Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 564
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5619, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699874

RESUMO

Microbial synthesis of nutraceutically and pharmaceutically interesting plant polyphenols represents a more environmentally friendly alternative to chemical synthesis or plant extraction. However, most polyphenols are cytotoxic for microorganisms as they are believed to negatively affect cell integrity and transport processes. To increase the production performance of engineered cell factories, strategies have to be developed to mitigate these detrimental effects. Here, we examine the accumulation of the stilbenoid resveratrol in the cell membrane and cell wall during its production using Corynebacterium glutamicum and uncover the membrane rigidifying effect of this stilbenoid experimentally and with molecular dynamics simulations. A screen of free fatty acid supplements identifies palmitelaidic acid and linoleic acid as suitable additives to attenuate resveratrol's cytotoxic effects resulting in a three-fold higher product titer. This cost-effective approach to counteract membrane-damaging effects of product accumulation is transferable to the microbial production of other polyphenols and may represent an engineering target for other membrane-active bioproducts.


Assuntos
Ácidos Graxos não Esterificados , Polifenóis , Polifenóis/farmacologia , Resveratrol , Membranas , Membrana Celular
2.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37628878

RESUMO

Charge polarization at the membrane interface is a fundamental process in biology. Despite the lower concentration compared to the abundant monovalent ions, the relative abundance of divalent cations (Ca2+, Mg2+, Zn2+, Fe2+, Cu2+) in particular spaces, such as the neuron synapse, raised many questions on the possible effects of free multivalent ions and of the required protection of membranes by the eventual defects caused by the free forms of the cations. In this work, we first applied a recent realistic model of divalent cations to a well-investigated model of a polar lipid bilayer, di-myristoyl phosphatidyl choline (DMPC). The full atomistic model allows a fairly good description of changes in the hydration of charged and polar groups upon the association of cations to lipid atoms. The lipid-bound configurations were analyzed in detail. In parallel, amyloid-ß 1-42 (Aß42) peptides assembled into tetramers were modeled at the surface of the same bilayer. Two of the protein tetramers' models were loaded with four Cu2+ ions, the latter bound as in DMPC-free Aß42 oligomers. The two Cu-bound models differ in the binding topology: one with each Cu ion binding each of the monomers in the tetramer; one with pairs of Cu ions linking two monomers into dimers, forming tetramers as dimers of dimers. The models here described provide hints on the possible role of Cu ions in synaptic plasticity and of Aß42 oligomers in storing the same ions away from lipids. The release of structurally disordered peptides in the synapse can be a mechanism to recover ion homeostasis and lipid membranes from changes in the divalent cation concentration.


Assuntos
Lecitinas , Bicamadas Lipídicas , Cátions Bivalentes , Membranas , Água
3.
Biophys J ; 122(12): 2445-2455, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37120716

RESUMO

We studied the mechanical leaflet coupling of prototypic mammalian plasma membranes using neutron spin-echo spectroscopy. In particular, we examined a series of asymmetric phospholipid vesicles with phosphatidylcholine and sphingomyelin enriched in the outer leaflet and inner leaflets composed of phosphatidylethanolamine/phosphatidylserine mixtures. The bending rigidities of most asymmetric membranes were anomalously high, exceeding even those of symmetric membranes formed from their cognate leaflets. Only asymmetric vesicles with outer leaflets enriched in sphingolipid displayed bending rigidities in conformity with these symmetric controls. We performed complementary small-angle neutron and x-ray experiments on the same vesicles to examine possible links to structural coupling mechanisms, which would show up in corresponding changes in membrane thickness. In addition, we estimated differential stress between leaflets originating either from a mismatch of their lateral areas or spontaneous curvatures. However, no correlation with asymmetry-induced membrane stiffening was observed. To reconcile our findings, we speculate that an asymmetric distribution of charged or H-bond forming lipids may induce an intraleaflet coupling, which increases the weight of hard undulatory modes of membrane fluctuations and hence the overall membrane stiffness.


Assuntos
Fosfatidilcolinas , Fosfolipídeos , Animais , Membrana Celular/química , Fosfolipídeos/química , Membranas , Fosfatidilcolinas/química , Esfingomielinas , Bicamadas Lipídicas/química , Mamíferos
4.
Macromol Rapid Commun ; 44(11): e2200774, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36520529

RESUMO

The uniquely tunable nature of covalent organic frameworks (COFs), whose pore size and stability can be controlled by choosing diverse organic building blocks and linkage types, makes COFs potential candidates for the membrane separation. Therefore, the preparation of membranes with effective separation efficiency based on COFs has aroused great interest among researchers. Although solvothermal approach has been the most popular method for the preparation of COF membranes, fabricating COF membranes at room temperature (RT) will provide a simple and captivating strategy for separation membranes. Herein, a P-COF membrane on porous alumina substrate at RT, showing 99.7% rejection of rhodamine B and excellent water permeance up to 52 L m-2 h-1 bar-1 , which can effectively purify wastewater is successfully obtained. P-COF is directly grown on alumina to form the composite membrane, which enhances the mechanical strength of COF membrane and avoids the risk of damaging the membrane structure during the transfer process of self-standing membrane. Moreover, P-COF membrane is grown at RT, which is more energy efficient than the conventional solvothermal method. Thus, it is of great significance to obtain COF membranes with excellent nanofiltration performance in a simple and mild condition to alleviate environmental and energy concerns.


Assuntos
Estruturas Metalorgânicas , Temperatura , Membranas , Óxido de Alumínio , Porosidade
5.
J Insect Physiol ; 136: 104310, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34530044

RESUMO

Two female castes that are genetically identical are found in honey bees: workers and queens. Adult female honey bees differ in their morphology and behaviors, but the most intriguing difference between the castes is the difference in their longevity. Queens live for years while workers live generally for weeks. The mechanisms that mediate this extraordinary difference in lifespan remain mostly unknown. Both castes share similar developmental stages and are fed liquid food (i.e. a jelly) during development. However, after emergence, workers begin to feed on pollen while queens are fed the same larval food for their entire life. Pollen has a high content of polyunsaturated fatty acids (PUFA) while royal jelly has negligible amounts. The difference in food during adult life leads to drastic changes in membrane phospholipids of female honey bees, and those changes have been proposed as mechanisms that could explain the difference in lifespan. To provide further details on those mechanisms, we characterized the membrane phospholipids of adult workers at seven different ages covering all life-history stages. Our results suggest that the majority of changes in worker membranes occur in the first four days of adult life. Shortly after emergence, workers increase their level of total phospholipids by producing phospholipids that contained saturated (SFA) and monounsaturated fatty acids (MUFA). From the second day, workers start replacing fatty acid chains from those pre-synthesized molecules with PUFA acquired from pollen. After four days, worker membranes are set and appear to be maintained for the rest of adult life, suggesting that damaged PUFA are replaced effectively. Plasmalogen phospholipids increase continuously throughout worker adult life, suggesting that plasmalogen might help to reduce lipid peroxidation in worker membranes. We postulate that the diet-induced increase in PUFA in worker membranes makes them far more prone to lipid-based oxidative damage compared to queens.


Assuntos
Fosfolipídeos , Pólen , Animais , Abelhas , Larva , Longevidade , Membranas
6.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681924

RESUMO

Cyclic fertilin peptide (cFEE: phenylalanine, glutamic acid; glutamic acid) improves gamete interaction in humans. We investigate whether it could be via improvement of sperm movement parameters and their mitochondrial ATP production. Sperm movement parameters were studied using computer-assisted sperm analysis (CASA) in sperm samples from 38 patients with normal sperm in medium supplemented with cyclic fertilin against a control group. Sperm mitochondrial functions were studied using donor's sperm, incubated or not with cFEE. It was evaluated by the measurement of their ATP production using bioluminescence, their respiration by high resolution oxygraphy, and of mitochondrial membrane potential (MMP) using potentiometric dyes and flow cytometry. cFEE significantly improved sperm movement parameters and percentage of hyperactivated sperm. Impact of inhibitors showed OXPHOS as the predominant energy source for sperm movement. However, cFEE had no significant impact on any of the analyzed mitochondrial bioenergetic parameters, suggesting that it could act via a more efficient use of its energy resources.


Assuntos
Mitocôndrias/metabolismo , Peptídeos Cíclicos/farmacologia , Espermatozoides/fisiologia , Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Humanos , Medições Luminescentes , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Membranas/metabolismo , Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos
7.
Mol Biol Cell ; 32(21): ar32, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34495738

RESUMO

Mitochondria evolved from endosymbiotic bacteria to become essential organelles of eukaryotic cells. The unique lipid composition and structure of mitochondrial membranes are critical for the proper functioning of mitochondria. However, stress responses that help maintain the mitochondrial membrane integrity are not well understood. One reason for this lack of insight is the absence of efficient tools to specifically damage mitochondrial membranes. Here, through a compound screen, we found that two bis-biguanide compounds, chlorhexidine and alexidine, modified the activity of the inner mitochondrial membrane (IMM)-resident protease OMA1 by altering the integrity of the IMM. These compounds are well-known bactericides whose mechanism of action has centered on their damage-inducing activity on bacterial membranes. We found alexidine binds to the IMM likely through the electrostatic interaction driven by the membrane potential as well as an affinity for anionic phospholipids. Electron microscopic analysis revealed that alexidine severely perturbated the cristae structure. Notably, alexidine evoked a specific transcriptional/proteostasis signature that was not induced by other typical mitochondrial stressors, highlighting the unique property of alexidine as a novel mitochondrial membrane stressor. Our findings provide a chemical-biological tool that should enable the delineation of mitochondrial stress-signaling pathways required to maintain the mitochondrial membrane homeostasis.


Assuntos
Antibacterianos/farmacologia , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Biguanidas/farmacologia , Clorexidina/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Células HeLa , Homeostase , Humanos , Membranas/metabolismo , Metaloendopeptidases/efeitos dos fármacos , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fosfolipídeos/metabolismo
8.
Colloids Surf B Biointerfaces ; 207: 112029, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34399158

RESUMO

Sophorolipids (SLs) constitute a group of unique biosurfactants (BS) in the light of their outstanding properties, among which their antimicrobial activities stand out. SLs can exist mainly in an acidic and a lactonic form, both of which display inhibitory activity. Given the amphipathic nature of SLs it is feasible that these antimicrobial actions are the result of the perturbation of the physicochemical properties of targeted membranes. Thus, in this work we have carried out a biophysical study to unveil the molecular details of the interaction of an acidic SL with a model phospholipid membrane made of 1,2-dipalmitoy-sn-glycero-3-phosphocholine (DPPC). Using differential scanning calorimetry it was found that SL altered the phase behaviour of DPPC at low molar fractions, producing fluid phase immiscibility with the result of formation of biosurfactant-enriched domains within the phospholipid bilayer. Fourier-transform infrared spectroscopy showed that SL interacted with DPPC increasing ordering of the phospholipid acyl chain palisade and hydration of the lipid/water interface. Small angle X-ray scattering showed that SL did not modify bilayer thickness in the biologically relevant Lα fluid phase. SL was found to induce contents leakage in 1-palmitoy-2-oleoy-sn-glycero-3-phosphocholine (POPC) unilamellar liposomes, at sublytic concentrations below the cmc. This SL-induced membrane permeabilization at concentrations below the onset for membrane solubilization can be the result of the formation of laterally segregated domains, which might contribute to provide a molecular basis for the reported antimicrobial actions of SLs.


Assuntos
Lecitinas , Fosfatidilcolinas , Varredura Diferencial de Calorimetria , Bicamadas Lipídicas , Membranas , Ácidos Oleicos , Fosfolipídeos
9.
Nat Commun ; 12(1): 4990, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404808

RESUMO

Cells can expand their plasma membrane laterally by unfolding membrane undulations and by exocytosis. Here, we describe a third mechanism involving invaginations held shut by the membrane adapter, dynamin. Compartments open when Ca activates the lipid scramblase, TMEM16F, anionic phospholipids escape from the cytoplasmic monolayer in exchange for neutral lipids, and dynamins relax. Deletion of TMEM16F or dynamins blocks expansion, with loss of dynamin expression generating a maximally expanded basal plasma membrane state. Re-expression of dynamin2 or its GTPase-inactivated mutant, but not a lipid binding mutant, regenerates reserve compartments and rescues expansion. Dynamin2-GFP fusion proteins form punctae that rapidly dissipate from these compartments during TMEM16F activation. Newly exposed compartments extend deeply into the cytoplasm, lack numerous organellar markers, and remain closure-competent for many seconds. Without Ca, compartments open slowly when dynamins are sequestered by cytoplasmic dynamin antibodies or when scrambling is mimicked by neutralizing anionic phospholipids and supplementing neutral lipids. Activation of Ca-permeable mechanosensitive channels via cell swelling or channel agonists opens the compartments in parallel with phospholipid scrambling. Thus, dynamins and TMEM16F control large plasma membrane reserves that open in response to lateral membrane stress and Ca influx.


Assuntos
Anoctaminas/metabolismo , Membrana Celular/metabolismo , Dinaminas/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Anoctaminas/genética , Cálcio/metabolismo , Citoplasma , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Membranas/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Fosfolipídeos/metabolismo
10.
Compr Rev Food Sci Food Saf ; 20(5): 5015-5042, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34431206

RESUMO

Vegetable oil processing has been identified as one of the potential nonaqueous applications of membrane technology. Membrane-based processing has been largely attempted on individual steps of the conventional refining process with reasonable success. With the advent of organic-solvent-nanofiltration, membrane desolventizing of hexane oil miscella has received greater attention, revitalizing the prospects of integrated membrane processing. A practical evaluation of membrane augmented desolventizing revealed that approximately 65% energy savings towards solvent evaporation could be achieved in an industrial environment. Further, a pragmatic appraisal advocated that an integrated membrane process with a focus on pretreatment and desolventizing along with physical refining would be a desirable approach for fortifying the benefits. The present review intends to channelize the efforts to overcome the current limitations and highlights the importance of developing better membranes, process evaluation under appropriate practical conditions, and developing suitable cleaning protocols for stable performance. In the case of alternate solvents to hexane, membrane solvent recovery would be a favorable approach to overcome the limitation of associated higher thermal energy requirements. Nevertheless, solvent selection should be based on a composite evaluation of extraction and membrane desolventizing, specific to the type of oil. Finally, a comprehensive process scheme has been proposed to realize the benefits in extraction-refining plants. In this direction, a few pilot demonstration plants need to be established and operated for 1-2 years to understand and overcome the practical difficulties and limitations of the technology, leading to its industrial adoption.


Assuntos
Membranas Artificiais , Óleos de Plantas , Membranas , Solventes , Tecnologia
11.
Plant Mol Biol ; 106(1-2): 85-108, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33629224

RESUMO

KEY MESSAGE: Overexpression of StCaM2 in tobacco promotes plant growth and confers increased salinity and drought tolerance by enhancing the photosynthetic efficiency, ROS scavenging, and recovery from membrane injury. Calmodulins (CaMs) are important Ca2+ sensors that interact with effector proteins and drive a network of signal transduction pathways involved in regulating the growth and developmental pattern of plants under stress. Herein, using in silico analysis, we identified 17 CaM isoforms (StCaM) in potato. Expression profiling revealed different temporal and spatial expression patterns of these genes, which were modulated under abiotic stress. Among the identified StCaM genes, StCaM2 was found to have the largest number of abiotic stress responsive promoter elements. In addition, StCaM2 was upregulated in response to some of the selected abiotic stress in potato tissues. Overexpression of StCaM2 in transgenic tobacco plants enhanced their tolerance to salinity and drought stress. Accumulation of reactive oxygen species was remarkably decreased in transgenic lines compared to that in wild type plants. Chlorophyll a fluorescence analysis suggested better performance of photosystem II in transgenic plants under stress compared to that in wild type plants. The increase in salinity stress tolerance in StCaM2-overexpressing plants was also associated with a favorable K+/Na+ ratio. The enhanced tolerance to abiotic stresses correlated with the increase in the activities of anti-oxidative enzymes in transgenic tobacco plants. Overall, our results suggest that StCaM2 can be a novel candidate for conferring salt and drought tolerance in plants.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Secas , Nicotiana/genética , Nicotiana/fisiologia , Proteínas de Plantas/metabolismo , Salinidade , Solanum tuberosum/metabolismo , Estresse Fisiológico , Antioxidantes/metabolismo , Proteínas de Ligação ao Cálcio/genética , Calmodulina/genética , Calmodulina/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genoma de Planta , Germinação/efeitos dos fármacos , Germinação/genética , Íons , Membranas , Fotossíntese/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Prolina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Nicotiana/enzimologia , Nicotiana/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Água/metabolismo
12.
J Environ Manage ; 278(Pt 1): 111403, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33126194

RESUMO

Baker's yeast industries (BYI) generate highly polluted effluents, especially vinasse from yeast separators, with very high chemical oxygen demand (COD), nitrogen, sulphate and salts, mainly potassium and calcium. Anaerobic treatment is the most commonly applied method for treating BYI wastewaters. However, it is quite challenging to obtain a high performance due to the difficulties in biomass retention. Moreover, it does not provide compliance with COD and color discharge limits when used as a sole treatment process. In this context, a pilot scale anaerobic membrane bioreactor, which provides excellent biomass retention, was operated to investigate its treatment performance for vinasse from a BYI. The reactor achieved a COD removal between 48% and 92% up to a volumetric load of 10 kg COD m3 d-1. A specific methane production of 0.37 m3 CH4 kg-1 CODremoved was observed in the study. On the other hand, passage of inert organic compounds through membrane deteriorated permeate quality and treatment efficiency. High alkalinity and pH led to the accumulation of calcium precipitates, which reduced volatile solids fraction of sludge and biomass activity in the reactor. The present study showed the operational challenges and potential drawbacks of AnMBR systems for BYI wastewater treatment. The experience gained in the pilot system can be utilized in the design and operation of full scale AnMBRs for high strength industrial effluents.


Assuntos
Beta vulgaris , Águas Residuárias , Anaerobiose , Reatores Biológicos , Indústrias , Membranas , Metano , Melaço , Eliminação de Resíduos Líquidos
13.
Nutrients ; 12(11)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202897

RESUMO

Cow milk is the most common dairy milk and has been extensively researched for its functional, technological and nutritional properties for a wide range of products. One such product category is infant formula, which is the most suitable alternative to feed infants, when breastfeeding is not possible. Most infant formulas are based on cow milk protein ingredients. For several reasons, consumers now seek alternatives such as goat milk, which has increasingly been used to manufacture infant, follow-on and young child formulas over the last 30 years. While similar in many aspects, compositional and functional differences exist between cow and goat milk. This offers the opportunity to explore different formulations or manufacturing options for formulas based on goat milk. The use of whole goat milk as the only source of proteins in formulas allows levels of milk fat, short and medium chain fatty acids, sn-2 palmitic acid, and milk fat globule membrane (MFGM) to be maximised. These features improve the composition and microstructure of whole goat milk-based infant formula, providing similarities to the complex human milk fat globules, and have been shown to benefit digestion, and cognitive and immune development. Recent research indicates a role for milk fat and MFGM on digestive health, the gut-brain axis and the gut-skin axis. This review highlights the lipid composition of whole goat milk-based infant formula and its potential for infant nutrition to support healthy digestion, brain development and immunity. Further work is warranted on the role of these components in allergy development and the advantages of goat milk fat and MFGM for infant nutrition and health.


Assuntos
Glicolipídeos/química , Glicoproteínas/química , Cabras , Fórmulas Infantis/química , Gotículas Lipídicas/química , Leite/química , Animais , Bovinos , Ácidos Graxos/análise , Feminino , Humanos , Lactente , Fenômenos Fisiológicos da Nutrição do Lactente , Lipídeos/análise , Membranas , Proteínas do Leite/análise , Leite Humano/química
14.
Biochemistry ; 59(33): 2999-3009, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32786398

RESUMO

Aromatase (CYP19A1) catalyzes the synthesis of estrogens from androgens and is an invaluable target of pharmacotherapy for estrogen-dependent cancers. CYP19A1 is also one of the most primordial human CYPs and, to the extent that its fundamental dynamics are conserved, is highly relevant to understanding those of the more recently evolved and promiscuous enzymes. A complementary approach employing molecular dynamics simulations and hydrogen-deuterium exchange mass spectrometry (HDX-MS) was employed to interrogate the changes in CYP19A1 dynamics coupled to binding androstenedione (ASD). Gaussian-accelerated molecular dynamics and HDX-MS agree that ASD globally suppresses CYP19A1 dynamics. Bimodal HDX patterns of the B'-C loop potentially arising from at least two conformations are present in free 19A1 only, supporting the possibility that conformational selection is operative. Random-acceleration molecular dynamics and adaptive biasing force simulations illuminate ASD's binding pathway, predicting ASD capture in the lipid headgroups and a pathway to the active site shielded from solvent. Intriguingly, the predicted access channel in 19A1 aligns well with the steroid binding sites of other human sterol-oxidizing CYPs.


Assuntos
Androstenodiona/farmacocinética , Aromatase/química , Aromatase/metabolismo , Membranas/metabolismo , Androstenodiona/metabolismo , Domínio Catalítico , Medição da Troca de Deutério , Humanos , Espectrometria de Massa com Troca Hidrogênio-Deutério , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Membranas/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica
15.
Sci Rep ; 10(1): 6568, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32300186

RESUMO

The function and susceptibility of various drugs are tested with renal proximal tubular epithelial cells; yet, replicating the morphology and kidneys function using the currently available in vitro models remains difficult. To overcome this difficulty, in the study presented in this paper, a device and a three-layer microfluidic chip were developed, which provides a simulated environment for kidney organs. This device includes two parts: (1) microfluidic drug concentration gradient generator and (2) a flow-temperature controlled platform for culturing of kidney cells. In chip study, renal proximal tubular epithelial cells (RPTECs) and peritubular capillary endothelial cells (PCECs) were screened with the drugs to assess the drug-induced nephrotoxicity. Unlike cells cultured in petri dishes, cells cultured in the microfluidic device exhibited higher performance in terms of both cell growth and drug nephrotoxicity evaluation. It is worth mentioning that a significant decrease in cisplatin-induced nephrotoxicity was found because of the intervention of cimetidine in the microfluidic device. In conclusion, the different in the cell performance between the microfluidic device and the petri dishes demonstrates the physiological relevance of the nephrotoxicity screening technology along with the microfluidic device developed in this study. Furthermore, this technology can also facilitate the development of reliable kidney drugs and serve as a useful and efficient test-bed for further investigation of the drug nephrotoxicity evaluation.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Rim/patologia , Microfluídica , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/toxicidade , Técnicas de Cocultura , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fluorescência , Humanos , Rim/efeitos dos fármacos , Membranas , Permeabilidade , Temperatura
16.
J Pharm Biomed Anal ; 184: 113213, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32126457

RESUMO

Passive gastrointestinal absorption and membrane retention of twelve esters of (S,S)-ethylenediamine-N,N'-di-2-(3-cyclohexyl)propanoic acid (EDCP) and (S,S)-1,3-propanediamine-N,N'-di-2-(3-cyclohexyl)propanoic acid (PDCP), as well as of these two non-esterified acids were estimated using PAMPA test. Artificial PAMPA membrane used in this study for the simulation of gastrointestinal barrier was solution of egg lecithin in dodecane (1 % w/v). All tested compounds belong to class III (high membrane retention and low permeation), whereas EDCP, dipentyl ester of PDCP (DPE-PDCP) and diisopentyl ester of PDCP (DIPE-PDCP) belong to class I (negligible membrane retention and low permeation). Finally, quantitative structure - permeability and structure - retention relationships models were created in order to find quantitative relationships between physico-chemical properties of tested compounds and PAMPA membrane permeability/membrane retention parameters. Statistically the most reliable models were analysed and used for the design of new compounds for which favourable membrane permeability and retention can be expected.


Assuntos
Nucleotídeos de Desoxicitosina/química , Nucleotídeos de Desoxicitosina/metabolismo , Absorção Gastrointestinal/fisiologia , Absorção Intestinal/fisiologia , Membranas/metabolismo , Pirrolidinonas/química , Pirrolidinonas/metabolismo , Ésteres/química , Ésteres/metabolismo , Humanos , Lecitinas/química , Lecitinas/metabolismo , Membranas Artificiais , Permeabilidade
17.
Methods Mol Biol ; 2127: 81-92, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32112316

RESUMO

The comparison of isolated plant cell membranous enclosures can be hampered if their extraction method differs, e.g., in regard to the utilized buffers, the tissue, or the developmental stage of the plant. Thus, for comparable results, different cellular compartments should be isolated synchronously in one procedure. Here, we devise a workflow to isolate different organelles from one tissue, which is applicable to different eudicots such as Medicago x varia and Solanum lycopersicum. We describe this method for the isolation of different organelles from one plant tissue for the example of Arabidopsis thaliana. All compartments are retrieved by utilizing differential centrifugation with organelle-specific parameters.


Assuntos
Fracionamento Celular/métodos , Membranas/química , Células Vegetais/química , Extratos Vegetais/isolamento & purificação , Arabidopsis/química , Centrifugação/métodos , Cloroplastos/química , Membranas Intracelulares/química , Solanum lycopersicum/química , Medicago/química , Microssomos/química , Mitocôndrias/química , Organelas/química , Extratos Vegetais/química
18.
J Dairy Sci ; 103(4): 3017-3024, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32089302

RESUMO

Xinong Saanen goat milk is a major source of milk in the Chinese dairy industry. Milk fat globule membrane (MFGM) proteomes of goat colostrum and mature milk were analyzed and compared using proteomic technology. A total of 543 and 585 proteins were identified in goat colostrum and mature milk, respectively. Functional category analyses revealed that most of the MFGM proteins in both colostrum and mature milk were related to phosphoprotein and acetylation. The biological process of translation, cellular component of extracellular exosome, and molecular function of poly(A) RNA binding were the main gene ontology annotations of both colostrum and mature milk. Pathways associated with disease and genetic information processing involved large number of proteins in colostrum and mature milk, and more metabolism-related pathways were observed in mature milk. Protein-protein interaction network analyses showed that ribosome was abundant in both colostrum and mature milk. Colostrum showed more functions associated with protein processing in the endoplasmic reticulum, whereas mature milk had more oxidative phosphorylation functions. The results could provide further understanding of the unique biological properties of MFGM proteins of goat colostrum and mature milk.


Assuntos
Colostro/química , Glicolipídeos/química , Glicoproteínas/química , Cabras , Leite/química , Proteoma , Animais , Feminino , Ontologia Genética , Cabras/metabolismo , Gotículas Lipídicas , Membranas , Proteínas do Leite/análise , Gravidez , Espectrometria de Massas em Tandem
19.
Biochim Biophys Acta Biomembr ; 1862(5): 183200, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31972163

RESUMO

The biophysical properties and biological functions of membranes are highly dependent on lipid composition. Supplementing cellular membranes with very long chain fatty acids (vlcFAs) is notoriously difficult given the extreme insolubility of vlcFAs in aqueous solution. Herein, we report a solvent-free, photochemical approach to enrich target membranes with vlcFA. To prevent aggregation of vlcFA, we created light-sensitive micelles composed exclusively of poly-ethylene-glycol-nervonic acid amphiphiles (NA-PEG), which spontaneously disassemble in the presence of lipid bilayers. Once embedded within a membrane, UV light is used to cleave off PEG, leaving free nervonic acid (NA, i.e. FA24:1) in the target membrane. When applied to living cells, free NA was processed by the cell to generate various species of membrane and other lipids with incorporated vlcFAs. In this way, we were able to alter the membrane lipid composition of cellular membranes and modulate the enzymatic activity of γ-secretase, an intramembrane protease whose dysfunction has been implicated in the onset and progression of Alzheimer's disease.


Assuntos
Membrana Celular/química , Ácidos Graxos/química , Bicamadas Lipídicas/química , Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide/metabolismo , Membrana Celular/metabolismo , Ácidos Graxos Monoinsaturados/química , Humanos , Bicamadas Lipídicas/isolamento & purificação , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Membranas/metabolismo , Micelas , Processos Fotoquímicos , Polietilenoglicóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA