Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxins (Basel) ; 16(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38535786

RESUMO

Among the various natural compounds used in alternative and Oriental medicine, toxins isolated from different organisms have had their application for many years, and Apis mellifera venom has been studied the most extensively. Numerous studies dealing with the positive assets of bee venom (BV) indicated its beneficial properties. The usage of bee products to prevent the occurrence of diseases and for their treatment is often referred to as apitherapy and is based mainly on the experience of the traditional system of medical practice in diverse ethnic communities. Today, a large number of studies are focused on the antitumor effects of BV, which are mainly attributed to its basic polypeptide melittin (MEL). Previous studies have indicated that BV and its major constituent MEL cause a strong toxic effect on different cancer cells, such as liver, lung, bladder, kidney, prostate, breast, and leukemia cells, while a less pronounced effect was observed in normal non-target cells. Their proposed mechanisms of action, such as the effect on proliferation and growth inhibition, cell cycle alterations, and induction of cell death through several cancer cell death mechanisms, are associated with the activation of phospholipase A2 (PLA2), caspases, and matrix metalloproteinases that destroy cancer cells. Numerous cellular effects of BV and MEL need to be elucidated on the molecular level, while the key issue has to do with the trigger of the apoptotic cascade. Apoptosis could be either a consequence of the plasmatic membrane fenestration or the result of the direct interaction of the BV components with pro-apoptotic and anti-apoptotic factors. The interaction of BV peptides and enzymes with the plasma membrane is a crucial step in the whole process. However, before its possible application as a remedy, it is crucial to identify the correct route of exposure and dosage of BV and MEL for potential therapeutic use as well as potential side effects on normal cells and tissues to avoid any possible adverse event.


Assuntos
Venenos de Abelha , Masculino , Animais , Abelhas , Meliteno , Membrana Celular , Apoptose , Morte Celular
2.
J Integr Med ; 22(1): 72-82, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38307819

RESUMO

OBJECTIVE: Melittin and its derivative have been developed to support effective gene delivery systems. Their ability to facilitate endosomal release enhances the delivery of nanoparticle-based gene therapy. Nevertheless, its potential application in the context of viral vectors has not received much attention. Therefore, we would like to optimize the rAAV vector by Melittin analog to improve the transduction efficiency of rAAV in liver cancer cells and explore the mechanism of Melittin analog on rAAV. METHODS: Various melittin-derived peptides were inserted into loop VIII of the capsid protein in recombinant adeno-associated virus vectors. These vectors carrying either gfp or fluc genes were subjected to quantitative polymerase chain reaction assays and transduction assays in human embryonic kidney 293 (HEK293T) cells to investigate the efficiency of vector production and gene delivery. In addition, the ability of a specific p5RHH-rAAV vector to deliver genes was examined through in vitro transduction of different cultured cells and in vivo tail vein administration to C57BL/6 mice. Finally, the intricate details of the vector-mediated transduction mechanisms were explored by using pharmacological inhibitors of every stage of the rAAV2 intracellular life cycle. RESULTS: A total of 76 melittin-related peptides were identified from existing literature. Among them, CMA-3, p5RHH and aAR3 were found to significantly inhibit transduction of rAAV2 vector crude lysate. The p5RHH-rAAV2 vectors efficiently transduced not only rAAV-potent cell lines but also cell lines previously considered resistant to rAAV. Mechanistically, bafilomycin A1, a vacuolar endosome acidification inhibitor, completely inhibited the transgene expression mediated by the p5RHH-rAAV2 vectors. Most importantly, p5RHH-rAAV8 vectors also increased hepatic transduction in vivo in C57BL/6 mice. CONCLUSION: The incorporation of melittin analogs into the rAAV capsids results in a significant improvement in rAAV-mediated transgene expression. While further modifications remain an area of interest, our studies have substantially broadened the pharmacological prospects of melittin in the context of viral vector-mediated gene delivery. Please cite this article as: Meng J, He Y, Yang H, Zhou L, Wang S, Feng X, Al-shargi OY, Yu X, Zhu L, Ling, C. Melittin analog p5RHH enhances recombinant adeno-associated virus transduction efficiency. J Integr Med. 2024; 22(1): 72-82.


Assuntos
Dependovirus , Meliteno , Camundongos , Masculino , Animais , Humanos , Dependovirus/genética , Meliteno/farmacologia , Meliteno/genética , Transdução Genética , Células HEK293 , Camundongos Endogâmicos C57BL , Vetores Genéticos
3.
Medicine (Baltimore) ; 102(32): e34728, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37565866

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a type of difficult-to-cure arthralgia with a worldwide prevalence. It severely affects people's living standards. For a long time, bee venom has been used to treat RA and has shown good results. Melittin is the main active component of bee venom used for RA treatment, but the molecular mechanism of melittin in RA treatments remains unclear. METHODS: Potential melittin and RA targets were obtained from relevant databases, and common targets of melittin and RA were screened. The STRING database was used to build the PPI network and screen the core targets after visualization. The core targets were enriched by Gene Ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway. Finally, the binding of melittin to target proteins was evaluated through simulated molecular docking, which verified the reliability of the prediction results of network pharmacology. RESULTS: In total, 138 melittin targets and 5795 RA targets were obtained from relevant databases, and 90 common targets were obtained through intersection. Eighteen core targets, such as STAT3, AKT1, tumor necrosis factor, and JUN, were screened out. Enrichment analysis results suggested that melittin plays an anti-RA role mainly through tumor necrosis factor, interleukin-17, toll-like receptors, and advanced glycation end products-RAGE signaling pathways, and pathogenic bacterial infection. Molecular docking results suggested that melittin has good docking activity with core target proteins. CONCLUSION: RA treatment with melittin is the result of a multi-target and multi-pathway interaction. This study offers a theoretical basis and scientific evidence for further exploring melittin in RA therapy.


Assuntos
Artrite Reumatoide , Venenos de Abelha , Medicamentos de Ervas Chinesas , Humanos , Meliteno/farmacologia , Meliteno/uso terapêutico , Simulação de Acoplamento Molecular , Farmacologia em Rede , Reprodutibilidade dos Testes , Fator de Necrose Tumoral alfa , Artrite Reumatoide/tratamento farmacológico , Medicina Tradicional Chinesa
4.
Poult Sci ; 102(10): 102713, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37540950

RESUMO

The purpose of this study was to investigate the effects of melittin on production performance, antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota of heat-stressed quails. A total of 120 (30-day-old) male quails were randomly divided into 3 groups. Each group consisted of 4 replicates with 10 birds per replicate. The ambient temperature of the control group (group W) was 24°C ± 2°C. The heat stress group (group WH) and the heat stress + melittin group (group WHA2) were subjected to heat stress for 4 h from 12:00 to 16:00 every day, and the temperature was 36°C ± 2°C for 10 d. The results showed that compared with the group W, heat stress significantly decreased growth performance, serum and liver antioxidative function, immune function, intestinal villus height (VH) and villus height-to-crypt depth ratio (VH/CD), and cecal microbiota Chao and ACE index (P < 0.05). The crypt depth (CD) in the small intestine, and HSP70 and HSP90 mRNA levels in the heart, liver, spleen, and kidney were significantly increased (P < 0.05). Dietary melittin significantly increased growth performance, serum and liver antioxidative function, immune function, intestinal VH and VH/CD, and cecal microbiota Shannon index in heat-stressed quails (P < 0.05). Melittin significantly decreased small intestinal CD, and HSP70 and HSP90 mRNA levels in the viscera (P < 0.05). Furthermore, dietary melittin could have balanced the disorder of cecal microbiota caused by heat stress and increased the abundance and diversity of beneficial microbiota (e.g., Firmicutes were significantly increased). PICRUSt2 functional prediction revealed that most of the KEGG pathways with differential abundance caused by high temperature were related to metabolism, and melittin could have restored them close to normal levels. Spearman correlation analysis showed that the beneficial intestinal bacteria Anaerotruncus, Bacteroidales_S24-7_group_norank, Lachnospiraceae_unclassified, Shuttleworthia, and Ruminococcaceae_UCG-014 increased by melittin were positively correlated with average daily feed intake, the average daily gain, serum and liver superoxide dismutase, IgG, IgA, bursa of Fabricius index, and ileum VH and VH/CD. In sum, our results demonstrate for the first time that dietary melittin could improve the adverse effects of heat stress on antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota in quails, consequently improving their production performance under heat stress.


Assuntos
Antioxidantes , Microbiota , Masculino , Animais , Antioxidantes/metabolismo , Proteínas de Choque Térmico/metabolismo , Meliteno/metabolismo , Codorniz/genética , Galinhas/genética , Dieta/veterinária , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP90/metabolismo , Resposta ao Choque Térmico , RNA Mensageiro/genética , Imunidade , Suplementos Nutricionais/análise , Ração Animal/análise
5.
Nutrients ; 15(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37513529

RESUMO

Apitherapy (using bee products) has gained broad recognition in cancer therapeutics globally. Honeybee venom has a broad range of biological potential, and its utilization is rapidly emerging in apitherapy. Bee products have significant potential to strengthen the immune system and improve human health. Thus, this review is targeted toward recapitulating the chemo-preventive potential of melittin (MEL), which constitutes a substantial portion of honeybee venom. Honeybee venom (apitoxin) is produced in the venom gland of the honeybee abdomen, and adult bees utilize it as a primary colony defense mechanism. Apitoxin comprises numerous biologically active compounds, including peptides, enzymes, amines, amino acids, phospholipids, minerals, carbohydrates, and volatile components. We are mainly focused on exploring the potential of melittin (a peptide component) of bee venom that has shown promising potential in the treatment of several human cancers, including breast, stomach, lung, prostate, ovary, kidney, colon, gastric, esophageal, cervical cancers, melanoma, osteosarcoma, and hepatocellular carcinoma. This review has summarized all potential studies related to the anticancerous efficacy of melittin (apitoxin), its formulations, conjugates, and nano-formulations against several human carcinomas, which would further pave the way for future researchers in developing potent drugs for cancer management.


Assuntos
Venenos de Abelha , Neoplasias Ósseas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Humanos , Abelhas , Animais , Venenos de Abelha/farmacologia , Venenos de Abelha/uso terapêutico , Meliteno/farmacologia , Meliteno/uso terapêutico , Peptídeos
6.
Aging (Albany NY) ; 15(11): 4875-4888, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277118

RESUMO

PURPOSE: Melittin (MPI) is a potential anticancer peptide due to its abilities of antitumor and immunomodulatory functions. Epigallocatechin-3-Ogallate (EGCG), a major extract of green tea, has shown great affinity for various types of biological molecules, especially for peptide/protein drugs. The aim of this study is to prepare a fluoro- nanoparticle (NP) formed by self-assembly of fluorinated EGCG (FEGCG) and MPI, and evaluate the effect of fluorine modification on MPI delivery and their synergistic antitumor effect. METHODS: Characterization of FEGCG@MPI NPs was determined by dynamic light scattering (DLS) and transmission electron microscope (TEM). Biology functions of FEGCG@MPI NPs were detected by hemolysis effect, cytotoxicity, apoptosis, cellular uptake with confocal microscopy and flow cytometry. The protein expression levels of Bcl-2/Bax, IRF, STATT-1, P-STAT-1, and PD-L1 were determined via western blotting. A transwell assay and wound healing assay were used to detect the cell migration and invasion. The antitumor efficacy of FEGCG@MPI NPs was demonstrated in a subcutaneous tumor model. RESULTS: Fluoro-nanoparticles could be formed by self-assembly of FEGCG and MPI, and fluorine modification on EGCG could ameliorate the side effect and delivery of MPI. The promoted therapeutics of FEGCG@MPI NPs could be achieved by regulating PD-L1 and apoptosis signaling, which might involve pathways of IRF, STAT-1/pSTAT-1, PD-L1, Bcl-2, and Bax in vitro. Moreover, FEGCG@MPI NPs could significantly inhibit the growth of tumor in vivo. CONCLUSIONS: FEGCG@MPI NPs may offer a potential platform and promising strategy in cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Antígeno B7-H1/metabolismo , Meliteno , Flúor , Proteína X Associada a bcl-2 , Linhagem Celular Tumoral , Nanopartículas/química
7.
Fish Shellfish Immunol ; 138: 108817, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37230309

RESUMO

The frequent occurrence of diseases seriously hampers the sustainable development of the spotted knifejaw (Oplegnathus punctatus) breeding industry. Our previous genome-wide scan and cross-species comparative genomic analysis revealed that the immune gene family (Toll-like receptors, TLR) members of O. punctatus underwent a significant contraction event (tlr1, tlr2, tlr14, tlr5, and tlr23). To address immune genetic contraction may result in reduced immunity, we investigated whether adding different doses (0, 200, 400, 600, and 800 mg/kg) of immune enhancers (tea polyphenols, astaxanthin, and melittin) to the bait after 30 days of continuous feeding could stimulate the immune response of O. punctatus. We found that the expression of tlr1, tlr14, tlr23 genes in immune organs (spleen and head kidney) was stimulated when tea polyphenols were added at 600 mg/kg. The tlr2 (400 mg/kg), tlr14 (200 mg/kg), tlr5 (200 mg/kg), and tlr23 (200 mg/kg) genes expression of intestine were elevated in the tea polyphenol group. When the addition of astaxanthin is 600 mg/kg, it can effectively stimulate the expression of tlr14 gene in immune organs (liver, spleen and head kidney). In the astaxanthin group, the expression of the genes tlr1 (400 mg/kg), tlr14 (600 mg/kg), tlr5 (400 mg/kg) and tlr23 (400 mg/kg) reached their highest expression in the intestine. Besides, the addition of 400 mg/kg of melittin can effectively induce the expression of tlr genes in the liver, spleen and head kidney, except the tlr5 gene. The tlr-related genes expression in the intestine was not significantly elevated in the melittin group. We hypothesize that the immune enhancers could enhance the immunity of O. punctatus by increasing the expression of tlr genes, and thereby leading to increased resistance to diseases. Meanwhile, our findings further demonstrated that significant increases in weight gain rate (WGR), visceral index (VSI), and feed conversion rate (FCR) were observed at 400 mg/kg, 200 mg/kg and 200 mg/kg of tea polyphenols, astaxanthin and melittin in the diet, respectively. Overall, our study provided valuable insights for future immunity enhancement and viral infection prevention in O. punctatus, as well as offered guidance for the healthy development of the O. punctatus breeding industry.


Assuntos
Receptor 1 Toll-Like , Receptor 2 Toll-Like , Animais , Receptor 2 Toll-Like/genética , Receptor 1 Toll-Like/genética , Regulação da Expressão Gênica , Receptor 5 Toll-Like/genética , Meliteno/genética , Meliteno/metabolismo , Peixes/metabolismo , Imunidade , Chá
8.
BMC Complement Med Ther ; 23(1): 132, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098530

RESUMO

BACKGROUND: Apitherapy is an emerging field in cancer research, particularly in developing communities. The potency of Melittin (MEL), a major constituent in bee venom is accounted for the cytotoxic capacity against cancer cells. It is postulated that the genotype of bees and the time of venom collection influences its specific activity against certain types of cancer. METHOD: Hereby, Jordanian crude bee venom (JCBV) was collected during different seasons of the year, specifically spring, summer and autumn and investigated for in vitro antitumour effects. Venom collected during springtime comprised the highest quantity of MEL in comparison to venom collected some other time. Springtime-collected JCBV extract and MEL were tested on an immortal myelogenous leukaemia cell line, namely K562 leukemic cells. Treated cells were examined for cell modality via flow cytometry analysis and cell death mediating gene expressions. RESULTS: Springtime-collected JCBV extract and MEL showed an IC50 of 3.7 ± 0.37 µg/ml and 1.84 ± 0.75 µg/ml, respectively. In comparison to JCBV and positive control, MEL-treated cells exhibited late apoptotic death with a moderate cellular arrest at G0/G1 and an increase of cell number at G2/M phase. Expression of NF-κB/MAPK14 axis was inhibited in MEL and JCBV-treated cells, as well as expression of c-MYC and CDK4. Moreover, marked upregulation in ABL1, JUN and TNF was observed. In conclusion, springtime-collected JCBV showed the highest content of MEL while both JCBV and pure MEL showed apoptotic, necrotic, and cell cycle arrest efficiency against K562 leukemic cells. CONCLUSION: Integration of bee venom in chemotherapy needs more investigation and should be carefully translated into clinical use. During such translation, the correlation of bee genotype, collection time and concentration of MEL in CBV should be profiled.


Assuntos
Venenos de Abelha , Leucemia , Humanos , Abelhas , Animais , Meliteno/farmacologia , Meliteno/química , Meliteno/genética , Venenos de Abelha/farmacologia , Células K562 , Peptídeos , Leucemia/tratamento farmacológico
9.
Poult Sci ; 102(2): 102355, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36502563

RESUMO

To study the effects of melittin on egg-laying performance and intestinal barrier of quails, 240 quails (aged 70 d) were randomly divided into 4 groups with 6 replicates (10 quails per replicate). They were fed with basal diet (group B), basal diet + 0.08 g/kg melittin (group BA1), basal diet + 0.12 g/kg melittin (group BA2) and basal diet + 0.16 g/kg melittin (group BA3). The experiment lasted for 21 days. The eggs were collected every day. At the end of the experiment, duodenal, jejunal, and ileal tissues were collected, and the cecal contents were sampled. Intestinal antioxidant index, barrier function, and intestinal flora were analyzed. The results showed that the addition of melittin significantly increased the laying rate and average egg weight. Addition of melittin significantly increased the antioxidant function, mechanical barrier, immune barrier, and the villus height to crypt depth ratio of small intestine. Addition of melittin had no significant effect on the α and ß diversity of cecal flora, but significantly increased the abundance of Bacteroidales at family level and genus level. Bioinformatics analysis of cecal content showed significant increase in COG functional category of cytoskeleton, and significant decrease in RNA processing and modification in group BA2. KEGG functional analysis showed significant decrease in steroid biosynthesis, caffeine metabolism, and cytochrome P450 pathways in group BA2. In conclusion, addition of 0.12 g/kg melittin to feed improved the laying performance and the intestinal antioxidant capacity and barrier function of quails but had no significant effect on the composition and structure of cecal microbial community. This study provides experimental data and theoretical basis for the application of melittin as a new quail feed additive.


Assuntos
Antioxidantes , Codorniz , Animais , Antioxidantes/metabolismo , Codorniz/metabolismo , Meliteno/farmacologia , Galinhas/metabolismo , Óvulo/metabolismo , Dieta/veterinária , Ração Animal/análise , Suplementos Nutricionais/análise
10.
J Integr Med ; 21(1): 106-115, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36333178

RESUMO

OBJECTIVE: Melittin, a cell-penetrating peptide, improves the efficiency of many non-viral gene delivery vectors, yet its application in viral vectors has not been well studied. The non-pathogenic recombinant adeno-associated virus (rAAV) vector is an ideal in vivo gene delivery vector. However, its full potential will only be achieved after improvement of its transduction efficiency. To improve the transduction efficiency of rAAV2 vectors, we attempted to develop a melittin-based rAAV2 vector delivery strategy. METHODS: The melittin peptide was inserted into the rAAV2 capsid either in the loop VIII of all viral proteins (VPs) or at the N terminus of VP2. Various rAAV2-gfp or -fluc vectors were subjected to quantitative real-time polymerase chain reaction and Western blot assays to determine their titers and integrity of capsid proteins, respectively. Alternatively, the vectors based on wild-type capsid were pre-incubated with melittin, followed by transduction of cultured cells or tail vein administration of the mixture to C57BL/6 and BALB/c nude mice. In vivo bioluminescence imaging was performed to evaluate the transgene expression. RESULTS: rAAV2 vectors with melittin peptide inserted in the loop VIII of VPs had low transduction efficiency, probably due to dramatically reduced ability to bind to the target cells. Fusing the melittin peptide at the N-terminus of VP2 produced vectors without the VP2 subunit. Interestingly, among the commonly used rAAV vectors, pre-incubation of rAAV2 and rAAV6 vectors with melittin significantly enhanced their transduction efficiency in HEK293 and Huh7 cells in vitro. Melittin also had the ability to increase the rAAV2-mediated transgene expression in mouse liver in vivo. Mechanistically, melittin did not change the vector-receptor interaction. Moreover, cell counting kit-8 assays of cultured cells and serum transaminase levels indicated melittin had little cytotoxicity. CONCLUSION: Pre-incubation with melittin, but not insertion of melittin into the rAAV2 capsid, significantly enhanced rAAV2-mediated transgene expression. Although further in vivo evaluations are required, this research not only expands the pharmacological potential of melittin, but also provides a new strategy to improve gene therapy mediated by rAAV vectors.


Assuntos
Dependovirus , Meliteno , Camundongos , Animais , Humanos , Meliteno/farmacologia , Meliteno/genética , Dependovirus/genética , Sorogrupo , Células HEK293 , Camundongos Nus , Camundongos Endogâmicos C57BL , Transgenes , Vetores Genéticos/genética
11.
Toxins (Basel) ; 14(12)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36548715

RESUMO

The venom of honeybees is composed of numerous peptides and proteins and has been used for decades as an anti-inflammatory and anti-cancer agent in traditional medicine. However, the bioactivity of specific biomolecular components has been evaluated for the predominant constituent, melittin. So far, only a few melittin-like peptides from solitary bee species have been investigated, and the molecular mechanisms of bee venoms as therapeutic agents remain largely unknown. Here, the preclinical pharmacological activities of known and proteo-transcriptomically discovered new melittin variants from the honeybee and more ancestral variants from phylogenetically older solitary bees were explored in the context of cancer and inflammation. We studied the effects of melittin peptides on cytotoxicity, second messenger release, and inflammatory markers using primary human cells, non-cancer, and cancerous cell lines. Melittin and some of its variants showed cytotoxic effects, induced Ca2+ signaling and inhibited cAMP production, and prevented LPS-induced NO synthesis but did not affect the IP3 signaling and pro-inflammatory activation of endothelial cells. Compared to the originally-described melittin, some phylogenetically more ancestral variants from solitary bees offer potential therapeutic modalities in modulating the in vitro inflammatory processes, and hindering cancer cell viability/proliferation, including aggressive breast cancers, and are worth further investigation.


Assuntos
Anti-Inflamatórios , Antineoplásicos , Venenos de Abelha , Abelhas , Meliteno , Animais , Humanos , Venenos de Abelha/farmacologia , Venenos de Abelha/química , Células Endoteliais , Meliteno/química , Meliteno/isolamento & purificação , Meliteno/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Linhagem Celular Tumoral
12.
Toxins (Basel) ; 14(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36287932

RESUMO

Streptococcus pyogenes (S. pyogenes) bacteria cause almost all primary skin infections in humans. Bee venom (BV) and melittin (Mel) have multiple effects, including antibacterial and anti-inflammatory activities. This study aims to demonstrate their effects on bacterial mouse skin infection using S. pyogenes. The dorsal skin was tape-stripped, then S. pyogenes was topically applied. BV or Mel were topically applied to the lesion. The tissues were stained with hematoxylin and eosin, while immunohistochemical staining was performed with anti-neutrophil. S. pyogenes-infected skin revealed increased epidermal and dermal layers, but it was reduced in the BV and Mel groups. Finding increased neutrophils in the mice infected with S. pyogenes, but the BV and Mel mice showed decreased expression. These results suggest that BV and Mel treatments could reduce the inflammatory reactions and help improve lesions induced by S. pyogenes skin infection. This study provides additional assessment of the potential therapeutic effects of BV and Mel in managing skin infection caused by S. pyogenes, further suggesting that it could be a candidate for developing novel treatment alternative for streptococcal skin infections.


Assuntos
Venenos de Abelha , Dermatopatias Bacterianas , Humanos , Camundongos , Animais , Meliteno/farmacologia , Meliteno/uso terapêutico , Venenos de Abelha/farmacologia , Venenos de Abelha/uso terapêutico , Streptococcus pyogenes , Amarelo de Eosina-(YS) , Hematoxilina , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Dermatopatias Bacterianas/tratamento farmacológico , Antibacterianos/uso terapêutico
13.
Biomaterials ; 288: 121706, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35953328

RESUMO

Cancer vaccines are viewed as a promising immunotherapy to eradicate malignant tumors and aim to elicit the patients' own tumor-specific immune response against tumor cells. However, few cancer vaccines have been applied due to the low immunogenicity of antigen and invalidation of adjuvant. Herein, we designed a tumor microenvironment (TME) responsive MnO2-melittin nanoparticles (M-M NPs). The M-M NPs consumed glutathione and produced •OH via Fenton-like reaction in the mimic TME, specifically caused tumor cell death in vitro, activated cGAS-STING pathway in vitro and promoted the maturation of antigen-presenting cells in vitro and in vivo to elicit systemic anti-tumor immune response including the augmentation of tumor-specific T cells and more productions of pro-inflammatory cytokines and chemokines, which all were stronger than MnO2 NPs and melittin. The anti-tumor effects of M-M NPs were evaluated in three subcutaneous tumor models and the B16-F10 lung metastasis model and the tumor growth and lung metastasis were more obviously inhibited in the M-M NPs treated mice, compared with MnO2 NPs and melittin treatments. More importantly, only M-M NPs promoted the MHC-I cross-dressing by dendritic cells to prime tumor-specific CD8+ T cells and remarkably suppressed the growth of left tumors if express cognate antigen while treating on the right in the bilateral tumor model. Our findings proposed a strategy to enhance the cancer vaccine efficiency which showed great therapeutic effect on tumor immunotherapy.


Assuntos
Vacinas Anticâncer , Neoplasias Pulmonares , Nanopartículas , Animais , Antígenos , Linfócitos T CD8-Positivos , Imunidade , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Compostos de Manganês , Meliteno , Nanopartículas Metálicas , Camundongos , Óxidos , Microambiente Tumoral
14.
Amino Acids ; 54(9): 1275-1285, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35779173

RESUMO

The emergence of multidrug-resistant (MDR) bacteria is a major challenge for antimicrobial chemotherapy. Concerning this issue, antimicrobial peptides (AMPs) have been presented as novel promising antibiotics. Our previous de novo designed melittin-derived peptides (MDP1 and MDP2) indicated their potential as peptide drug leads. Accordingly, this study was aimed to evaluate the kinetics of activity, toxicity, and stability of MDP1 and MDP2 as well as determination of their structures. The killing kinetics of MDP1 and MDP2 demonstrate that all bacterial strains were rapidly killed. MDP1 and MDP2 were ca. 100- and 26.6-fold less hemolytic than melittin and found to be respectively 72.9- and 41.6-fold less cytotoxic than melittin on the HEK293 cell line. MDP1 and MDP2 showed 252- and 132-fold improvement in their therapeutic index in comparison to melittin. MDP1 and MDP2 sustained their activities in the presence of human plasma and were found to be ca. four to eightfold more stable than melittin. Spectropolarimetry analysis of MDP1 and MDP2 indicates that the peptides adopt an alpha-helical structure predominantly. According to the fast killing kinetics, significant therapeutic index, and high stability of MDP1, it could be considered as a drug lead in a mouse model of septicemia infections.


Assuntos
Peptídeos Antimicrobianos , Meliteno , Animais , Antibacterianos/química , Células HEK293 , Humanos , Cinética , Meliteno/química , Meliteno/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Peptídeos/química , Índice Terapêutico
15.
Anticancer Agents Med Chem ; 22(18): 3172-3181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35579132

RESUMO

BACKGROUND AND PURPOSE: Osteosarcoma is the most commonly seen type of primary malignant bone tumors in children and adolescents. Partial patients with osteosarcoma cannot tolerate the side effects of chemotherapy drugs. Hence, it is urgent to find anti-osteosarcoma drugs with low side effects. Melittin is an anti-tumor Traditional Chinese Medicine with low side effects. The purpose of this study was to explore the anti-osteosarcoma effect of melittin and its possible molecular mechanisms. METHODS: The effects of melittin on cell growth were detected by CCK-8, clonal formation, and flow cytometry. The related molecules were also investigated by Real-time PCR and Western blot. A xenograft model in nude mice was established to observe the effects of melittin on tumor growth and the related molecular expression was detected by immunohistochemistry. RESULTS: Melittin can inhibit the proliferation of osteosarcoma 143B cells, reduce colony formation, and induce apoptosis while significantly up-regulating the expression of Bax and Caspase-3 and down-regulating the expression of Bcl-2 proteins. Moreover, treatment with melittin significantly reduced the mRNA and protein levels of ß-catenin and Wnt/ß- catenin related genes (LRP5, c-Myc, and Survivin) in osteosarcoma 143B cells in vitro. The xenograft model found that melittin significantly inhibited tumor growth and decreased the protein expression levels of ß-catenin and Wnt/ß- catenin related genes in vivo. CONCLUSION: These findings show that melittin could inhibit the growth of osteosarcoma 143B cells, which may be related to the inhibition of Wnt/ß-catenin signaling pathway activity and induce apoptosis by up-regulating the ratio of Bax/Bcl-2 in osteosarcoma 143B cells. Therefore, melittin is a promising anti-tumor drug for the treatment of osteosarcoma.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Osteossarcoma , Adolescente , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Neoplasias Ósseas/patologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Criança , Humanos , Meliteno/farmacologia , Camundongos , Camundongos Nus , Osteossarcoma/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro , Sincalida/farmacologia , Sincalida/uso terapêutico , Survivina/metabolismo , Via de Sinalização Wnt , Proteína X Associada a bcl-2 , beta Catenina/metabolismo
16.
Neuropeptides ; 91: 102209, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34808488

RESUMO

Epilepsy is a chronic neuropathology characterized by an abnormal hyperactivity of neurons that generate recurrent, spontaneous, paradoxical and synchronized nerve impulses, leading or not to seizures. This neurological disorder affects around 70 million individuals worldwide. Pharmacoresistance is observed in about 30% of the patients and long-term use of antiepileptics may induce serious side effects. Thus, there is an interest in the study of the therapeutic potential of bioactive substances isolated from natural products in the treatment of epilepsy. Arthropod venoms contain neurotoxins that have high affinity for molecular structures in the neural tissue such as receptors, transporters and ion channels both in glial and neuronal membranes. This study evaluated the potential neuroprotective effect of melittin (MEL), an active compound of bee venom, in the bicuculline-induced seizure model (BIC) in rats. Male Wistar rats (3 months, 250-300 g) were submitted to surgery for the implantation of a unilateral cannula in the lateral ventricle. After the recovery period, rats received a microinjection of saline solution or MEL (0.1 mg per animal). Firstly, rats were evaluated in the open field (20 min) and in the elevated plus maze (5 min) tests after received microinjection of saline or MEL. After, 30 min later animals received BIC (100 mg/ml) or saline, and their behaviors were analyzed for 20 min in the open field according to a seizure scale. At the end, rats were euthanized, brains collected and processed to glial fibrillary acidic protein (GFAP) immunohistochemistry evaluation. No changes were observed in MEL-treated rats in the open field and elevated plus maze. However, 90% of MEL-treated animals were protected against seizures induced by BIC. There was an increase in the latency for the onset of seizures, accompanied by a reduction of GFAP-immunoreactivity cells in the dentate gyrus and CA1. Thus, our study suggests that MEL has an anticonvulsant potential, and further studies are needed to elucidate the mechanisms involved in this action.


Assuntos
Anticonvulsivantes/uso terapêutico , Astrócitos/efeitos dos fármacos , Venenos de Abelha/uso terapêutico , Hipocampo/efeitos dos fármacos , Meliteno/uso terapêutico , Convulsões/prevenção & controle , Animais , Anticonvulsivantes/farmacologia , Venenos de Abelha/farmacologia , Comportamento Animal/efeitos dos fármacos , Bicuculina , Masculino , Meliteno/farmacologia , Ratos , Ratos Wistar , Convulsões/induzido quimicamente
17.
Chem Biol Interact ; 347: 109622, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34375656

RESUMO

Glioblastoma multiforme (GBM) is a frequent form of malignant glioma. Strategic therapeutic approaches to treat this type of brain tumor currently involves a combination of surgery, radiotherapy and chemotherapy. Nevertheless, survival of GBM patients remains in the 12-15 months range following diagnosis. Development of novel therapeutic approaches for this malignancy is therefore of utmost importance. Interestingly, bee venom and its components have shown promising anti-cancer activities in various types of cancer even though information pertaining to GBMs have been limited. The current work was thus undertaken to better characterize the anti-cancer properties of bee venom and its components in Hs683, T98G and U373 human glioma cells. MTT-based cell viability assays revealed IC50 values of 7.12, 15.35 and 7.60 µg/mL for cell lines Hs683, T98G and U373 treated with bee venom, respectively. Furthermore, melittin treatment of these cell lines resulted in IC50 values of 7.77, 31.53 and 12.34 µg/mL, respectively. Cell viability assessment by flow cytometry analysis confirmed signs of late apoptosis and necrosis after only 1 h of treatment with either bee venom or melittin in all three cell lines. Immunoblotting-based quantification of apoptotic markers demonstrated increased expression of Bak and Bax, while Caspsase-3 levels were significantly lower when compared to control cells. Quantification by qRT-PCR showed increased expression levels of long non-coding RNAs RP11-838N2.4 and XIST in glioma cells treated with either bee venom or melittin. Overall, this study provides preliminary insight on molecular mechanisms via which bee venom and its main components can impact viability of glioma cells and warrants further investigation of its anticancer potential in gliomas.


Assuntos
Antineoplásicos/uso terapêutico , Glioblastoma/tratamento farmacológico , Meliteno/uso terapêutico , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/metabolismo , Humanos , Linfócitos/efeitos dos fármacos , Meliteno/toxicidade , Monócitos/efeitos dos fármacos , Necrose/tratamento farmacológico , Fosfolipases A2/uso terapêutico , RNA Longo não Codificante/metabolismo , Temozolomida/uso terapêutico
18.
Toxins (Basel) ; 13(5)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067049

RESUMO

Prostate cancer is one of the most common cancers in men. Despite the development of a variety of therapeutic agents to treat either metastatic hormone-sensitive prostate cancer, advanced prostate cancer, or nonmetastatic/metastatic castration-resistant prostate cancer, the progression or spread of the disease often cannot be avoided. Additionally, the development of resistance of prostate cancer cells to available therapeutic agents is a well-known problem. Despite extensive and cost-intensive research over decades, curative therapy for metastatic prostate cancer is still not available. Therefore, additional therapeutic agents are still needed. The animal kingdom offers a valuable source of natural substances used for the treatment of a variety of diseases. Bee venom of the honeybee is a mixture of many components. It contains proteins acting as enzymes such as phospholipase A2, smaller proteins and peptides such as melittin and apamin, phospholipids, and physiologically active amines such as histamine, dopamine, and noradrenaline. Melittin has been shown to induce apoptosis in different cancer cell lines, including prostate cancer cell lines. It also influences cell proliferation, angiogenesis, and necrosis as well as motility, migration, metastasis, and invasion of tumour cells. Hence, it represents an interesting anticancer agent. In this review article, studies about the effect of bee venom components on prostate cancer cells are discussed. An electronic literature research was performed utilising PubMed in February 2021. All scientific publications, which examine this interesting subject, are discussed. Furthermore, the different types of application of these promising substances are outlined. The studies clearly indicate that bee venom or melittin exhibited anticancer effects in various prostate cancer cell lines and in xenografts. In most of the studies, a combination of bee venom or the modified melittin with another molecule was utilised in order to avoid side effects and, additionally, to target selectively the prostate cancer cells or the surrounding tissue. The studies showed that systemic side effects and unwanted damage to healthy tissue and organs could be minimised when the anticancer drug was not activated until binding to the cancer cells or the surrounding tissue. Different targets were used, such as the matrix metalloproteinase 2, hormone receptors expressed by prostate cancer cells, the extracellular domain of PSMA, and the fibroblast activation protein occurring in the stroma of prostate cancer cells. Another approach used loaded phosphate micelles, which were cleaved by the enzyme secretory phospholipase A2 produced by prostate cancer cells. In a totally different approach, targeted nanoparticles containing the melittin gene were used for prostate cancer gene therapy. By the targeted nonviral gene delivery, the gene encoding melittin was delivered to the prostate cancer cells without systemic side effects. This review of the scientific literature reveals totally different approaches using bee venom, melittin, modified melittin, or protoxin as anticancer agents. The toxic agents acted through several different mechanisms to produce their anti-prostate cancer effects. These mechanisms are not fully understood yet and more experimental studies are necessary to reveal the complete mode of action. Nevertheless, the researchers have conducted pioneering work. Based on these results, further experimental and clinical studies about melittin and modifications of this interesting agent deriving from nature are necessary and could possibly lead to a complementary treatment option for prostate cancer.


Assuntos
Antineoplásicos/farmacologia , Venenos de Abelha/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Apamina/isolamento & purificação , Apamina/farmacologia , Apoptose/efeitos dos fármacos , Venenos de Abelha/administração & dosagem , Venenos de Abelha/química , Abelhas , Humanos , Masculino , Meliteno/isolamento & purificação , Meliteno/farmacologia , Fosfolipases A2/isolamento & purificação , Fosfolipases A2/farmacologia , Neoplasias da Próstata/patologia
19.
Med Oncol ; 38(5): 52, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33796975

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is the most prevalent neurological complication of cancer treatment which involves sensory and motor nerve dysfunction. Severe CIPN has been reported in around 5% of patients treated with single and up to 38% of patients treated with multiple chemotherapeutic agents. Present medications available for CIPN are the use of opioids, nonsteroidal anti-inflammatory agents, and tricyclic antidepressants, which are only marginally effective in treating neuropathic symptoms. In reality, symptom reappears after these drugs are discontinued. The pathogenesis of CIPN has not been sufficiently recognized and methods for the prevention and treatment of CIPN remain vulnerable to therapeutic problems. It has witnessed that the present medicines available for the disease offer only symptomatic relief for the short term and have severe adverse side effects. There is no standard treatment protocol for preventing, reducing, and treating CIPN. Therefore, there is a need to develop curative therapy that can be used to treat this complication. Melittin is the main pharmacological active constituent of honeybee venom and has therapeutic values including in chemotherapeutic-induced peripheral neuropathy. It has been shown that melittin and whole honey bee venom are effective in treating paclitaxel and oxaliplatin-induced peripheral neuropathy. The use of melittin against peripheral neuropathy caused by chemotherapy has been limited despite having strong therapeutic efficacy against the disease. Melittin mediated haemolysis is the key reason to restrict its use. In our study, it is found that α-Crystallin (an eye lens protein) is capable of inhibiting melittin-induced haemolysis which gives hope of using an appropriate combination of melittin and α-Crystallin in the treatment of CIPN. The review summarizes the efforts made by different research groups to address the concern with melittin in the treatment of chemotherapeutic-induced neuropathy. It also focuses on the possible approaches to overcome melittin-induced haemolysis.


Assuntos
Antineoplásicos/efeitos adversos , Venenos de Abelha/uso terapêutico , Meliteno/uso terapêutico , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Venenos de Abelha/isolamento & purificação , Humanos , Fatores Imunológicos/efeitos adversos , Fatores Imunológicos/uso terapêutico , Meliteno/isolamento & purificação , Doenças do Sistema Nervoso Periférico/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA