Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Diabetes Obes Metab ; 26 Suppl 2: 34-45, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38450938

RESUMO

Hypothalamic obesity (HO) is a rare and complex disorder that confers substantial morbidity and excess mortality. HO is a unique subtype of obesity characterized by impairment in the key brain pathways that regulate energy intake and expenditure, autonomic nervous system function, and peripheral hormonal signalling. HO often occurs in the context of hypothalamic syndrome, a constellation of symptoms that follow from disruption of hypothalamic functions, for example, temperature regulation, sleep-wake circadian control, and energy balance. Genetic forms of HO, including the monogenic obesity syndromes, often impact central leptin-melanocortin pathways. Acquired forms of HO occur as a result of tumours impacting the hypothalamus, such as craniopharyngioma, surgery or radiation to treat those tumours, or other forms of hypothalamic damage, such as brain injury impacting the region. Risk for severe obesity following hypothalamic injury is increased with larger extent of hypothalamic damage or lesions that contain the medial and posterior hypothalamic nuclei that support melanocortin signalling pathways. Structural damage in these hypothalamic nuclei often leads to hyperphagia, central insulin and leptin resistance, decreased sympathetic activity, low energy expenditure, and increased energy storage in adipose tissue, the collective effect of which is rapid weight gain. Individuals with hyperphagia are perpetually hungry. They do not experience fullness at the end of a meal, nor do they feel satiated after meals, leading them to consume larger and more frequent meals. To date, most efforts to treat HO have been disappointing and met with limited, if any, long-term success. However, new treatments based on the distinct pathophysiology of disturbed energy homeostasis in acquired HO may hold promise for the future.


Assuntos
Craniofaringioma , Doenças Hipotalâmicas , Neoplasias Hipofisárias , Humanos , Leptina/metabolismo , Doenças Hipotalâmicas/complicações , Doenças Hipotalâmicas/terapia , Doenças Hipotalâmicas/metabolismo , Obesidade/complicações , Obesidade/terapia , Obesidade/genética , Hipotálamo/metabolismo , Craniofaringioma/complicações , Craniofaringioma/terapia , Craniofaringioma/metabolismo , Hiperfagia , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia , Melanocortinas/metabolismo , Metabolismo Energético/fisiologia
2.
Mol Metab ; 80: 101886, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246589

RESUMO

OBJECTIVE: The central melanocortin system is essential for the regulation of food intake and body weight. Agouti-related protein (AgRP) is the sole orexigenic component of the central melanocortin system and is conserved across mammalian species. AgRP is currently known to be expressed exclusively in the mediobasal hypothalamus, and hypothalamic AgRP-expressing neurons are essential for feeding. Here we characterized a previously unknown population of AgRP cells in the mouse hindbrain. METHODS: Expression of AgRP in the hindbrain was investigated using gene expression analysis, single-cell RNA sequencing, immunofluorescent analysis and multiple transgenic mice with reporter expressions. Activation of AgRP neurons was achieved by Designer Receptors Exclusively Activated by Designer Drugs (DREADD) and by transcranial focal photo-stimulation using a step-function opsin with ultra-high light sensitivity (SOUL). RESULTS: AgRP expressing cells were present in the area postrema (AP) and the adjacent subpostrema area (SubP) and commissural nucleus of the solitary tract (cNTS) of the mouse hindbrain (termed AgRPHind herein). AgRPHind cells consisted of locally projecting neurons as well as tanycyte-like cells. Food deprivation stimulated hindbrain Agrp expression as well as neuronal activity of subsets of AgRPHind cells. In adult mice that lacked hypothalamic AgRP neurons, chemogenetic activation of AgRP neurons resulted in hyperphagia and weight gain. In addition, transcranial focal photo-stimulation of hindbrain AgRP cells increased food intake in adult mice with or without hypothalamic AgRP neurons. CONCLUSIONS: Our study indicates that the central melanocortin system in the hindbrain possesses an orexigenic component, and that AgRPHind neurons stimulate feeding independently of hypothalamic AgRP neurons.


Assuntos
Hipotálamo , Melanocortinas , Camundongos , Animais , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Hipotálamo/metabolismo , Camundongos Transgênicos , Melanocortinas/metabolismo , Rombencéfalo/metabolismo , Mamíferos/metabolismo
3.
J Neuroendocrinol ; 36(2): e13366, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38279680

RESUMO

The arcuate nucleus is a crucial hypothalamic brain region involved in regulating body weight homeostasis. Neurons within the arcuate nucleus respond to peripheral metabolic signals, such as leptin, and relay these signals via neuronal projections to brain regions both within and outside the hypothalamus, ultimately causing changes in an animal's behaviour and physiology. There is a substantial amount of evidence to indicate that leptin is intimately involved with the postnatal development of arcuate nucleus melanocortin circuitry. Further, it is clear that leptin signalling directly in the arcuate nucleus is required for circuitry development. However, as leptin receptor long isoform (Leprb) mRNA is expressed in multiple nuclei within the developing hypothalamus, including the postsynaptic target regions of arcuate melanocortin projections, this raises the possibility that leptin also signals in these nuclei to promote circuitry development. Here, we used RT-qPCR and RNAscope® to reveal the spatio-temporal pattern of Leprb mRNA in the early postnatal mouse hypothalamus. We found that Leprb mRNA expression increased significantly in the arcuate nucleus, ventromedial nucleus and paraventricular nucleus of the hypothalamus from P8, in concert with the leptin surge. In the dorsomedial nucleus of the hypothalamus, increases in Leprb mRNA were slightly later, increasing significantly from P12. Using duplex RNAscope®, we found Leprb co-expressed with Sim1, Pou3f2, Mc4r and Bdnf in the paraventricular nucleus at P8. Together, these data suggest that leptin may signal in a subset of neurons postsynaptic to arcuate melanocortin neurons, as well as within the arcuate nucleus itself, to promote the formation of arcuate melanocortin circuitry during the early postnatal period.


Assuntos
Leptina , Receptores para Leptina , Animais , Camundongos , Leptina/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Melanocortinas/metabolismo , RNA Mensageiro/metabolismo
4.
J Neurochem ; 165(4): 467-486, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36648204

RESUMO

The discovery of leptin in 1994 was an "eureka moment" in the field of neurometabolism that provided new opportunities to better understand the central control of energy balance and glucose metabolism. Rapidly, a prevalent model in the field emerged that pro-opiomelanocortin (POMC) neurons were key in promoting leptin's anorexigenic effects and that the arcuate nucleus of the hypothalamus (ARC) was a key region for the regulation of energy homeostasis. While this model inspired many important discoveries, a growing body of literature indicates that this model is now outdated. In this review, we re-evaluate the hypothalamic leptin-melanocortin model in light of recent advances that directly tackle previous assumptions, with a particular focus on the ARC. We discuss how segregated and heterogeneous these neurons are, and examine how the development of modern approaches allowing spatiotemporal, intersectional, and chemogenetic manipulations of melanocortin neurons has allowed a better definition of the complexity of the leptin-melanocortin system. We review the importance of leptin in regulating glucose homeostasis, but not food intake, through direct actions on ARC POMC neurons. We further highlight how non-POMC, GABAergic neurons mediate leptin's direct effects on energy balance and influence POMC neurons.


Assuntos
Leptina , Melanocortinas , Melanocortinas/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo , Metabolismo Energético/fisiologia
5.
J Comp Neurol ; 531(1): 89-115, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36217593

RESUMO

The melanocortin system is a key regulator of appetite and food intake in vertebrates. This system includes the neuropeptides neuropeptide y (NPY), agouti-related peptide (AGRP), cocaine- and amphetamine-regulated transcript (CART), and pro-opiomelanocortin (POMC). An important center for appetite control in mammals is the hypothalamic arcuate nucleus, with neurons that coexpress either the orexigenic NPY/AGRP or the anorexigenic CART/POMC neuropeptides. In ray-finned fishes, such a center is less characterized. The Atlantic salmon (Salmo salar) has multiple genes of these neuropeptides due to whole-genome duplication events. To better understand the potential involvement of the melanocortin system in appetite and food intake control, we have mapped the mRNA expression of npy, agrp, cart, and pomc in the brain of Atlantic salmon parr using in situ hybridization. After identifying hypothalamic mRNA expression, we investigated the possible intracellular coexpression of npy/agrp and cart/pomc in the tuberal hypothalamus by fluorescent in situ hybridization. The results showed that the neuropeptides were widely distributed, especially in sensory and neuroendocrine brain regions. In the hypothalamic lateral tuberal nucleus, the putative homolog to the mammalian arcuate nucleus, npya, agrp1, cart2b, and pomca were predominantly localized in distinct neurons; however, some neurons coexpressed cart2b/pomca. This is the first demonstration of coexpression of cart2b/pomca in the tuberal hypothalamus of a teleost. Collectively, our data suggest that the lateral tuberal nucleus is the center for appetite control in salmon, similar to that of mammals. Extrahypothalamic brain regions might also be involved in regulating food intake, including the olfactory bulb, telencephalon, midbrain, and hindbrain.


Assuntos
Neuropeptídeos , Salmo salar , Animais , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Pró-Opiomelanocortina/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Melanocortinas/genética , Melanocortinas/metabolismo , Hibridização in Situ Fluorescente , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Hipotálamo/metabolismo , Encéfalo/metabolismo , RNA Mensageiro/metabolismo , Mamíferos
6.
Clin Transl Med ; 12(11): e1091, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36314066

RESUMO

BACKGROUND: The melanocortin receptor accessory proteins (MRAP1 and MRAP2) are well-known endocrine regulators for the trafficking and signalling of all five melanocortin receptors (MC1R-MC5R). The observation of MRAP2 on regulating several non-melanocortin G protein-coupled receptors (GPCRs) has been sporadically reported, whereas other endogenous GPCR partners of the MRAP protein family are largely unknown. METHODS: Here, we performed single-cell transcriptome analysis and drew a fine GPCR blueprint and MRAPs-associated network of two major endocrine organs, the hypothalamus and adrenal gland at single-cell resolution. We also integrated multiple bulk RNA-seq profiles and single-cell datasets of human and mouse tissues, and narrowed down a list of 48 GPCRs with strong endogenous co-expression correlation with MRAPs. RESULTS: 36 and 46 metabolic-related GPCRs were consequently identified as novel interacting partners of MRAP1 or MRAP2, respectively. MRAPs exhibited protein-protein interactions and varying pharmacological properties on the surface translocation, constitutive activities and ligand-stimulated downstream signalling of these GPCRs. Knockdown of MRAP2 expression by hypothalamic administration of adeno-associated virus (AAV) packed shRNA stimulated body weight gain in mouse model. Co-injection of corticotropinreleasing factor (CRF), the agonist of corticotropin releasing hormone receptor 1 (CRHR1), suppressed feeding behaviour in a MRAP2-dependent manner. CONCLUSIONS: Collectively, our study has comprehensively elucidated the complex GPCR networks in two major endocrine organs and redefined the MRAP protein family as broad-spectrum GPCR modulators. MRAP proteins not only serve as a vital endocrine pivot on the regulation of global GPCR activities in vivo that could explain the composite physiological phenotypes of the MRAP2 null murine model but also provide us with new insights of the phenotyping investigation of GPCR-MRAP functional complexes.


Assuntos
Proteínas de Transporte , Receptores de Melanocortina , Animais , Humanos , Camundongos , Receptores de Melanocortina/genética , Receptores de Melanocortina/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Melanocortinas/metabolismo , Glândulas Suprarrenais/metabolismo , Hipotálamo/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
7.
Int J Mol Sci ; 23(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35742824

RESUMO

Both hypothalamic microglial inflammation and melanocortin pathway dysfunction contribute to diet-induced obesity (DIO) pathogenesis. Previous studies involving models of altered microglial signaling demonstrate altered DIO susceptibility with corresponding POMC neuron cytological changes, suggesting a link between microglia and the melanocortin system. We addressed this hypothesis using the specific microglial silencing molecule, CX3CL1 (fractalkine), to determine whether reducing hypothalamic microglial activation can restore POMC/melanocortin signaling to protect against DIO. We performed metabolic analyses in high fat diet (HFD)-fed mice with targeted viral overexpression of CX3CL1 in the hypothalamus. Electrophysiologic recording in hypothalamic slices from POMC-MAPT-GFP mice was used to determine the effects of HFD feeding and microglial silencing via minocycline or CX3CL1 on GFP-labeled POMC neurons. Finally, mice with hypothalamic overexpression of CX3CL1 received central treatment with the melanocortin receptor antagonist SHU9119 to determine whether melanocortin signaling is required for the metabolic benefits of CX3CL1. Hypothalamic overexpression of CX3CL1 increased leptin sensitivity and POMC gene expression, while reducing weight gain in animals fed an HFD. In electrophysiological recordings from hypothalamic slice preparations, HFD feeding was associated with reduced POMC neuron excitability and increased amplitude of inhibitory postsynaptic currents. Microglial silencing using minocycline or CX3CL1 treatment reversed these HFD-induced changes in POMC neuron electrophysiologic properties. Correspondingly, blockade of melanocortin receptor signaling in vivo prevented both the acute and chronic reduction in food intake and body weight mediated by CX3CL1. Our results show that suppressing microglial activation during HFD feeding reduces DIO susceptibility via a mechanism involving increased POMC neuron excitability and melanocortin signaling.


Assuntos
Dieta Hiperlipídica , Melanocortinas , Animais , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Melanocortinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Minociclina/farmacologia , Neurônios/metabolismo , Obesidade/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo
8.
Exp Mol Med ; 54(4): 403-413, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35474338

RESUMO

The melanocortin system plays a critical role in the central regulation of food intake and energy balance. This system consists of neurons producing pro-opiomelanocortin (POMC), melanocortin receptors (MC4Rs), and the endogenous antagonist agouti-related peptide (AgRP). Pomc and Mc4r deficiency in rodents and humans causes early onset of obesity, whereas a loss of Agrp function is associated with leanness. Accumulating evidence shows that many chronic diseases, including obesity, might originate during early life. The melanocortin system develops during a relatively long period beginning during embryonic life with the birth of POMC and AgRP neurons and continuing postnatally with the assembly of their neuronal circuitry. The development of the melanocortin system requires the tight temporal regulation of molecular factors, such as transcription factors and axon guidance molecules, and cellular mechanisms, such as autophagy. It also involves a complex interplay of endocrine and nutritional factors. The disruption of one or more of these developmental factors can lead to abnormal maturation and function of the melanocortin system and has profound metabolic consequences later in life.


Assuntos
Melanocortinas , Pró-Opiomelanocortina , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Humanos , Hipotálamo/metabolismo , Melanocortinas/metabolismo , Obesidade/metabolismo , Peptídeos/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo
9.
Front Endocrinol (Lausanne) ; 13: 848728, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35311242

RESUMO

Melanin concentrating hormone (MCH), an orexigenic neuropeptide, is primarily secreted by the hypothalamus and acts on its receptor, the melanin-concentrating hormone receptor 1 (MCHR1), to regulate appetite and energy homeostasis. The Melanocortin Receptor Accessory Protein 2 (MRAP2), a small single transmembrane protein broadly expressed in multiple tissues, has been defined as a vital endocrine modulator of five melanocortin receptors (MC1R-MC5R) and several other GPCRs in the regulation of central neuronal activities and peripheral energy balance. Here, we demonstrated the interaction between MRAP2 and MCHR1 by immunoprecipitation and bimolecular fluorescent assay and found that MRAP2 could inhibit MCHR1 signaling in vitro. A series of functional truncations of different regions further identified that the C-terminal domains of MRAP2 protein were required for the pharmacological modulation of intracellular Ca2+ coupled cascades and membrane transport. These findings elucidated the broad regulatory profile of MRAP2 protein in the central nervous system and may provide implications for the modulation of central MCHR1 function in vivo.


Assuntos
Melanocortinas , Neuropeptídeos , Hipotálamo/metabolismo , Melanocortinas/metabolismo , Neuropeptídeos/metabolismo , Receptores de Melanocortina , Transdução de Sinais
10.
Nature ; 599(7885): 436-441, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34732894

RESUMO

The state of somatic energy stores in metazoans is communicated to the brain, which regulates key aspects of behaviour, growth, nutrient partitioning and development1. The central melanocortin system acts through melanocortin 4 receptor (MC4R) to control appetite, food intake and energy expenditure2. Here we present evidence that MC3R regulates the timing of sexual maturation, the rate of linear growth and the accrual of lean mass, which are all energy-sensitive processes. We found that humans who carry loss-of-function mutations in MC3R, including a rare homozygote individual, have a later onset of puberty. Consistent with previous findings in mice, they also had reduced linear growth, lean mass and circulating levels of IGF1. Mice lacking Mc3r had delayed sexual maturation and an insensitivity of reproductive cycle length to nutritional perturbation. The expression of Mc3r is enriched in hypothalamic neurons that control reproduction and growth, and expression increases during postnatal development in a manner that is consistent with a role in the regulation of sexual maturation. These findings suggest a bifurcating model of nutrient sensing by the central melanocortin pathway with signalling through MC4R controlling the acquisition and retention of calories, whereas signalling through MC3R primarily regulates the disposition of calories into growth, lean mass and the timing of sexual maturation.


Assuntos
Desenvolvimento Infantil/fisiologia , Estado Nutricional/fisiologia , Puberdade/fisiologia , Receptor Tipo 3 de Melanocortina/metabolismo , Maturidade Sexual/fisiologia , Adolescente , Idoso de 80 Anos ou mais , Animais , Criança , Ciclo Estral/genética , Ciclo Estral/fisiologia , Feminino , Homozigoto , Humanos , Hipotálamo/citologia , Hipotálamo/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Melanocortinas/metabolismo , Menarca/genética , Menarca/fisiologia , Camundongos , Fenótipo , Puberdade/genética , Receptor Tipo 3 de Melanocortina/deficiência , Receptor Tipo 3 de Melanocortina/genética , Maturidade Sexual/genética , Fatores de Tempo , Aumento de Peso
11.
Nat Commun ; 12(1): 5175, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462445

RESUMO

Calcitonin receptor (Calcr)-expressing neurons of the nucleus tractus solitarius (NTS; CalcrNTS cells) contribute to the long-term control of food intake and body weight. Here, we show that Prlh-expressing NTS (PrlhNTS) neurons represent a subset of CalcrNTS cells and that Prlh expression in these cells restrains body weight gain in the face of high fat diet challenge in mice. To understand the relationship of PrlhNTS cells to hypothalamic feeding circuits, we determined the ability of PrlhNTS-mediated signals to overcome enforced activation of AgRP neurons. We found that PrlhNTS neuron activation and Prlh overexpression in PrlhNTS cells abrogates AgRP neuron-driven hyperphagia and ameliorates the obesity of mice deficient in melanocortin signaling or leptin. Thus, enhancing Prlh-mediated neurotransmission from the NTS dampens hypothalamically-driven hyperphagia and obesity, demonstrating that NTS-mediated signals can override the effects of orexigenic hypothalamic signals on long-term energy balance.


Assuntos
Obesidade/metabolismo , Hormônio Liberador de Prolactina/metabolismo , Núcleo Solitário/metabolismo , Animais , Apetite , Dieta , Ingestão de Alimentos , Metabolismo Energético , Feminino , Humanos , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Melanocortinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Obesidade/genética , Obesidade/fisiopatologia , Obesidade/psicologia , Hormônio Liberador de Prolactina/genética , Receptores da Calcitonina/genética , Receptores da Calcitonina/metabolismo
12.
Mol Metab ; 53: 101317, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34400348

RESUMO

OBJECTIVE: Homo- or heterodimerization of G protein-coupled receptors (GPCRs) generally alters the normal functioning of these receptors and mediates their responses to a variety of physiological stimuli in vivo. It is well known that melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) are key regulators of appetite and energy homeostasis in the central nervous system (CNS). However, the GPCR partners of MC3R and MC4R are not well understood. Our objective is to analyze single cell RNA-seq datasets of the hypothalamus to explore and identify novel GPCR partners of MC3R and MC4R and examine the pharmacological effect on the downstream signal transduction and membrane translocation of melanocortin receptors. METHODS: We conducted an integrative analysis of multiple single cell RNA-seq datasets to reveal the expression pattern and correlation of GPCR families in the mouse hypothalamus. The emerging GPCRs with important metabolic functions were selected for cloning and co-immunoprecipitation validation. The positive GPCR partners were then tested for the pharmacological activation, competitive binding assay and surface translocation ELISA experiments. RESULTS: Based on the expression pattern of GPCRs and their function enrichment results, we narrowed down the range of potential GPCR interaction with MC3R and MC4R for further confirmation. Co-immunoprecipitation assay verified 23 and 32 novel GPCR partners that interacted with MC3R and MC4R in vitro. The presence of these GPCR partners exhibited different effects in the physiological regulation and signal transduction of MC3R and MC4R. CONCLUSIONS: This work represented the first large-scale screen for the functional GPCR complex of central melanocortin receptors and defined a composite metabolic regulatory GPCR network of the hypothalamic nucleuses.


Assuntos
Melanocortinas/metabolismo , Receptor Tipo 3 de Melanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Animais , Células Cultivadas , Células HEK293 , Humanos , Hipotálamo/metabolismo , Camundongos , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/genética , Transdução de Sinais
13.
Artigo em Inglês | MEDLINE | ID: mdl-34023535

RESUMO

Neuropeptide AF (NPAF) decreases food and water intake in birds and food intake in mammals. In this study, the objective was to determine the effects of centrally administered NPAF on food and water intake, hypothalamic c-Fos immunoreactivity and hypothalamic mRNA abundance of appetite-regulating factors in Japanese quail (Coturnix japonica). Seven days post hatch, 6 h fasted quail were intracerebroventricularly (ICV) injected with 0 (vehicle), 4, 8, or 16 nmol of NPAF and food and water intake were measured at 30 min intervals for 180 min. In Experiment 1, chicks which received 4, 8, and 16 nmol ICV NPAF had reduced food intake for 120, 60 and 180 min following injection, respectively, and reduced water intake during the entire 180 min observation. In Experiment 2, there was increased c-Fos immunoreactivity in the paraventricular nucleus, the ventromedial nucleus of the hypothalamus, and the dorsomedial hypothalamic nucleus in NPAF-injected quail. In Experiment 3, ICV NPAF was associated with decreased corticotropin-releasing factor mRNA, and an increase in hypothalamic proopiomelanocortin and melanocortin receptor 4 mRNA. These results demonstrate that central NPAF suppresses food and water intake in quail, effects that are likely mediated via the melanocortin system in the hypothalamus.


Assuntos
Apetite/efeitos dos fármacos , Ingestão de Líquidos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Melanocortinas/metabolismo , Oligopeptídeos/administração & dosagem , Animais , Anorexia/induzido quimicamente , Hormônio Liberador da Corticotropina/metabolismo , Coturnix/metabolismo , Modelos Animais de Doenças , Hipotálamo/metabolismo , Infusões Intraventriculares , Núcleo Hipotalâmico Paraventricular , Pró-Opiomelanocortina/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais
14.
Endocrinology ; 161(11)2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32961558

RESUMO

Organophosphate flame retardants (OPFRs) are a class of chemicals that have become near ubiquitous in the modern environment. While OPFRs provide valuable protection against flammability of household items, they are increasingly implicated as an endocrine disrupting chemical (EDC). We previously reported that exposure to a mixture of OPFRs causes sex-dependent disruptions of energy homeostasis through alterations in ingestive behavior and activity in adult mice. Because feeding behavior and energy expenditure are largely coordinated by the hypothalamus, we hypothesized that OPFR disruption of energy homeostasis may occur through EDC action on melanocortin circuitry within the arcuate nucleus. To this end, we exposed male and female transgenic mice expressing green fluorescent protein in either neuropeptide Y (NPY) or proopiomelanocortin (POMC) neurons to a common mixture of OPFRs (triphenyl phosphate, tricresyl phosphate, and tris(1,3-dichloro-2-propyl)phosphate; each 1 mg/kg bodyweight/day) for 4 weeks. We then electrophysiologically examined neuronal properties using whole-cell patch clamp technique. OPFR exposure depolarized the resting membrane of NPY neurons and dampened a hyperpolarizing K+ current known as the M-current within the same neurons from female mice. These neurons were further demonstrated to have increased sensitivity to ghrelin excitation, which more potently reduced the M-current in OPFR-exposed females. POMC neurons from female mice exhibited elevated baseline excitability and are indicated in receiving greater excitatory synaptic input when exposed to OPFRs. Together, these data support a sex-selective effect of OPFRs to increase neuronal output from the melanocortin circuitry governing feeding behavior and energy expenditure, and give reason for further examination of OPFR impact on human health.


Assuntos
Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Retardadores de Chama/farmacologia , Grelina/farmacologia , Melanocortinas/metabolismo , Rede Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Resistência a Medicamentos/efeitos dos fármacos , Disruptores Endócrinos/farmacologia , Feminino , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Rede Nervosa/fisiologia , Neurônios/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Organofosfatos/farmacologia , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo
15.
Nat Commun ; 11(1): 4458, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32895383

RESUMO

In rodent models of type 2 diabetes (T2D), sustained remission of hyperglycemia can be induced by a single intracerebroventricular (icv) injection of fibroblast growth factor 1 (FGF1), and the mediobasal hypothalamus (MBH) was recently implicated as the brain area responsible for this effect. To better understand the cellular response to FGF1 in the MBH, we sequenced >79,000 single-cell transcriptomes from the hypothalamus of diabetic Lepob/ob mice obtained on Days 1 and 5 after icv injection of either FGF1 or vehicle. A wide range of transcriptional responses to FGF1 was observed across diverse hypothalamic cell types, with glial cell types responding much more robustly than neurons at both time points. Tanycytes and ependymal cells were the most FGF1-responsive cell type at Day 1, but astrocytes and oligodendrocyte lineage cells subsequently became more responsive. Based on histochemical and ultrastructural evidence of enhanced cell-cell interactions between astrocytes and Agrp neurons (key components of the melanocortin system), we performed a series of studies showing that intact melanocortin signaling is required for the sustained antidiabetic action of FGF1. These data collectively suggest that hypothalamic glial cells are leading targets for the effects of FGF1 and that sustained diabetes remission is dependent on intact melanocortin signaling.


Assuntos
Diabetes Mellitus Experimental/dietoterapia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fator 1 de Crescimento de Fibroblastos/administração & dosagem , Hipoglicemiantes/administração & dosagem , Hipotálamo/efeitos dos fármacos , Proteínas Recombinantes/administração & dosagem , Proteína Relacionada com Agouti/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Glicemia/análise , Comunicação Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/administração & dosagem , Sacarose Alimentar/efeitos adversos , Humanos , Hipotálamo/citologia , Hipotálamo/patologia , Injeções Intraventriculares , Leptina/genética , Masculino , Melanocortinas/metabolismo , Hormônios Estimuladores de Melanócitos/administração & dosagem , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , RNA-Seq , Receptor Tipo 4 de Melanocortina/genética , Receptores de Melanocortina/antagonistas & inibidores , Receptores de Melanocortina/metabolismo , Indução de Remissão/métodos , Transdução de Sinais/efeitos dos fármacos , Análise de Célula Única , Técnicas Estereotáxicas , Transcriptoma/efeitos dos fármacos
16.
J Neurosci ; 40(16): 3165-3177, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32213554

RESUMO

Despite their opposing actions on food intake, POMC and NPY/AgRP neurons in the arcuate nucleus of the hypothalamus (ARH) are derived from the same progenitors that give rise to ARH neurons. However, the mechanism whereby common neuronal precursors subsequently adopt either the anorexigenic (POMC) or the orexigenic (NPY/AgRP) identity remains elusive. We hypothesize that POMC and NPY/AgRP cell fates are specified and maintained by distinct intrinsic factors. In search of them, we profiled the transcriptomes of developing POMC and NPY/AgRP neurons in mice. Moreover, cell-type-specific transcriptomic analyses revealed transcription regulators that are selectively enriched in either population, but whose developmental functions are unknown in these neurons. Among them, we found the expression of the PR domain-containing factor 12 (Prdm12) was enriched in POMC neurons but absent in NPY/AgRP neurons. To study the role of Prdm12 in vivo, we developed and characterized a floxed Prdm12 allele. Selective ablation of Prdm12 in embryonic POMC neurons led to significantly reduced Pomc expression as well as early-onset obesity in mice of either sex that recapitulates symptoms of human POMC deficiency. Interestingly, however, specific deletion of Prdm12 in adult POMC neurons showed that it is no longer required for Pomc expression or energy balance. Collectively, these findings establish a critical role for Prdm12 in the anorexigenic neuron identity and suggest that it acts developmentally to program body weight homeostasis. Finally, the combination of cell-type-specific genomic and genetic analyses provides a means to dissect cellular and functional diversity in the hypothalamus whose neurodevelopment remains poorly studied.SIGNIFICANCE STATEMENT POMC and NPY/AgRP neurons are derived from the same hypothalamic progenitors but have opposing effects on food intake. We profiled the transcriptomes of genetically labeled POMC and NPY/AgRP neurons in the developing mouse hypothalamus to decipher the transcriptional codes behind the versus orexigenic neuron identity. Our analyses revealed 29 transcription regulators that are selectively enriched in one of the two populations. We generated new mouse genetic models to selective ablate one of POMC-neuron enriched transcription factors Prdm12 in developing and adult POMC neurons. Our studies establish a previously unrecognized role for Prdm12 in the anorexigenic neuron identity and suggest that it acts developmentally to program body weight homeostasis.


Assuntos
Hipotálamo/metabolismo , Melanocortinas/metabolismo , Neurônios/metabolismo , Transcriptoma , Proteína Relacionada com Agouti/metabolismo , Animais , Peso Corporal , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Melanocortinas/genética , Camundongos , Camundongos Transgênicos , Pró-Opiomelanocortina/metabolismo
17.
J Neurosci ; 39(21): 4023-4035, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-30886014

RESUMO

Food intake is tightly regulated by a group of neurons present in the arcuate nucleus of the hypothalamus, which release Pomc-encoded melanocortins, the absence of which induces marked hyperphagia and early-onset obesity. Although the relevance of hypothalamic POMC neurons in the regulation of body weight and energy balance is well appreciated, little is known about the transcription factors that establish the melanocortin neuron identity during brain development and its phenotypic maintenance in postnatal life. Here, we report that the transcription factor NKX2.1 is present in mouse hypothalamic POMC neurons from early development to adulthood. Electromobility shift assays showed that NKX2.1 binds in vitro to NKX binding motifs present in the neuronal Pomc enhancers nPE1 and nPE2 and chromatin immunoprecipitation assays detected in vivo binding of NKX2.1 to nPE1 and nPE2 in mouse hypothalamic extracts. Transgenic and mutant studies performed in mouse embryos of either sex and adult males showed that the NKX motifs present in nPE1 and nPE2 are essential for their transcriptional enhancer activity. The conditional early inactivation of Nkx2.1 in the ventral hypothalamus prevented the onset of Pomc expression. Selective Nkx2.1 ablation from POMC neurons decreased Pomc expression in adult males and mildly increased their body weight and adiposity. Our results demonstrate that NKX2.1 is necessary to activate Pomc expression by binding to conserved canonical NKX motifs present in nPE1 and nPE2. Therefore, NKX2.1 plays a critical role in the early establishment of hypothalamic melanocortin neuron identity and participates in the maintenance of Pomc expression levels during adulthood.SIGNIFICANCE STATEMENT Food intake and body weight regulation depend on hypothalamic neurons that release satiety-inducing neuropeptides, known as melanocortins. Central melanocortins are encoded byPomc, and Pomc mutations may lead to hyperphagia and severe obesity. Although the importance of central melanocortins is well appreciated, the genetic program that establishes and maintains fully functional POMC neurons remains to be explored. Here, we combined molecular, genetic, developmental, and functional studies that led to the discovery of NKX2.1, a transcription factor that participates in the early morphogenesis of the developing hypothalamus, as a key player in establishing the early identity of melanocortin neurons by activating Pomc expression. Thus, Nkx2.1 adds to the growing list of genes that participate in body weight regulation and adiposity.


Assuntos
Melanocortinas/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Fator Nuclear 1 de Tireoide/metabolismo , Animais , Peso Corporal/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipotálamo/embriologia , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
18.
Cell ; 176(4): 729-742.e18, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30661757

RESUMO

Hypothalamic melanocortin neurons play a pivotal role in weight regulation. Here, we examined the contribution of Semaphorin 3 (SEMA3) signaling to the development of these circuits. In genetic studies, we found 40 rare variants in SEMA3A-G and their receptors (PLXNA1-4; NRP1-2) in 573 severely obese individuals; variants disrupted secretion and/or signaling through multiple molecular mechanisms. Rare variants in this set of genes were significantly enriched in 982 severely obese cases compared to 4,449 controls. In a zebrafish mutagenesis screen, deletion of 7 genes in this pathway led to increased somatic growth and/or adiposity demonstrating that disruption of Semaphorin 3 signaling perturbs energy homeostasis. In mice, deletion of the Neuropilin-2 receptor in Pro-opiomelanocortin neurons disrupted their projections from the arcuate to the paraventricular nucleus, reduced energy expenditure, and caused weight gain. Cumulatively, these studies demonstrate that SEMA3-mediated signaling drives the development of hypothalamic melanocortin circuits involved in energy homeostasis.


Assuntos
Metabolismo Energético/genética , Melanocortinas/metabolismo , Semaforinas/genética , Adolescente , Adulto , Animais , Peso Corporal , Linhagem Celular , Criança , Pré-Escolar , Modelos Animais de Doenças , Ingestão de Alimentos , Feminino , Variação Genética/genética , Homeostase , Humanos , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Obesidade/genética , Obesidade/metabolismo , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Adulto Jovem , Peixe-Zebra
19.
Nat Metab ; 1(2): 222-235, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-32694784

RESUMO

Heterogeneous populations of hypothalamic neurons orchestrate energy balance via the release of specific signatures of neuropeptides. However, how specific intracellular machinery controls peptidergic identities and function of individual hypothalamic neurons remains largely unknown. The transcription factor T-box 3 (Tbx3) is expressed in hypothalamic neurons sensing and governing energy status, whereas human TBX3 haploinsufficiency has been linked with obesity. Here, we demonstrate that loss of Tbx3 function in hypothalamic neurons causes weight gain and other metabolic disturbances by disrupting both the peptidergic identity and plasticity of Pomc/Cart and Agrp/Npy neurons. These alterations are observed after loss of Tbx3 in both immature hypothalamic neurons and terminally differentiated mouse neurons. We further establish the importance of Tbx3 for body weight regulation in Drosophila melanogaster and show that TBX3 is implicated in the differentiation of human embryonic stem cells into hypothalamic Pomc neurons. Our data indicate that Tbx3 directs the terminal specification of neurons as functional components of the melanocortin system and is required for maintaining their peptidergic identity. In summary, we report the discovery of a key mechanistic process underlying the functional heterogeneity of hypothalamic neurons governing body weight and systemic metabolism.


Assuntos
Hipotálamo/metabolismo , Melanocortinas/metabolismo , Neurônios/metabolismo , Proteínas com Domínio T/metabolismo , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Peso Corporal , Metabolismo Energético , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Hipotálamo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Pró-Opiomelanocortina/genética , RNA Mensageiro/genética , Proteínas com Domínio T/genética
20.
Mol Metab ; 17: 82-97, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30201275

RESUMO

OBJECTIVE: The lack of pro-opiomelanocortin (POMC)-derived melanocortin peptides results in hypoadrenalism and severe obesity in both humans and rodents that is treatable with synthetic melanocortins. However, there are significant differences in POMC processing between humans and rodents, and little is known about the relative physiological importance of POMC products in the human brain. The aim of this study was to determine which POMC-derived peptides are present in the human brain, to establish their relative concentrations, and to test if their production is dynamically regulated. METHODS: We analysed both fresh post-mortem human hypothalamic tissue and hypothalamic neurons derived from human pluripotent stem cells (hPSCs) using liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine the sequence and quantify the production of hypothalamic neuropeptides, including those derived from POMC. RESULTS: In both in vitro and in vivo hypothalamic cells, LC-MS/MS revealed the sequence of hundreds of neuropeptides as a resource for the field. Although the existence of ß-melanocyte stimulating hormone (MSH) is controversial, we found that both this peptide and desacetyl α-MSH (d-α-MSH) were produced in considerable excess of acetylated α-MSH. In hPSC-derived hypothalamic neurons, these POMC derivatives were appropriately trafficked, secreted, and their production was significantly (P < 0.0001) increased in response to the hormone leptin. CONCLUSIONS: Our findings challenge the assumed pre-eminence of α-MSH and suggest that in humans, d-α-MSH and ß-MSH are likely to be the predominant physiological products acting on melanocortin receptors.


Assuntos
Melanocortinas/metabolismo , alfa-MSH/metabolismo , beta-MSH/metabolismo , Cromatografia Líquida , Feminino , Homeostase/fisiologia , Humanos , Hipotálamo , Leptina/metabolismo , Masculino , Espectrometria de Massas/métodos , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptores de Melanocortina/metabolismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA