Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 18(3): e0282729, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36888689

RESUMO

The leaves of Azadirachta indica L. and Melia azedarach L., belonging to Meliaceae family, have been shown to have medicinal benefits and are extensively employed in traditional folk medicine. Herein, HPLC analysis of the ethyl acetate fraction of the total methanolic extract emphasized the enrichment of both A. indica L., and M. azedarach L. leaves extracts with phenolic and flavonoids composites, respectively. Besides, 4 limonoids and 2 flavonoids were isolated using column chromatography. By assessing the in vitro antiviral activities of both total leaves extracts against Severe Acute Respiratory Syndrome Corona virus 2 (SARS-CoV-2), it was found that A. indica L. and M. azedarach L. have robust anti-SARS-CoV-2 activities at low half-maximal inhibitory concentrations (IC50) of 8.451 and 6.922 µg/mL, respectively. Due to the high safety of A. indica L. and M. azedarach L. extracts with half-maximal cytotoxic concentrations (CC50) of 446.2 and 351.4 µg/ml, respectively, both displayed extraordinary selectivity indices (SI>50). A. indica L. and M. azedarach L. leaves extracts could induce antibacterial activities against both Gram-negative and positive bacterial strains. The minimal inhibitory concentrations of A. indica L. and M. azedarach L. leaves extracts varied from 25 to 100 mg/mL within 30 min contact time towards the tested bacteria. Our findings confirm the broad-spectrum medicinal value of A. indica L. and M. azedarach L. leaves extracts. Finally, additional in vivo investigations are highly recommended to confirm the anti-COVID-19 and antimicrobial activities of both plant extracts.


Assuntos
Azadirachta , COVID-19 , Melia azedarach , SARS-CoV-2 , Antibacterianos/farmacologia , Antibacterianos/análise , Bactérias , Extratos Vegetais/farmacologia , Extratos Vegetais/análise , Folhas de Planta/química , Flavonoides/farmacologia , Flavonoides/análise
2.
Sci Rep ; 13(1): 4677, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949145

RESUMO

This study aimed to evaluate, in vitro, the use of leaf extracts of Azadirachta indica (A. indica) and Melia azedarach (M. azedarach) as antivirals against caprine lentivirus (CLV) in colostrum and milk of goat nannies. These were collected from eight individuals and infected with the standard strain of CLV. Samples were then subdivided into aliquots and treated with 150 µg/mL of crude extract, and with ethyl acetate and methanol fractions for 30, 60, and 90 min. Next, somatic cells from colostrum and milk were co-cultured with cells from the ovine third eyelid. After this step, viral titers of the supernatants collected from treatments with greater efficacy in co-culture were assessed. The organic ethyl acetate fractions of both plants at 90 min possibly inhibited the viral activity of CLV by up to a thousandfold in colostrum. In milk, this inhibition was up to 800 times for the respective Meliaceae. In conclusion, the ethanolic fraction of ethyl acetate from both plants demonstrated efficacy against CLV in samples from colostrum and milk when subjected to treatment, which was more effective in colostrum.


Assuntos
Azadirachta , Melia azedarach , Feminino , Gravidez , Animais , Ovinos , Leite , Colostro , Cabras , Lentivirus , Extratos Vegetais/farmacologia
3.
Int J Mol Sci ; 23(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36362399

RESUMO

Environmental stress triggered by climate change can alter the plant's metabolite profile, which affects its physiology and performance. This is particularly important in medicinal species because their economic value depends on the richness of their phytocompounds. We aimed to characterize how water deficit modulated the medicinal species Melia azedarach's lipophilic profile and antioxidant status. Young plants were exposed to water deficit for 20 days, and lipophilic metabolite profile and the antioxidant capacity were evaluated. Leaves of M. azedarach are rich in important fatty acids and oleamide. Water deficit increased the radical scavenging capacity, total phenol, flavonoids, and catechol pools, and the accumulation of ß-sitosterol, myo-inositol, succinic acid, sucrose, d-glucose and derivatives, d-psicofuranose, d-(+)-fructofuranose, and the fatty acids stearic, α-linolenic, linoleic and palmitic acids. These responses are relevant to protecting the plant against climate change-related stress and also increase the nutritional and antioxidant quality of M. azedarach leaves.


Assuntos
Melia azedarach , Plantas Medicinais , Melia azedarach/química , Antioxidantes , Água , Extratos Vegetais/química , Compostos Fitoquímicos , Folhas de Planta , Ácidos Graxos
4.
Biomed Res Int ; 2022: 2791874, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928913

RESUMO

Melia azedarach L. leaves have been traditionally used but not scientifically evaluated for antihypertensive activity. The focus of the present work was to carry out the detailed phytochemical profiling and antihypertensive potential of methanolic extract and subsequent fractions of this plant. The tandem mass spectrometry-based phytochemical profiling of M. azedarach extract (Ma.Cr) and fractions was determined in negative ionization mode while molecular networking was executed using the Global Natural Product Social (GNPS) molecular networking platform. This study resulted in the identification of 29 compounds including flavonoid O-glycosides, simple flavonoids, triterpenoidal saponins, and cardenolides as the major constituents. Ma.Cr at the concentration of 300 mg/kg resulted in a fall in blood pressure (BP), i.e., 81.44 ± 2.1 mmHg in high salt-induced hypertensive rats in vivo, in comparison to normotensive group, i.e., 65.36 ± 1.8 mmHg at the same dose. A decrease in blood pressure was observed in anaesthetized normotensive and hypertensive rats treated with extract and various fractions of M. azedarach. A reasonable activity was observed for all fractions except the aqueous fraction. The highest efficacy was shown by the ethyl acetate fraction, i.e., 77.06 ± 3.77 mmHg in normotensive and 88.96 ± 1.3 mmHg in hypertensive anaesthetized rats. Ma.Cr and fractions showed comparatively better efficacy towards hypertensive rats as compared to rats with normal blood pressure. Blood pressure-lowering effects did not change upon prior incubation with atropine. In vitro testing of Ma.Cr and polarity-based fractions resulted in L-NAME sensitive, endothelium-dependent vasodilator effects on aortic tissues. Pretreatment of aorta preparations with Ma.Cr and its fractions also blocked K+-induced precontractions indicating Ca2+ channel blocking activity comparable to verapamil. The extract and polarity-based fractions did not reveal a vasoconstrictor response in spontaneously beating isolated rat aorta. Ma.Cr and fractions when used in atrial preparations resulted in negative inotropic and chronotropic effects. These effects in atrial preparations did not change in the presence of atropine. These effects of extract and fractions explained the antihypertensive potential of M. azedarach and thus provided a scientific basis for its ethnopharmacological use in the treatment of hypertension. Among the constituents observed, flavonoids and flavonoid O-glycosides were previously reported for antihypertensive potential.


Assuntos
Hipertensão , Melia azedarach , Meliaceae , Animais , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Derivados da Atropina/farmacologia , Derivados da Atropina/uso terapêutico , Pressão Sanguínea , Cromatografia Líquida , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Glicosídeos/farmacologia , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , NG-Nitroarginina Metil Éster/farmacologia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Cloreto de Sódio na Dieta/farmacologia , Espectrometria de Massas em Tandem
5.
Molecules ; 27(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35807271

RESUMO

Jin-Gu-Lian (JGL) is traditionally used by Miao for the treatment of rheumatism arthralgia. At the same time, the combination of Sargentodoxa cuneata (Oliv.) Rehd. et W (SC) and Alangium chinense (Lour.) Harms (AC), the core drug pair (CDP) in the formula of JGL, is used at high frequencies in many Miao medicine prescriptions for rheumatic diseases. However, previous research lacks the pharmacokinetic study of JGL, and study on the compatibility of its CDP with other medicinal herbs in the formula is needed. This study aims to establish a simple, rapid, and sensitive Ultra Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS) method for the simultaneous determination of four main bioactive components of JGL in rat plasma, including Salidroside (Sal), Anabasine (Ana), Chlorogenic Acid (CA), and Protocatechuic Acid (PCA), and compare the pharmacokinetic properties of two groups of rats after being orally administrated with JGL and its CDP extracts, respectively. The results showed that area under the plasma concentration-time curve (AUC), mean retention time (MRT), and clearance rate (CL), of Sal, Ana, CA and PCA in the two groups of rats were changed in different degrees. The CDP combined with other drugs could significantly increase the absorption of Sal and Ana, prolong its retention time in vivo, and may accelerate the absorption rate of CA and PCA. This indicated that the combination of CDP and other herbs may affect the pharmacokinetics process of active components in vivo, increase the exposure and bioavailability of compounds in the JGL group, and prolong the retention time, which may be the reason why JGL has a better inhibitory effect on inflammatory cytokines, providing a viable orientation for the compatibility investigation of herb medicines.


Assuntos
Alangiaceae , Medicamentos de Ervas Chinesas , Melia azedarach , Plantas Medicinais , Animais , Ratos , Administração Oral , Ácido Clorogênico , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Medicamentos de Ervas Chinesas/análise , Prescrições , Ranunculales , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem/métodos
6.
PLoS One ; 17(6): e0270281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35737705

RESUMO

BACKGROUND: In this study, a hydrogel comprising poly (vinyl alcohol)/pectin (PVA/PET) was prepared by the addition of Melia azedarach extract for epithelial restoration. M. azedarach extract (MAE) contains volatile organic plant-derived compounds with antimicrobial properties. MAE has a variety of physiological properties, including antimicrobial, insecticidal, and anti-inflammatory activity. This study aimed to investigate whether MAE-loaded PVA/PET hydrogels have protective effects against burn wound healing. METHODS AND FINDINGS: To mix M. azedarach with the gel, nanoparticles containing M. azedarach were prepared using chitosan/maltodextrin as the wall material. A PVA/PET hydrogel containing M. azedarach was developed and its applicability as a wound dressing was evaluated. In the in vitro scratch assay, MAE treatment showed a scratch recovery-promoting effect comparable to that of the positive control TGF-ß1. The MAE-PVA/PET hydrogel was found to be non-toxic, and the antibacterial activity of the hydrogel was excellent against both gram-positive and gram-negative bacteria. Furthermore, as the formulated hydrogel demonstrated strong antimicrobial activity, its wound-healing efficacy was investigated in vivo using a rat model. CONCLUSION: MAE was found to be effective against burn wounds and to have antimicrobial activity in vitro and in vivo.


Assuntos
Queimaduras , Melia azedarach , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Queimaduras/tratamento farmacológico , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Hidrogéis/farmacologia , Pectinas/farmacologia , Álcool de Polivinil/farmacologia , Ratos , Cicatrização
7.
Molecules ; 27(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35056801

RESUMO

Today, the most significant challenge encountered by food manufacturers is degradation in the food quality during storage, which is countered by expensive packing, which causes enormous monetary and environmental costs. Edible packaging is a potential alternative for protecting food quality and improving shelf life by delaying microbial growth and providing moisture and gas barrier properties. For the first time, the current article reports the preparation of the new films from Ditriterpenoids and Secomeliacins isolated from Melia azedarach (Dharek) Azadirachta indica plants to protect the quality of fruits. After evaluating these films, their mechanical, specific respirational, coating crystal elongation, elastic, water vapor transmission rate (WVTR), film thickness, and nanoindentation test properties are applied to apple fruit for several storage periods: 0, 3, 6, 9 days. The fruits were evaluated for postharvest quality by screening several essential phytochemical, physiological responses under film coating and storage conditions. It was observed that prepared films were highly active during storage periods. Coated fruits showed improved quality due to the protection of the film, which lowered the transmission rate and enhanced the diffusion rate, followed by an increase in the shelf life. The coating crystals were higher in Film-5 and lower activity in untreated films. It was observed that the application of films through dipping was a simple technique at a laboratory scale, whereas extrusion and spraying were preferred on a commercial scale. The phytochemicals screening of treated fruits during the storage period showed that a maximum of eight important bioactive compounds were present in fruits after the treatment of films. It was resolved that new active films (1-5) were helpful in the effective maintenance of fruit quality and all essential compounds during storage periods. It was concluded that these films could be helpful for fruits growers and the processing industry to maintain fruit quality during the storage period as a new emerging technology.


Assuntos
Filmes Comestíveis , Conservação de Alimentos/métodos , Frutas/química , Química Verde/métodos , Compostos Fitoquímicos/química , Azadirachta/química , Enzimas/metabolismo , Frutas/fisiologia , Malus/química , Malus/fisiologia , Melia azedarach/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Respiração , Paladar , Água/química
8.
Trop Biomed ; 39(4): 531-538, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36602212

RESUMO

Melia azedarach L. (Meliaceae) is a botanical species with focal point of global research for its biological properties. The Melia azedarach tree is distinguished by its rapid growth, its adaptation to different temperate zones, as well as its insecticidal properties. All this made us think of exploiting it in biological control against different stages of mosquitoes. To this end, we aim, through the present work, to evaluate the effectiveness of Melia azedarach extracts against Culex pipiens mosquito. More specifically, our study focuses on determining the chemical composition of Melia almond oil, as well as the larvicidal, ovicidal and repellent activities on Culex pipiens L. mosquito as well as the activities of acetylcholinesterase (AChE) and glutathione-S-transferase (GST). Almond oil was extracted by a Soxhlet and subjected to gas chromatography-mass spectrometry (GC/MS). The yield was found to be 35.17%. The chemical composition revealed the presence of various phytoconstituents. A total of 7 compounds were identified, the main ones being 9,11-Octadecadienoic acid, methyl ester, (E,E)- (79.32%), 9-octadecenoic acid (Z)-, methyl ester (13.24%), hexadecanoic acid and methyl ester (3.69%). The larvicidal bioassays were performed according to the protocol recommended by the World Health Organization with concentrations varying from 20 to 80 mg/L depending on the exposure time (24, 48 and 72 hours). The almond oil exhibited remarkable larvicidal activity against fourth instar larvae and the lethal concentrations were determined (LC25= 23.70 mg/L, LC50=35.49 mg/L, LC90=79.61 mg/L). The results also showed that the oil caused an ovicidal activity with a significant effect on egg hatch. The recorded hatching percentages were respectively 88.79% and 72.40% for the LC25 and LC50, and this compared to the control series. Moreover, this oil exhibited significant repellency against adult mosquitoes. Furthermore, the enzymatic measurements performed on LC50 and LC90 treated larvae revealed a neurotoxic activity and a stimulation of the detoxification system as evidenced, respectively, by an inhibition of AChE and induction in GST activity. Overall, our data proved that Melia azedarach almond oil could be considered as a potent biorational alternative to synthetic insecticides for mosquito control.


Assuntos
Aedes , Culex , Inseticidas , Melia azedarach , Animais , Melia azedarach/química , Extratos Vegetais/farmacologia , Acetilcolinesterase/farmacologia , Larva , Compostos Fitoquímicos/farmacologia , Inseticidas/farmacologia
9.
J Nat Med ; 76(1): 331-341, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34664195

RESUMO

The chemical composition of the essential oils extracted from the leaves of Melia azedarach L. collected monthly from July 2019 to June 2020 was examined via gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques. Analysis of the essential oils identified about 17 compounds representing more than 85% of the oil. Oil yields were higher in the months of June and August, and the primary compounds identified were ß-caryophyllene (3.50-63.41%), benzaldehyde (3.50-55.98%), and azulene (1.27-19.05%). A correlation analysis was performed to determine the relationship between yields and climatic conditions, and between constituent concentration and temperature and precipitation values during the study period. As per our findings, although not significant, a positive correlation was determined between yield and climatic parameters. However, the oil components were categorized into four groups based on their correlation with temperature and precipitation indices. Among the major components of the essential oils, only azulene and ß-caryophyllene exhibited a negative correlation with both precipitation and temperature. The results show substantial differences in the chemical composition of M. azedarach essential oils and provide further insight into the phytochemical constituents that are sensitive to climate fluctuations. Furthermore, it provides an indication of the optimal time that the plant produces the important mono- and sesquiterpene components and the biological significance of their regulation.


Assuntos
Melia azedarach , Meliaceae , Óleos Voláteis , Cromatografia Gasosa-Espectrometria de Massas , Folhas de Planta , Óleos de Plantas
10.
Asian Pac J Cancer Prev ; 22(6): 1967-1973, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34181358

RESUMO

OBJECTIVE: Nature has provided us with many pharmaceutical resources so far. Breast cancer shows an increasing trend in the world for the last decade and becomes one of five leading causes of death. Among the plants, Melia azedarach L. has been used widely in traditional medicine for many ailments including breast cancer. Following our previous findings that the ethyl acetate fraction was the most active cytotoxic fraction against T47D cells, we aimed to isolate the cytotoxic compounds and further elucidate their apoptotic mechanisms. METHODS: The compounds were isolated through a series of chromatography with cytotoxicity evaluations. Identification of the isolated compounds was achieved by intensive spectroscopic analysis such as NMR, MS, and IR spectra. Cytotoxicity was evaluated by MTT method using doxorubicin as a reference compound. The expression of apoptosis-related factors was quantified by flow cytometry and immunocytochemistry. RESULTS: Two isomers of pregnane steroids with molecular weight 330.2087 (C21H30O3) were isolated from the EtOAc extract. Spectroscopic analysis revealed the structures as 17-ethylene-3,4-dihydroxy-14-methyl-18-norandrostene-16-one (1) and 17-ethylene-3,4-dihydroxy-5-pregnene-16-one (2), respectively. These compounds showed moderate cytotoxicity (IC50 172.9 and 62.2 µg/mL, respectively) comparable to doxorubicin (IC50 3.08 µg/mL). The execution of apoptosis may be related to the increase of the ratio of BAX/bcl-2 of the cells.  Conclusion: The EtOAc fraction of Melia azedarach L. leaves and the isolated 5-pregnene-16-one steroids are promising reagents for breast cancer treatment by introducing apoptosis to tumor cells. However, further researches are required to highlight its safety and usage in vivo.
.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Melia azedarach/química , Folhas de Planta/química , Pregnanos/farmacologia , Esteroides/farmacologia , Doxorrubicina/farmacologia , Feminino , Humanos , Estrutura Molecular , Peso Molecular , Células Tumorais Cultivadas
11.
Exp Appl Acarol ; 84(1): 241-262, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33934282

RESUMO

Biopesticides such as essential oils (EOs) are considered an improvement for integrated pest control as they appear to be less toxic to the environment than chemical acaricides. The current study aimed to evaluate the acaricidal activity of Artemisia herba-alba and Melia azedarach oil loaded nano-emulsion as alternatives for chemical acaricides against the camel tick Hyalomma dromedarii, besides evaluating their toxic effect on Swiss albino mice. Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR) were used for the characterization of loaded nano-emulsions.The immersion test was used for the bioassay of both loaded nanoemulsions on tick stages (egg, nymph, larva, and adult). Mortality percentages and LC50 values of each tick stage were calculated. Reproductive performance for the survived engorged females after treatment was monitored. The toxicity of both loaded nano-emulsions was evaluated on Swiss albino mice by an oral dose of 1500 mg/kg/day for five successive days. The hematological, biochemical, and histopathological changes were evaluated. TEM characterization revealed spherical droplets for A. herba-alba and M. azedarach oil loaded nano-emulsion with droplet size ranging from 62 to 69 nm and 52-91 nm, respectively. FTIR revealed the absence of extra peaks in the loaded nano-emulsions that confirmed no chemical changes existed by ultrasonication. The LC50 values of A. herba-alba and M. azedarach oil loaded nano-emulsion on embryonated eggs, larvae, engorged nymphs, and unfed adults were 0.3 and 1.1%, 0.7 and 1.7%, 0.3 and 0.4%, 4.4 and 22.2%, respectively. The egg productive index (EPI), egg number, and hatchability percentage were lower in the treated females compared with Butox 5% (deltamethrin) and control. The hematological picture and biochemical analysis revealed insignificant changes in the treatment group compared with the negative control group. The liver of the A. herba-alba and M. azedarach oil loaded nano-emulsion treated group exhibited vacuolar degeneration and infiltration of lymphocytic cells. The kidney of mice treated with A. herba-alba and M. azedarach oil loaded nano-emulsion showed hemolysis and slight degeneration of epithelial cells of tubules. It is concluded that A. herba-alba and M. azedarach oil loaded nano-emulsion have good acaricidal activity against camel tick H. dromedarii.


Assuntos
Acaricidas , Artemisia , Ixodidae , Melia azedarach , Óleos Voláteis , Acaricidas/toxicidade , Animais , Feminino , Larva , Camundongos , Óleos Voláteis/toxicidade
12.
Chem Biodivers ; 18(5): e2001070, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33682999

RESUMO

Melia azedarach is a common tree used in the traditional medicine of Nepal. In this work, leaves were considered as source of bioactive constituents and composition of methanol extract was evaluated and compared with starting plant material. Flavonoid glycosides and limonoids were identified and quantified by HPLC-DAD-MSn approaches in dried leaves and methanolic extract, while HPLC-APCI-MSn and GC/MS analysis were used to study phytosterol and lipid compositions. ß-Sitosterol and rutin were the most abundant constituents. HPLC-APCI-MSn and HPLC-DAD-MSn analysis revealed high levels of phytosterols and flavonoids in methanolic extract accounting 9.6 and 7.5 % on the dried weight, respectively. On the other hand, HPLC/MSn data revealed that limonoid constituents were in minor amount in the extract <0.1 %, compared with leaves (0.7 %) indicating that degradation occurred during extraction or concentration procedures. The methanol extract was subjected to different bioassays, and antioxidant activity was evaluated. Limited inhibitory activity on acetyl and butyryl cholinesterase, as well as on amylase were detected. Moreover, tyrosinase inhibition was significant resulting in 131.57±0.51 mg kojic acid equivalents/g of dried methanol extract, suggesting possible use of this M. azedarach extract in skin hyperpigmentation conditions. Moderate cytotoxic activity, with IC50 of 26.4 µg/mL was observed against human ovarian cancer cell lines (2008 cells). Our findings indicate that the Nepalese M. azedarach leaves can be considered as valuable starting material for the extraction of phenolics and phytosterols, yielding extracts with possible cosmetic and pharmaceutical applications.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Inibidores da Colinesterase/farmacologia , Melia azedarach/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Acetilcolinesterase/metabolismo , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Benzotiazóis/antagonistas & inibidores , Compostos de Bifenilo/antagonistas & inibidores , Butirilcolinesterase/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/química , Inibidores da Colinesterase/isolamento & purificação , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Picratos/antagonistas & inibidores , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Ácidos Sulfônicos/antagonistas & inibidores
13.
Pol J Microbiol ; 70(4): 447-459, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35003276

RESUMO

Staphylococcus aureus is the causative agent of numerous and varied clinical infections. Crude aqueous extracts of Melia azedarach fruits inhibit the planktonic growth and initial biofilm formation of S. aureus in a dose-dependent manner. Moreover, the biofilm topologies became sparse and decreased as the concentration of the aqueous extracts increased. RNA-Seq analyses revealed 532 differentially expressed genes (DEGs) after S. aureus exposure to 0.25 g/ml extracts; 319 of them were upregulated, and 213 were downregulated. The majority of DEGs were categorized into abundant sub-groups in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Finally, untargeted UHPLC-MS/MS analyses of the aqueous extracts of M. azedarach fruits demonstrated a highly complex profile in positive and negative electrospray ionization modes. The extracts primarily consisted of lipids and lipid-like molecules, organic acids and their derivatives, phenylpropanoids, polyketides, organoheterocyclic compounds, and benzenoids annotated by abundant lipid maps and KEGG pathways. Overall, this study provides evidences that the aqueous extracts of M. azedarach fruits can control S. aureus infections and sought to understand the mode of action of these extracts on S. aureus.


Assuntos
Melia azedarach , Frutas , Melia azedarach/química , Extratos Vegetais/farmacologia , Staphylococcus aureus/genética , Espectrometria de Massas em Tandem , Transcriptoma
15.
Int J Mol Sci ; 21(20)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053881

RESUMO

Acute myeloid leukemia (AML) is an aggressive type of human leukemia with a low survival rate, and its complete remission remains challenging. Although chemotherapy is the first-line treatment of AML, it exerts toxicity in noncancerous cells when used in high doses, thus necessitating the development of novel compounds with a high therapeutic window. This study aimed to investigate the anticancer effects of several compounds derived from the fruits of Melia azedarach (a tree with medicinal properties). Among them, 1-cinnamoyltrichilinin (CT) was found to strongly suppress the viability of HL-60 human leukemia cells. CT treatment induced apoptosis and increased nuclear fragmentation and fractional DNA content in HL-60 cells in a dose-dependent manner. CT induced phosphorylation of p38 mitogen-activated protein kinases (p38), though not of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK), and activated Bcl-2 family proteins towards the proapoptosis and cleavage of caspase-3 and poly (ADP-ribose) polymerase. Both CT-mediated apoptosis and apoptotic protein expression were reversed by treatment with the p38 inhibitor, thereby indicating the p38 pathway to be critical in CT-stimulated apoptosis. The results collectively indicated CT to suppress HL-60 survival by activating the p38 pathway and inducing apoptosis, hence being a novel potential therapeutic agent for AML.


Assuntos
Apoptose/efeitos dos fármacos , Limoninas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melia azedarach/química , Extratos Vegetais/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células HL-60 , Humanos , Limoninas/química , Estrutura Molecular , Extratos Vegetais/química
16.
Biomed Chromatogr ; 34(7): e4837, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32246844

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The objective of traditional Chinese medicine (TCM) combination theory is to "reduce toxicity and increase efficiency", especially to solve the liver toxicity of many TCMs. Fructus Meliae Toosendan (CLZ)-Fructus Foeniculi (XHX) is a typical traditional Chinese herb pair that decreases the toxicity and increases the efficiency of the herbs. Fructus Meliae Toosendan (CLZ, cold-natured) has significant liver toxicity. However, it has been widely used in combination with Fructus Foeniculi (XHX, hot-natured) for thousands of years in TCM, in which form it shows no hepatotoxicity, indicating that the combined use of XHX and CLZ can reduce the hepatotoxicity of CLZ. Herb-herb interactions could affect herb pharmacokinetics and in vivo efficacy. The herb-herb interactions between CLZ and XHX are still unknown. MATERIALS AND METHODS: This study used liquid chromatography tandem mass spectrometry (LC-MS) and gas chromatography tandem mass spectrometry (GC-MS) to establish methods for detecting toosendanin and trans-anethole, the main active substances of CLZ and XHX, respectively. Additionally, we investigated their herb-herb interactions via pharmacokinetic and pharmacodynamic studies. RESULTS: The results indicate that the established analytical methods are suitable for detecting toosendanin and trans-anethole, and the methodology meets the requirements of biological sample testing methods. Compared with the CLZ group, the pharmacokinetic parameters Cmax , AUC(0-t) , AUC(0-∞) , MRT(0-t) and MRT(0-∞) of toosendanin in the CLZ-XHX group notably decreased and the values of Vz/F remarkably increased. Compared with the XHX group, the pharmacokinetic parameters Cmax , AUC0-t , AUC0-∞, Tmax and t1/2z of trans-anethole notably increased in the CLZ-XHX group, and the values of CLz/F and Vz/F obviously decreased. CONCLUSION: The pharmacokinetic results indicate that XHX can significantly decrease the absorption and bioavailability and accelerate the elimination process of toosendanin in CLZ. XHX could decrease the risk of in vivo accumulation of the toxic constituent of CLZ, toosendanin, thus decreasing its toxicity. It has also been shown that CLZ can significantly increase absorption and bioavailability and attenuate the elimination process of trans-anethole in XHX, thus enhancing its efficacy. Hepatotoxicity studies indicate that CLZ has significant hepatotoxicity, and its combined use with XHX can decrease its liver-damaging properties.


Assuntos
Anisóis/sangue , Apiaceae/química , Medicamentos de Ervas Chinesas/análise , Melia azedarach/química , Derivados de Alilbenzenos , Animais , Anisóis/química , Anisóis/farmacocinética , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacocinética , Frutas/química , Cromatografia Gasosa-Espectrometria de Massas , Interações Ervas-Drogas , Modelos Lineares , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem/métodos
17.
Int J Nanomedicine ; 14: 9823-9836, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849471

RESUMO

PURPOSE: Global demand for novel, biocompatible, eco-friendly resources to fight diseases inspired this study. We investigated plants used in traditional medicine systems and utilized nanotechnology to synthesize, evaluate, and enhance potential applications in nanomedicine. METHODS: Aqueous leaf extract from Melia azedarach (MA) was utilized for bio-synthesis of silver nanoparticles (MA-AgNPs). Reaction conditions were optimized for high yield and colloidal stability was evaluated using UV-Vis spectroscopy. MA-AgNPs were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Standard methods were used to analyze the antibacterial, wound healing, antidiabetic, antioxidant, and cytotoxic activities. RESULTS: The formation of MA-AgNPs at room temperature was confirmed by stable brown colloidal solution with maximum absorbance at 420 nm (UV-Vis Spectroscopy). MA-AgNPs were spherical (SEM), uniformly dispersed, 14-20 nm in diameter (TEM), and crystalline in nature (XRD). Presence of elemental silver was confirmed by peak at 3 KeV (EDX). FTIR data revealed the presence of functional groups which indicate phyto-constituents (polyphenols, flavonoids, and terpenoids) may have acted as the reducing and capping agents. MA-AgNPs (1000 µg/mL) showed larger zone of inhibition than MA-extract in the disk diffusion assay for human pathogenic gram positive bacteria, Bacillus cereus (34 mm) and gram negative, Escherichia coli (37 mm), thus confirming their higher antibacterial activity. The cell scratch assay on human dermal fibroblast cells revealed potential wound healing activity. The MA-AgNPs (400 µg/mL) demonstrated high antidiabetic efficacy as measured by α-amylase (85.75%) and α-glucosidase (80.33%) inhibition assays and antioxidant activity as analyzed by DPPH (63.83%) and ABTS (63.61%) radical scavenging assays. Toxic effect of MA-AgNPs against human chang liver cells (CCL-13) as determined by MTS assay, optical microscopic and CMFDA dye methods was insignificant. CONCLUSION: This sustainable, green synthesis of AgNPs is a competitive alternative to conventional methods and will play a significant role in biomedical applications of Melia azedarach.


Assuntos
Antibacterianos/farmacologia , Hipoglicemiantes/farmacologia , Melia azedarach/química , Nanopartículas Metálicas/química , Prata/química , Antibacterianos/química , Antioxidantes/química , Antioxidantes/farmacologia , Avaliação Pré-Clínica de Medicamentos , Fibroblastos/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Hipoglicemiantes/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Cicatrização/efeitos dos fármacos , Difração de Raios X
18.
Biofouling ; 35(6): 649-657, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31366246

RESUMO

Biofouling poses severe challenges to pearl oyster Pinctada imbricata culture in China, and controlling it is both labor- and capital-intensive. The antifouling properties of wax, and wax mixed with Chinese herbs, sprayed onto pearl oyster shell surfaces during peak biofouling seasons were evaluated. Pearl oysters coated with three wax treatments (plain wax, Chinaberry seed extract, Chinese honeylocust fruit extract) and a control (no treatment), were cultured in nets for up to 60 days. Mortality rate, fouling organism and pearl-oyster weights, and shell height are reported for individual oysters on each of six sampling dates. With the exception of oysters submerged for 12 days, all oysters were significantly affected by treatment type and submersion duration. Fouling weight increased more rapidly over time in the control-treatment oysters. Wax-based coatings deterred fouling-organism settlement on oysters for at least 2 months during the intensive fouling season, reducing mortality and not adversely effecting growth.


Assuntos
Incrustação Biológica/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Pinctada , Animais , Medicamentos de Ervas Chinesas/química , Frutas/química , Gleditsia/química , Melia azedarach , Sementes/química , Ceras
19.
BMC Cancer ; 19(1): 764, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375085

RESUMO

BACKGROUND: MAPK/ERK kinases transmit signals from many growth factors/kinase receptors during normal cell growth/differentiation, and their dysregulation is a hallmark of diverse types of cancers. A plethora of drugs were developed to block this kinase pathway for clinical application. With the exception of a recently identified agent, EQW, most of these inhibitors target upstream factors but not ERK1/2; no activator of ERK1/2 is currently available. METHOD: A library of compounds isolated from medicinal plants of China was screened for anti-cancer activities. Three limonoid compounds, termed A1541-43, originally isolated from the plant Melia azedarach, exhibiting strong anti-leukemic activity. The anti-neoplastic activity and the biological target of these compounds were explored using various methods, including western blotting, flow cytometry, molecular docking and animal model for leukemia. RESULTS: Compounds A1541-43, exhibiting potent anti-leukemic activity, was shown to induce ERK1/2 phosphorylation. In contrast, the natural product Cedrelone, which shares structural similarities with A1541-43, functions as a potent inhibitor of ERK1/2. We provided evidence that A1541-43 and Cedrelone specifically target ERK1/2, but not the upstream MAPK/ERK pathway. Computational docking analysis predicts that compounds A1541-43 bind a region in ERK1/2 that is distinct from that to which Cedrelone and EQW bind. Interestingly, both A1541-43, which act as ERK1/2 agonists, and Cedrelone, which inhibit these kinases, exerted strong anti-proliferative activity against multiple leukemic cell lines, and induced robust apoptosis as well as erythroid and megakaryocytic differentiation in erythroleukemic cell lines. These compounds also suppressed tumor progression in a mouse model of erythroleukemia. CONCLUSIONS: This study identifies for the first time activators of ERK1/2 with therapeutic potential for the treatment of cancers driven by dysregulation of the MAPK/ERK pathway and possibly for other disorders.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Leucemia Eritroblástica Aguda/tratamento farmacológico , Limoninas/farmacologia , Limoninas/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melia azedarach/química , Animais , Apoptose/efeitos dos fármacos , Sítios de Ligação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Células K562 , Leucemia Eritroblástica Aguda/mortalidade , Leucemia Eritroblástica Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Folhas de Planta/química , Transdução de Sinais/efeitos dos fármacos , Taxa de Sobrevida
20.
Chin J Nat Med ; 17(3): 227-230, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30910059

RESUMO

Two new furan fragment isomerized limonoids, meliazedalides A and B (compounds 1 and 2), were isolated from the fruits of Melia azedarach Linn.. Their chemical structures were elucidated on the basis of HR-ESI-MS and 1D and 2D NMR data, which belonged to nimbolinin- and trichilin-class, respectively. Compound 2 exhibited weak inhibitory effect on NO production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages with IC50 being 37.41 µmol·L-1.


Assuntos
Anti-Inflamatórios/química , Limoninas/química , Melia azedarach/química , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Medicamentos de Ervas Chinesas/química , Frutas/química , Limoninas/isolamento & purificação , Limoninas/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Estrutura Molecular , Óxido Nítrico/metabolismo , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA