Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Talanta ; 271: 125668, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38237282

RESUMO

In this work, an electrochemiluminescence (ECL) biosensor based on dual ECL quenching effects of silver nanoclusters (Ag NCs) and multiple cycling amplification was designed to achieve ultrasensitive detection of ATP. The specific recognition of target ATP to aptamer initiated multiple cycling amplification, and a small amount of target was converted into a large number of DNA product chains (S1) by amplification. After S1 opened hairpin DNA 2 (HP2), Ag NCs approached the surface of CdS quantum dots (QDs) modified-electrode by complementary DNA, resulting in a significant decrease of ECL intensity from CdS QDs. The quenching principle is as follows. Firstly, the absorption spectrum of Ag NCs overlaps well with the ECL emission spectrum of CdS QDs, leading to effective ECL resonance energy transfer (ECL-RET); Secondly, Ag NCs could catalyze electrochemical reduction of K2S2O8, leading to consumption of ECL co-reactant and reducing ECL of QDs. The double-ECL quenching achieved ultrasensitive biosensing detection of ATP with a wide range from 1 aM to 1 pM. This present work reported new principle of double-quenching QDs ECL by Ag NCs, and developed a novel ECL biosensor by combining with multiple cycle amplification technique, which has great contribution to the development of QDs ECL and biosensing applications.


Assuntos
Técnicas Biossensoriais , Compostos de Cádmio , Prata , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , DNA/genética , Técnicas Biossensoriais/métodos , Trifosfato de Adenosina
2.
Anal Chem ; 95(32): 12184-12191, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37530603

RESUMO

When consumed, excess progesterone (P4)─found in food and the environment─can lead to severe illnesses in humans. Therefore, quantitative analysis of P4 is critical for identifying its hazardous levels. In this study, a novel signal "on-amplified-off" P4 detection mode was proposed, which was based on the utilization of hafnium oxide (HfO2) as a unique electrochemiluminescence (ECL) emitter, produced by calcining UiO-66(Hf). This is the first time that HfO2 has been used as an ECL emitter. HfO2 displayed excellent conductivity and a high specific surface area, allowing it to connect with numerous aptamers and produce a "signal-on" effect. Ni-doped ZnO (Ni-ZnO) acted as a coreaction accelerator, enhancing the ECL strength of HfO2 by generating more tripropylamine radicals. cDNA was labeled with Ni-ZnO, and Ni-ZnO was linked to the aptamer via base complementary pairing, affording "signal-amplified". The presence of the target molecule P4 instigated a specific binding process with the aptamer, triggering the shedding of cDNA-Ni-ZnO and resulting in "signal-off". This novel "on-amplified-off" strategy effectively improved the sensitivity and specificity of P4 analysis, introducing a practical method for detecting biomolecules beyond the scope of this study, which holds immense potential for future applications.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanoestruturas , Óxido de Zinco , Humanos , Progesterona , Nanopartículas Metálicas/química , DNA Complementar , Háfnio , Medições Luminescentes/métodos , Nanoestruturas/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção
3.
Mikrochim Acta ; 190(4): 131, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36912979

RESUMO

An "on-off-on"-type electrochemiluminescence (ECL) aptamer sensor based on Ru@Zn-oxalate metal-organic framework (MOF) composites is constructed for sensitive detection of sulfadimethoxine (SDM). The prepared Ru@Zn-oxalate MOF composites with the three-dimensional structure provide good ECL performance for the "signal-on." The MOF structure with a large surface area enables the material to fix more Ru(bpy)32+. Moreover, the Zn-oxalate MOF with three-dimensional chromophore connectivity provides a medium which can accelerate excited-state energy transfer migration among Ru(bpy)32+ units, and greatly reduces the influence of solvent on chromophore, achieving a high-energy Ru emission efficiency. The aptamer chain modified with ferrocene at the end can hybridize with the capture chain DNA1 fixed on the surface of the modified electrode through base complementary pairing, which can significantly quench the ECL signal of Ru@Zn-oxalate MOF. SDM specifically binds to its aptamer to separate ferrocene from the electrode surface, resulting in a "signal-on" ECL signal. The use of the aptamer chain further improves the selectivity of the sensor. Thus, high-sensitivity detection of SDM specificity is realized through the specific affinity between SDM and its aptamer. This proposed ECL aptamer sensor has good analytical performance for SDM with low detection limit (27.3 fM) and wide detection range (100 fM-500 nM). The sensor also shows excellent stability, selectivity, and reproducibility, which proved its analytical performance. The relative standard deviation (RSD) of SDM detected by the sensor is between 2.39 and 5.32%, and the recovery is in the range 97.23 to 107.5%. The sensor shows satisfactory results in the analysis of actual seawater samples, which is expected to play a role in the exploration of marine environmental pollution.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Metalocenos , Sulfadimetoxina , Técnicas Biossensoriais/métodos , Oxalatos , Reprodutibilidade dos Testes , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , Oligonucleotídeos , Zinco
4.
Analyst ; 148(4): 772-779, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36661384

RESUMO

In this study, for the first time, a silver-based metal-organic framework (Ag-MOF) was synthesized and used as the electrochemiluminescence (ECL) emitter for building an ECL sensor. After modification with chitosan (CS) and gold nanoparticles (Au NPs), the ECL stability of Ag-MOF was improved. To detect mercury ions, a biosensor was constructed using the mercury ion aptamer and steric effect of streptavidin. First, the capture strand (cDNA) with terminal-modified sulfhydryl group was attached to the electrode surface by the Au-S bond. Then, the mercury-ion aptamer (Apt-Hg) modified with biotin was anchored to the electrode by complementary pairing with cDNA. Streptavidin (SA) could be fixed on the electrode by linking with biotin, thereby reducing the ECL signal. However, in the presence of mercury ions, the aptamer was removed and streptavidin could not be immobilized on the electrode. Hence, the ECL signal of the sensor increased with the concentration of mercury ions, which was linear in the range from 1 µM to 300 fM. The detection limit could reach 66 fM (S/N = 3). The sensor provided a new method for the detection of mercury ions.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Mercúrio , Nanopartículas Metálicas , Biotina/química , Estreptavidina/química , Prata , DNA Complementar , Ouro/química , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química , Medições Luminescentes/métodos , Aptâmeros de Nucleotídeos/química , Íons , Técnicas Biossensoriais/métodos , Limite de Detecção
5.
Langmuir ; 38(49): 15316-15326, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36441978

RESUMO

Being synthetic supplements to natural lipids, lipoids now play an increasingly significant role in nanopore sequencing, olfactory sensing, and nanoimpact electrochemistry. Yet, systematic comparisons to sort and screen qualified lipoids are lacking for specific scenario applications. Here, taking the merits of electrochemiluminescence (ECL) in probing biointerfacial events, a new metric was proposed for the evaluation of substrate candidacy in the pool of hyamine bromides (ABs), that are used to cohere with electron-rich porphyrins for deep eutectics-like ECL matrices. Using a state-of-the-art framework emitter, the cocrystalline nanosheet of C70 and zinc meso-tetraphenylporphine (ZnTPP) via simple liquid-liquid interfacial deposition, 6 out of 20 ABs were inspected and identified as not only amenable filmogens but excitonic sensitizers in key terms of ECL strength as well as voltammetric characteristics. Among them, the methyltrioctyl (MTOAB) headgroup stood out; while the ECL activity at ZnTPP-C70@MTOAB was proven to be dictated by ionophoresis across multilamellar lipoidal layers. Thus, target-induced membrane deformation would let coreactant scavengers in to quench ECL, which enabled assays on two less visited bioprocesses regarding (1) the lipid solubility of ipratropium bromide, an aerosol medication for rhinitis treatment; and (2) the resorption of selenosugar as the central metabolite of Se-proteins on kidney glomerular basement barrier. Both resulted in nice membrane-binding measurements with comparable dissociation constants to reported microfluidic ELISA methods. By and large, though still being rudimentary, such parametrization of ECL-able biofilm would set up a basic ECL toolbox for archiving and resourcing multilipoidal even lipid-lipoid combos to handle the realistic (sub)cytomembrane processes in the future.


Assuntos
Compostos de Amônio , Técnicas Biossensoriais , Medições Luminescentes/métodos , Eletroquímica/métodos , Lipídeos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos
6.
Anal Chem ; 94(38): 13269-13277, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36109852

RESUMO

An electrochemiluminescent (ECL)-photoacoustic (PA) dual-signal output biosensor based on the modular optimization and wireless nature of a bipolar electrode (BPE) was constructed. To further simplify the detection process, the BPE structure was designed as three separate units: anode ECL collection, cathode catalytic amplification, and intermediate functional sensing units. Specifically, the anode unit was placed with Eosin Yellow, a cheap and effective ECL reagent, and the cathode unit was a laser-induced polyoxometalate-graphene electrode, which was helpful to enhance the anode ECL signal. The intermediate functional sensing unit consisted of a temperature-sensitive conductive film. Further, using a carbon nano-onion nanocomposite with excellent absorption performance in the near-infrared region as a signal tag not only leads to changes in the electrical conductivity of the film through heat transfer and thus affects the ECL signal but also produces a strong PA response. With this design, PA and ECL signals can be output simultaneously. This work not only realizes multiple modularization processes in the design of sensors but also implements the diversification of signal output modes, which will enrich the joint research field of ECL detection technology and other new detection methods.


Assuntos
Técnicas Biossensoriais , Grafite , Neoplasias Ovarianas , Ânions , Técnicas Biossensoriais/métodos , Carbono , Técnicas Eletroquímicas/métodos , Eletrodos , Amarelo de Eosina-(YS) , Feminino , Grafite/química , Humanos , Medições Luminescentes/métodos , Cebolas , Neoplasias Ovarianas/diagnóstico , Polieletrólitos
7.
Anal Chem ; 94(32): 11449-11456, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35938606

RESUMO

In view of the outstanding catalytic efficiency, single-atom catalysts (SACs) have shown great promise for the construction of sensitive chemiluminescent (CL) platforms. However, the low loading amount of active sites dramatically obstructs the improved catalytic activity of these metal SACs. Benefiting from the exceedingly unique catalytic properties of the metal-metal bonds, atomic clusters may give rise to enhancing the catalytic properties of SACs based on the synergistic effects of dual atomic-scale sites. Inspired by this, atomic Co3N clusters-assisted Co SACs (Co3N@Co SACs) were synthesized through a facile doping method. Through X-ray absorption spectroscopy, the active metal sites in the synergetic dual-site atomic catalysts of Co3N@Co SACs were confirmed to be Co-O4 and Co3-N moieties. Co3N@Co SACs served as a superior co-reactant to remarkably enhance the luminol CL signal by 2155.0 times, which was prominently superior to the boosting effect of the pure Co SACs (98.4 times). The synergetic dual-site atomic catalysts contributed to accelerating the decomposition of H2O2 into singlet oxygen as well as superoxide radical anions to display superb catalytic performances. For a concept employment, Co3N@Co SACs were attempted to utilize as CL probes for establishing a sensitive immunochromatographic assay to quantitate pesticide residues, in which imidacloprid was adopted as the model analyte. The quantitative range of imidacloprid was 0.05-10 ng mL-1 with a detection limit of 1.7 pg mL-1 (3σ). Furthermore, the satisfactory recovery values in mock herbal medicine samples demonstrated the effectiveness of the proposed Co3N@Co SAC-based CL platform. In the proof-of-concept work, synergetic dual-site atomic catalysts show great perspectives on trace analysis and luminescent biosensing.


Assuntos
Peróxido de Hidrogênio , Medições Luminescentes , Catálise , Peróxido de Hidrogênio/química , Luminescência , Medições Luminescentes/métodos , Luminol/química
8.
J AOAC Int ; 106(1): 205-211, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35904530

RESUMO

BACKGROUND: Scientific, accurate, and rapid detection of the composition and content of tea polyphenols is an important basis for their rational use and giving full play to their physiological effect. The spectrophotometric assays for total polyphenols have poor selectivity. Therefore, there is a need to develop a simple and reliable method for the determination of the total polyphenolic level in tea products. OBJECTIVE: The aim of this research was to develop a flow injection chemiluminescence (FI-CL) method based on the Ag(III)-luminol system for the total polyphenol content analysis of tea and substitute tea. METHOD: Through Box-Behnken experimental design, we selected the optimum determination condition. The Ag(III) concentration was 5 × 10-5 mol/L, and the luminol concentration was 3 × 10-7 mol/L (including 0.15 mol/L NaOH). The peristaltic pump is 25 r/min, and the photomultiplier voltage is 600 v. Sample extracts were diluted 100 000 times for the FI-CL assay. RESULTS: Under optimal conditions, CL intensities were proportional to total polyphenol content (in terms of gallic acid concentrations) in the range of 0.1∼100 µg/L. The LOD and LOQ were 0.03 µg/L and 0.1 µg/L. The recovery values were in the range of 86.3-111.0% with a RSD of 1.04∼2.62%. The polyphenolic content of 12 teas and 6 substitute teas was determined, and the results of the developed method and Folin-Ciocalteu method were highly correlated (r = 0.9493 for tea and r = 0.8533 for substitute tea). CONCLUSIONS: The proposed method is better than the Folin-Ciocalteu method in terms of selectivity, sensitivity, and accuracy. It is suitable for the determination of polyphenol content not only in tea, but also in substitute tea. HIGHLIGHTS: We developed a new flow-injection analysis method for polyphenolic content determination based on the Ag(III)-luminol chemiluminescence system. It is simple, rapid, sensitive, and accurate. It is suitable for the determination of polyphenols content not only in tea, but also in substitute tea.


Assuntos
Luminol , Polifenóis , Polifenóis/análise , Luminol/análise , Luminescência , Medições Luminescentes/métodos , Análise de Injeção de Fluxo/métodos , Chá
9.
Methods Mol Biol ; 2524: 149-162, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821469

RESUMO

This chapter introduces a simple and robust in vitro viability assay to screen bioactive small molecules (e.g., natural, synthetic) against the monomorphic and infective (bloodstream) form of Trypanosoma brucei brucei. The assay relies on a bioluminescent transgenic parasite harboring a genetically encoded copy of a thermostable redshifted firefly luciferase from Photinus pyralis.The major advantages of the assay are simplicity and cost efficiency, along with excellent quality parameters. The bioassay allows estimating parasite numbers and viability (and metabolic state) as a function of bioluminescence (BL) signal. Parasites are grown in the presence of the molecules of interest in a 96-well microplate, and 24 h later, BL is determined with a simple protocol lacking washing steps, using cost-efficient reagents with a reasonable readout time for high-throughput applications.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Medições Luminescentes , Trypanosoma brucei brucei , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Luciferases de Vaga-Lume , Medições Luminescentes/métodos , Trypanosoma brucei brucei/efeitos dos fármacos
10.
Food Chem ; 390: 133200, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35580516

RESUMO

Mycotoxins contamination, especially aflatoxin B1 (AFB1) in edible oils, is a health hazard. Therefore, AFB1 trace analysis methods are urgently needed. Electrochemiluminescence (ECL) is a popular sensing method because of its low background interference and high sensitivity. However, existing ECL assays for AFB1 detection are based on aqueous rather than oil systems. Herein, we report a CH3NH3PbBr3 quantum dots (MAPB QDs)@SiO2-based ECL sensor for AFB1 quantification in corn oil using an organic electrolyte. The luminophore loading and stability of the MAPB QDs@SiO2 particles were significantly improved compared to those of bulky MAPB materials, resulting in an enhanced ECL response. Further, exploiting molecular imprinting technology, an ECL sensor for AFB1 detection with an ultra-low detection limit of 8.5 fg/mL was prepared. The reliability of the sensor was confirmed by comparable recoveries of corn oil samples with those obtained by high-performance liquid chromatography, indicating its potential for food safety evaluation.


Assuntos
Técnicas Biossensoriais , Pontos Quânticos , Aflatoxina B1/análise , Técnicas Biossensoriais/métodos , Óleo de Milho/análise , Técnicas Eletroquímicas/métodos , Eletrólitos , Limite de Detecção , Medições Luminescentes/métodos , Pontos Quânticos/química , Reprodutibilidade dos Testes , Dióxido de Silício/química
11.
Photochem Photobiol ; 98(1): 184-192, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34333799

RESUMO

Among numerous bioluminescent organisms, firefly is the most studied one. Recent experiment proposed that sulfoluciferin (SLH2 ) may serve as a storage form of luciferin (LH2 ). In the present article, we employed density functional theory calculation to uncover the mechanism and detailed process of the storage and release reactions. Due to lack of available crystallographic structure of the related enzyme, the calculation was performed on a model system. For the storage reaction, possible amino acid residues were used for imitating the protein environment. For the release reaction, the dielectric constant of 3.0 was employed to simulate the polarity of the protein cavity. The computational results indicated that the reactions from LH2 to SLH2 and from SLH2 to LH2 are both exergonic, which favor the storage and release processes and coincide with the experimental observation. Basing on experimental and current theoretical study, we supplemented the stages of LH2 storage and release in the entire bioluminescent cycle of firefly. The current theoretical calculation could inspire the study on LH2 storage and release of other bioluminescent organisms.


Assuntos
Vaga-Lumes , Luciferina de Vaga-Lumes , Aminoácidos , Animais , Luciferina de Vaga-Lumes/química , Luciferases de Vaga-Lume/metabolismo , Luciferinas , Medições Luminescentes/métodos , Modelos Teóricos
12.
Int Arch Allergy Immunol ; 183(5): 490-497, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34915490

RESUMO

BACKGROUND: Light-initiated chemiluminescence assay (LICA) is a homogeneous assay that has been successfully used for the quantitation of food allergen-specific immunoglobulin E (sIgE), but not inhaled allergen-sIgE. Simultaneously, current assays used to detect allergen-sIgE are serum consuming and/or time consuming. Hence, we established a method for the quantitation of Artemisia-sIgE based on LICA and verified its performance according to the clinical guideline documents, laying a foundation for the quantitation of inhaled and food allergen-sIgE in parallel on LICA. METHODS: The assay was established after optimizing the first incubation time and the dilutions of Artemisia-coated chemibeads, biotinylated goat anti-human IgE, and serum. In order to quantitate Artemisia-sIgE, the calibration curve was established with a high positive serum of known concentration. The assay performance was confirmed per the clinical guideline documents. In addition, the correlation between the results of LICA and capture enzyme-linked immunosorbent assay was evaluated. RESULTS: The developed LICA's coefficients of variation of repeatability and intermediate precision were 3.20%, 2.14%, and 3.85% and 4.30%, 4.00%, and 4.40%, respectively. The limit of detection was 0.10 kUA/L, and the limit of quantitation was 0.11 kUA/L. The range of linearity was from 0.27 kUA/L to 97.53 kUA/L (r = 0.9968). The correlation coefficient (r) for the correlation analysis between results of LICA and capture ELISA was 0.9087. This assay was successfully applied in 64 human serum samples, showing good sensitivity (82.20%) and specificity (100%). CONCLUSION: An Artemisia-sIgE quantitation assay based on LICA was successfully established. Its performance satisfied the clinical requirements and could be widely used in clinical laboratories.


Assuntos
Artemisia , Alérgenos , Imunoglobulina E , Luminescência , Medições Luminescentes/métodos
13.
Molecules ; 26(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361800

RESUMO

Thin-layer chromatography (TLC) bioautography is an evolving technology that integrates the separation and analysis technology of TLC with biological activity detection technology, which has shown a steep rise in popularity over the past few decades. It connects TLC with convenient, economic and intuitive features and bioautography with high levels of sensitivity and specificity. In this study, we discuss the research progress of TLC bioautography and then establish a definite timeline to introduce it. This review summarizes known TLC bioautography types and practical applications for determining antibacterial, antifungal, antitumor and antioxidant compounds and for inhibiting glucosidase, pancreatic lipase, tyrosinase and cholinesterase activity constitutes. Nowadays, especially during the COVID-19 pandemic, it is important to identify original, natural products with anti-COVID potential compounds from Chinese traditional medicine and natural medicinal plants. We also give an account of detection techniques, including in situ and ex situ techniques; even in situ ion sources represent a major reform. Considering the current technical innovations, we propose that the technology will make more progress in TLC plates with higher separation and detection technology with a more portable and extensive scope of application. We believe this technology will be diffusely applied in medicine, biology, agriculture, animal husbandry, garden forestry, environmental management and other fields in the future.


Assuntos
Cromatografia em Camada Fina/métodos , Descoberta de Drogas/métodos , Medições Luminescentes/métodos , Animais , Anti-Infecciosos/isolamento & purificação , Antineoplásicos/isolamento & purificação , Antioxidantes/isolamento & purificação , Inibidores Enzimáticos/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana/métodos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Sensibilidade e Especificidade
14.
SLAS Discov ; 26(8): 1040-1054, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34130529

RESUMO

One of the main reasons for the lack of drug efficacy in late-stage clinical trials is the lack of specific and selective target engagement. To increase the likelihood of success of new therapeutics, one approach is to conduct proximal target engagement testing during the early phases of preclinical drug discovery. To identify and optimize selective IRAK4 inhibitors, a kinase that has been implicated in multiple inflammatory and autoimmune diseases, we established an electrochemiluminescence (ECL)-based cellular endogenous IRAK1 activation assay as the most proximal functional evaluation of IRAK4 engagement to support structure-activity relationship (SAR) studies. Since IRAK1 activation is dependent on both the IRAK4 scaffolding function in Myddosome formation and IRAK4 kinase activity for signal transduction, this assay potentially captures inhibitors with different mechanisms of action. Data from this IRAK1 assay with compounds representing different structural classes showed statistically significant correlations when compared with results from both IRAK4 biochemical kinase activity and functional peripheral blood mononuclear cell (PBMC)-derived tumor necrosis factor α (TNFα) secretion assays, validating the biological relevancy of the IRAK1 target engagement as a biomarker of the IRAK4 activity. Plate uniformity and potency reproducibility evaluations demonstrated that this assay is amenable to high throughput. Using Bland-Altman assay agreement analysis, we demonstrated that incorporating such proximal pharmacological assessment of cellular target engagement to an in vitro screening funnel for SAR studies can prevent compound optimization toward off-target activity.


Assuntos
Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Medições Luminescentes/métodos , Inibidores de Proteínas Quinases/farmacologia , Biomarcadores , Ativação Enzimática/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo
15.
Methods Mol Biol ; 2274: 53-65, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34050462

RESUMO

Reporter gene assays are powerful tools for monitoring dynamic molecular changes and for evaluating the responses that occur at the genetic elements within cells in response to exogenous molecules. In general, various protein systems can be used as reporter genes, including luciferases. Here, the present protocol introduces a unique reporter gene system for monitoring molecular events in cells using bacterial luciferase (lux), which can generate blue-green light suitable for gene reporter applications with the highest cost performance. The protocol also guides the assay conditions and necessary components for using of lux gene (lux) as a eukaryotic reporter system. The lux system can be applied to monitor variety of molecular events inside mammalian cellular systems.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Genes Reporter , Luciferases Bacterianas/metabolismo , Medições Luminescentes/métodos , Vetores Genéticos , Células HEK293 , Humanos , Luciferases Bacterianas/efeitos dos fármacos , Luciferases Bacterianas/genética
16.
J Photochem Photobiol B ; 216: 112141, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33540236

RESUMO

In the knowledge that human ultra-weak photon emission (UPE) is mainly due to the metabolic oxidative stress processes that the skin cells undergo in the presence of reactive oxygen species (ROS), external stressors (like UV radiation), but also internal stressors (like diseases or brain activity) might strongly influence the UPE. This manuscript revises the scientific advances focused on the influence of internal factors on the human UPE. According to literature, the UPE seems to be influenced by some diseases (including diabetes, hemiparesis, protoporphyria, or a typical cold), and even by the cerebral intention/relaxation (brain activity/meditation). These allow to consider UPE as a natural and promising non-invasive spectroscopic tool for helping during the diagnosis of a variety of illnesses or stress- / mood-state disorders. Nonetheless, further research is required for answering some still unresolved controversial points.


Assuntos
Medições Luminescentes/métodos , Encéfalo , Diabetes Mellitus/diagnóstico , Humanos , Técnicas In Vitro , Meditação , Paresia/diagnóstico , Fótons , Espécies Reativas de Oxigênio/metabolismo , Pele , Raios Ultravioleta
17.
J Sci Food Agric ; 101(6): 2552-2560, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33063338

RESUMO

BACKGROUND: The quality of tea is influenced by numerous factors, especially l-theanine, which is one of the important markers used to evaluate the sweetness and freshness of tea. Sensitive, rapid, and accurate detection of l-theanine is therefore useful to identify the grade and quality of tea. RESULTS: A high-sensitivity, paper-based fluorescent sensor combined with chemometrics was established to detect l-theanine in tea water based on CdTe quantum dots / corn carbon dots and nano tetra pyridel-porphine zinc (ZnTPyP). To verify the reliability of this method, fluorescence spectra and fluorescence-visualized paper-based sensors were compared. The fluorescence spectrum method demonstrated a linear range of 1 to 10 000 nmol L-1 and a limit of detection (LOD) of 0.19 nmol L-1 . In the fluorescence-visualized paper-based sensors there was a linear range of 10-1000 nmol L-1 , and the LOD was 10 nmol L-1 . Partial least squares discriminant analysis (PLSDA) and partial least squares regression analysis (PLSR) were used successfully to determine l-theanine accurately in tea water with this approach. The accuracy of the PLSDA model was 100% both in the training set and the predicting set, and the correlation coefficient between the actual concentration and the predicted concentration was greater than 0.9997 in the PLSR model. CONCLUSION: This fluorescence-visualized paper-based sensor, combined with chemometrics, could be applied efficiently to the practical analysis of tea water samples, which provides a new idea to ensure the flavor and quality of tea. © 2020 Society of Chemical Industry.


Assuntos
Análise de Alimentos/métodos , Medições Luminescentes/métodos , Chá/química , Telúrio/análise , Compostos de Cádmio/química , Fluorescência , Análise de Alimentos/instrumentação , Qualidade dos Alimentos , Limite de Detecção , Medições Luminescentes/instrumentação , Porfirinas/química , Pontos Quânticos/química , Telúrio/química , Zea mays/química
18.
Biomed Pharmacother ; 134: 111095, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33341048

RESUMO

Photooxidation generates reactive oxygen species (ROS) through the interaction of dyes or surfaces with light radiation of appropriate wavelength. The reaction is of wide utility and is highly effective in photodynamic therapy (PDT) of various types of cancer and skin disease. Understanding generation of singlet oxygen has contributed to the development of PDT and its subsequent use in vivo. However, this therapy has some limitations that prevent its use in the treatment of cancers located deep within the body. The limited depth of light penetration through biological tissue limits initiation of PDT action in deep tissue. Measurement of oxygen photo consumption is critical due to tumor hypoxia, and use of magnetic resonance imaging (MRI) is particularly attractive since it is non-invasive. This article presents bioluminescence (BL) and chemiluminescence (CL) phenomena based on publications from the last 20 years, and preliminary results from our lab in the use of MRI to measure oxygen concentration in water. Current work is aimed at improving the effectiveness of singlet oxygen delivery to deep tissue cancer.


Assuntos
Neoplasias/tratamento farmacológico , Consumo de Oxigênio , Fotoquimioterapia/métodos , Linhagem Celular Tumoral , Humanos , Luminescência , Medições Luminescentes/métodos , Imageamento por Ressonância Magnética/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio , Oxigênio Singlete/metabolismo , Dermatopatias/tratamento farmacológico
19.
J Antibiot (Tokyo) ; 73(12): 828-836, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32678336

RESUMO

The need for the discovery of new antibiotics and solving the antibiotic resistance problem requires rapid detection of antibiotics, identification of known antibiotics, and prediction of antibiotic mechanisms. The bacterial lux genes encode proteins that convert chemical energy into photonic energy and lead to bioluminescence. Exploiting this phenomenon, we constructed a lux-based bioluminescence system in Staphylococcus aureus by expressing lux genes under the control of stress-inducible chaperon promoters. When experiencing antibiotic stress, these constructed reporter strains showed clear bioluminescence response. Therefore, this bioluminescence screening system can be used for the detection of antibiotics in unknown chemical mixtures. Further analysis of bioluminescence response patterns showed that: (1) these bioluminescence response patterns are highly antibiotic specific and therefore can be used for rapid and cheap identification of antibiotics; and that (2) antibiotics having the same mechanism of action have similar bioluminescence patterns and therefore these patterns can be used for the prediction of mechanism for an unknown antibiotic with good sensitivity and specificity. With this bioluminescence screening assay, the discovery and analysis of new antibiotics can be promoted, which benefits in solving the antibiotic resistance problem.


Assuntos
Antibacterianos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Medições Luminescentes/métodos , Testes de Sensibilidade Microbiana/métodos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo
20.
Biochem Pharmacol ; 177: 113934, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32224136

RESUMO

The A3 adenosine receptor (A3AR) is a G protein-coupled receptor that is involved in a wide variety of physiological and pathological processes, such as cancer. However, the use of compounds pharmacologically targeting this receptor remains limited in clinical practice, despite extensive efforts for compound synthesis. Moreover, the possible occurrence of biased agonism further complicates the interpretation of the functional characteristics of compounds. Hence the need for simple assays, which are comparable in terms of the used cell lines and read-out technique. We previously established a stable ß-arrestin 2 (ßarr2) bioassay, employing a simple, luminescent read-out via functional complementation of a split nanoluciferase enzyme. Here, we developed a complementary, new bioassay in which coupling of an engineered miniGαi protein to activated A3AR is monitored using a similar approach. Application of both bioassays for the concurrent determination of the potencies and efficacies of a set of 19 N6-substituted adenosine analogues not only allowed for the characterization of structure-activity relationships, but also for the quantification of biased agonism. Although a broad distribution in potency and efficacy values was obtained within the test panel, no significant bias was observed toward either the ßarr2 or miniGαi pathway.


Assuntos
Agonistas do Receptor A3 de Adenosina/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Receptor A3 de Adenosina/metabolismo , beta-Arrestina 2/metabolismo , Adenosina/análogos & derivados , Agonistas do Receptor A3 de Adenosina/síntese química , Citometria de Fluxo/métodos , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Ligantes , Medições Luminescentes/métodos , Receptor A3 de Adenosina/genética , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Transdução Genética/métodos , Transfecção/métodos , beta-Arrestina 2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA