos/química , Antifúngicos/uso terapêutico , Arbutina/química , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Produtos Biológicos/química , Materiais Biomiméticos/química , Materiais Biomiméticos/uso terapêutico , Candida/efeitos dos fármacos , Candida/crescimento & desenvolvimento , Candida/patogenicidade , Combinação de Medicamentos , Feminino , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Negativas/patogenicidade , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Bactérias Gram-Positivas/patogenicidade , Humanos , Masculino , Testes de Sensibilidade Microbiana , Umbeliferonas/química , Infecções Urinárias/microbiologia , Infecções Urinárias/patologia
11.
Dalton Trans ; 50(24): 8330-8337, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34038493

RESUMO

Controlling the microstructure and composition of electrodes is crucial to enhance their rate capability and cycling stability for lithium storage. Inspired by the highly interconnected network and good mechanical integrity of an ant-nest architecture, herein, a biomimetic strategy is proposed to enhance the electrochemical performance of Cu2-xSe. After facile carbonization and selenization treatments, the 3D Cu-MOF is successfully transformed into the final ant-nest-like Cu2-xSe@C (AN-Cu2-xSe@C). The AN-Cu2-xSe@C is composed of interconnected Cu2-xSe channels with amorphous carbon coated on the outer surface. The 3D interconnected channels within the AN-Cu2-xSe@C provide fast charge transport pathways and enhanced structural integrity to tolerate the large volume fluctuations of Cu2-xSe during cycling. When applied as the anode for lithium storage, the AN-Cu2-xSe@C shows remarkable electrochemical performance with a high capacity of 1452 mA h g-1 after 1200 cycles at 1.0 A g-1 and 879 mA h g-1 after 2500 cycles at 10.0 A g-1, respectively. Mechanism investigations demonstrate that the AN-Cu2-xSe@C experiences complicated conversion-intercalation co-existence reactions upon cycling. The existence of capacitive behaviour (74%) also contributes to the extended cycling performance. Our work offers a new avenue for designing a high performance electrode using the biomimetic concept.


Assuntos
Materiais Biomiméticos/química , Cobre/química , Lítio/química , Selênio/química , Carbono/química , Fontes de Energia Elétrica , Eletrodos
12.
Curr Top Med Chem ; 21(12): 1037-1051, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34030613

RESUMO

Nutraceuticals are food or component of food that do not only promote health but also help in recovering and combating health disorders. Algae are microorganisms that are used as supplements used in treating health disorders. They are rich in essential fatty acids, antioxidant pigments, and other micronutrients. These algae are gaining importance as functional components in the green synthesis of metal nanoparticles and applications in fabrics incorporated antimicrobial agents and pharmaceuticals. The present review focus on the distinctive algal components that are beneficial in biomedical applications. It also focuses on the research techniques to enrich the macronutrients and micronutrients by altering growth conditions and susceptible nutritional factors. A diagram model for a systematic review is utilized for this search. The research is conducted through the following databases: PubMed, Web of Science, Scopus, and Science Direct. Results: Here in this review, current reviewers put forward the importance of microalgae and other algae as alternative marine nutrient sources of dietary supplements for human consumption. In this context, extrinsic and intrinsic environmental parameter manipulative studies by eminent research groups to enhance the nutrient composition of these marine creatures are focused on in this study. Some costeffective approach-based techniques for industrial output have also been manifested. The role of algae as bio-inspired material for the production of biosynthetic metal nanoparticles, water-soluble polymers, bioplastic, antimicrobials, antifouling agents has been incurred as research interests in the past decades. In spite of being so impressive as nutraceuticals and bio-inspired material components, research gaps still exist. The purpose of the manuscript is to cover such gaps and show a new paradigm of biomedical applications.


Assuntos
Materiais Biomiméticos/química , Suplementos Nutricionais , Microalgas/química , Pesquisa Biomédica , Humanos
13.
Adv Mater ; 33(46): e2004655, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34028885

RESUMO

A wide portfolio of advanced programmable materials and structures has been developed for biological applications in the last two decades. Particularly, due to their unique properties, semiconducting materials have been utilized in areas of biocomputing, implantable electronics, and healthcare. As a new concept of such programmable material design, biointerfaces based on inorganic semiconducting materials as substrates introduce unconventional paths for bioinformatics and biosensing. In particular, understanding how the properties of a substrate can alter microbial biofilm behavior enables researchers to better characterize and thus create programmable biointerfaces with necessary characteristics on demand. Herein, the current status of advanced microorganism-inorganic biointerfaces is summarized along with types of responses that can be observed in such hybrid systems. This work identifies promising inorganic material types along with target microorganisms that will be critical for future research on programmable biointerfacial structures.


Assuntos
Materiais Biomiméticos/química , Semicondutores , Biofilmes/efeitos dos fármacos , Materiais Biomiméticos/farmacologia , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/fisiologia , Nanoestruturas/química , Nanoestruturas/toxicidade , Polímeros/química , Óxido de Zinco/química , Óxido de Zinco/farmacologia
14.
ACS Appl Mater Interfaces ; 13(20): 23469-23480, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33999610

RESUMO

Although photothermal therapy (PTT) has great potential for tumor inhibition, this single mode of action frequently encounters recurrence and metastasis, highlighting the urgent need for developing combination therapy. Inspired by established evidence that PTT could induce efficient immunogenic cell death (ICD), we here developed a versatile biomimetic nanoplatform (denoted as AuDRM) for the synergism of photothermal/starvation/immunotherapy against cancer. Specifically, dendritic mesoporous silica nanoparticles (NPs) were successfully constructed followed by the in situ synthesis of Au NPs in the mesopores. Afterward, a hybrid membrane was coated to facilitate the loading of R837. Upon efficient accumulation in the tumor tissue by homotypic targeting, the pH-sensitive membrane could be jettisoned to ensure the exposure of Au NPs for starvation therapy and the effective release of the immunostimulator R837 for enhancement of immunotherapy. Except for the PTT-mediated tumor ablation, the induction of ICD coupled with the release of tumor antigens could work synergistically with the immunostimulator R837 for inhibiting the primary tumor as well as the metastasis and induce a long-term immune memory effect for tumor inhibition via a vaccine-like function. Thus, this study paves the way for high-performance tumor ablation by the synergism of photothermal/starvation/immunotherapy.


Assuntos
Antineoplásicos/farmacologia , Ouro/química , Membranas Artificiais , Nanopartículas Metálicas/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Materiais Biomiméticos/química , Linhagem Celular Tumoral , Feminino , Ouro/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Imiquimode/química , Imiquimode/farmacocinética , Imiquimode/farmacologia , Imunoterapia , Nanopartículas Metálicas/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Fototerapia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
PLoS One ; 16(4): e0250822, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33901259

RESUMO

Xerostomia, known as dry mouth, is caused by decreased salivary flow. Treatment with lubricating oral rinses provides temporary relief of dry mouth discomfort; however, it remains unclear how their composition affects mineralized dental tissues. Therefore, the objective of this study was to analyze the effects of common components in xerostomia oral rinses on biomimetic apatite with varying carbonate contents. Carbonated apatite was synthesized and exposed to one of the following solutions for 72 hours at varying pHs: water-based, phosphorus-containing (PBS), mucin-like containing (MLC), or fluoride-containing (FC) solutions. Post-exposure results indicated that apatite mass decreased irrespective of pH and solution composition, while solution buffering was pH dependent. Raman and X-ray diffraction analysis showed that the addition of phosphorus, mucin-like molecules, and fluoride in solution decreases mineral carbonate levels and changed the lattice spacing and crystallinity of bioapatite, indicative of dissolution/recrystallization processes. The mineral recrystallized into a less-carbonated apatite in the PBS and MLC solutions, and into fluorapatite in FC. Tap water did not affect the apatite lattice structure suggesting formation of a labile carbonate surface layer on apatite. These results reveal that solution composition can have varied and complex effects on dental mineral beyond dissolution, which can have long term consequences on mineral solubility and mechanics. Therefore, clinicians should consider these factors when advising treatments for xerostomia patients.


Assuntos
Apatitas/química , Materiais Biomiméticos/química , Saliva Artificial/efeitos adversos , Xerostomia/terapia , Apatitas/síntese química , Materiais Biomiméticos/síntese química , Cristalização , Fluoretos/efeitos adversos , Fluoretos/química , Humanos , Concentração de Íons de Hidrogênio , Mucinas/efeitos adversos , Mucinas/química , Fósforo/efeitos adversos , Fósforo/química , Saliva Artificial/química , Análise Espectral Raman , Calcificação de Dente/efeitos dos fármacos , Difração de Raios X
16.
Glycobiology ; 31(8): 975-987, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-33822042

RESUMO

Coronavirus disease 2019 (COVID-19) has spread rapidly throughout the globe. The spectrum of disease is broad but among hospitalized patients with COVID-19, respiratory failure from acute respiratory distress syndrome is the leading cause of mortality. There is an urgent need for an effective treatment. The current focus has been developing novel therapeutics, including antivirals, protease inhibitors, vaccines and targeting the overactive cytokine response with anti-cytokine therapy. The overproduction of early response proinflammatory cytokines results in what has been described as a "cytokine storm" is leading eventually to death when the cells fail to terminate the inflammatory response. Accumulating evidence shows that inflammatory cytokines induce selectin ligands that play a crucial role in the pathogenesis of inflammatory diseases by mediating leukocyte migration from the blood into the tissue. Thus, the selectins and selectin ligands represent a promising therapeutic target for the treatment of COVID-19. In this paper, potential pan-selectin inhibitors were identified employing a virtual screening using a docking procedure. For this purpose, the Asinex and ZINC databases of ligands, including approved drugs, biogenic compounds and glycomimetics, altogether 923,602 compounds, were screened against the P-, L- and E-selectin. At first, the experimentally confirmed inhibitors were docked into all three selectins' carbohydrate recognition domains to assess the suitability of the screening procedure. Finally, based on the evaluation of ligands binding, we propose 10 purchasable pan-selectin inhibitors to develop COVID-19 therapeutics.


Assuntos
Antivirais/química , Materiais Biomiméticos/química , Tratamento Farmacológico da COVID-19 , Simulação por Computador , Bases de Dados de Compostos Químicos , SARS-CoV-2/química , Selectinas/química , Avaliação Pré-Clínica de Medicamentos , Humanos , SARS-CoV-2/metabolismo
17.
J Mater Chem B ; 9(10): 2515-2523, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33659973

RESUMO

The precise operation of the hypoxic tumor microenvironment presents a promising way to improve treatment efficacy, in particular in tumor synergistic phototherapy. This work reports an innovative approach to build adenosine triphosphate-modified hollow ceria nanozymes (ATP-HCNPs@Ce6) that manipulate tumor hypoxia to effectively achieve drug delivery. Hollow ceria nanoparticles (HCNPs) exhibit a controllable hollow structure through varying nitric acid concentrations in the nanocomposites. Specifically, ATP modification makes HCNPs exceptionally biocompatible and stable and acts as a regulator of HCNP enzymatic activity. In the stage of drug loading, newly prepared ATP-HCNPs@Ce6 serves as an in situ oxygen-generating agent because of its ability to simulate catalase. Therefore, ATP-HCNPs@Ce6 has adjustable enzymatic properties that act like a "switch" to selectively supply oxygen in response to high levels of hydrogen peroxide expression and the slightly acidic lysosomal environment of the tumor to enhance lysosome-targeted photodynamic therapy. Moreover, the obvious anticancer effects of ATP-HCNPs@Ce6 are demonstrated in vitro and in vivo. Overall, a simple and rapid self-assembly strategy to form and modify multifunctional HCNPs is reported, which may further propel their application in the field of precision tumor treatment.


Assuntos
Materiais Biomiméticos/química , Catalase/metabolismo , Cério/química , Lisossomos/metabolismo , Terapia de Alvo Molecular/métodos , Nanopartículas/química , Fototerapia/métodos , Trifosfato de Adenosina/química , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio/metabolismo
18.
ACS Appl Mater Interfaces ; 13(4): 5111-5124, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33472360

RESUMO

Artificial enzymes with modulated enzyme-mimicking activities of natural systems represent a challenge in catalytic applications. Here, we show the creation of artificial Cu metalloenzymes based on the generation of Cu nanoparticles in an enzyme matrix. Different enzymes were used, and the structural differences between the enzymes especially influenced the controlled the size of the nanoparticles and the environment that surrounds them. Herein, we demonstrated that the oxidase-like catalytic activity of these copper nanozymes was rationally modulated by enzyme used as a scaffold, with a special role in the nanoparticle size and their environment. In this sense, these nanocopper hybrids have confirmed the ability to mimic a unique enzymatic activity completely different from the natural activity of the enzyme used as a scaffold, such as tyrosinase-like activity or as Fenton catalyst, which has extremely higher stability than natural mushroom tyrosinase. More interestingly, the oxidoreductase-like activity of nanocopper hybrids was cooperatively modulated with the synergistic effect between the enzyme and the nanoparticles improving the catalase activity (no peroxidase activity). Additionally, a novel dual (metallic and enzymatic activity) of the nanozyme made the highly improved catechol-like activity interesting for the design of 3,4-dihydroxy-l-phenylalanine (l-DOPA) biosensor for detection of tyrosinase. These hybrids also showed cytotoxic activity against different tumor cells, interesting in biocatalytic tumor therapy.


Assuntos
Materiais Biomiméticos/uso terapêutico , Técnicas Biossensoriais , Cobre/uso terapêutico , Nanopartículas/uso terapêutico , Neoplasias/terapia , Bactérias/enzimologia , Biocatálise , Materiais Biomiméticos/química , Técnicas Biossensoriais/métodos , Cobre/química , Terapia Enzimática/métodos , Fungos/enzimologia , Humanos , Modelos Moleculares , Monofenol Mono-Oxigenase/análise , Nanopartículas/química , Oxirredutases/química , Oxirredutases/uso terapêutico , Conformação Proteica
19.
ACS Appl Bio Mater ; 4(2): 1360-1368, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014487

RESUMO

The development of functional materials based on renewable resources is of great significance in today's resource shortage. Here, we present an effective way to synthesize a mussel-inspired adhesive from acrylated epoxidized soybean oil (AESO), a renewable and commercially available small molecular material with a molecular weight around 1200 Da, by a one-step esterification reaction with the affordable 3,4-dihydroxybenzoic acid (DHA). By taking advantages of both the double bond and the catechol moiety presented in this small molecular adhesive, a short curing time was achieved with UV irradiation. An average bonding strength around 1.4 MPa at a curing time of only around 10 min on a glass substrate was observed, which reached 3.1 MPa (average 2.8 MPa) at a curing time of 2 h under ambient conditions. The curing time is much shorter, and the bonding strength is obviously stronger than the conditions where conventional oxidation agents such as IO4- or oxidation/coordination agents such as Fe3+ are used as the curing agent. Furthermore, the AESO-g-DHA can be used as an underwater adhesive, and an appreciable bonding strength up to 0.64 MPa was observed, which is superior than most of currently known commercialized glues. Given that the adhesive could be synthesized from low-cost renewable resources in one step, it might be a potential candidate for large-scale practical application.


Assuntos
Adesivos/química , Materiais Biomiméticos/química , Bivalves , Óleos de Plantas/química , Animais , Ferro , Teste de Materiais , Estrutura Molecular , Ácido Periódico , Raios Ultravioleta
20.
J Mater Chem B ; 9(3): 683-693, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33367374

RESUMO

Most small-molecule drugs influence cell behavior through their interaction with one or more cellular proteins. The efficacy is unanticipated in the later stages of drug development if small-molecule drugs are discovered in the absence of a biological context. Bionic screening is an in vivo drug-receptor interaction platform that can identify small molecules with recognized activity, improving the likelihood of drug efficacy in the clinic. Here, we report the design of an innovative cell-based bionic screening system using 3D microcarrier cultures to simulate in vivo conditions and facilitate small-molecule drug discovery. Through its combination with HPLC/MS, the method can comprehensively identify small-molecule lead compounds in arbitrarily complex systems in an unbiased manner. In particular, cell-covered microcarriers provide a high-density of cells for affinity performance assessments in the absence of appreciable cell damage and maintain immunogenicity, the 3D structure of which is similar to tissue morphology in vivo, thereby mimicking in vivo drug-receptor interactions. The method is scalable, easy to handle, and requires minimal optimization across a range of different cell lines to realize high-throughput drug screening for the corresponding diseases. This provides a valuable tool for lead compound discovery in more physiologically relevant systems and may address the lack of clinically available drugs.


Assuntos
Materiais Biomiméticos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Ensaios de Triagem em Larga Escala , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Materiais Biomiméticos/química , Células CHO , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cricetulus , Descoberta de Drogas , Medicamentos de Ervas Chinesas/química , Medicina Tradicional Chinesa , Estrutura Molecular , Tamanho da Partícula , Bibliotecas de Moléculas Pequenas/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA