Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 129: 155567, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579644

RESUMO

BACKGROUND: Sarcopenia, an age-related disease, is characterized by a gradual loss of muscle mass, strength, and function. It has been linked to abnormal organelle function in myotubes, including the mitochondria and endoplasmic reticulum (ER). Recent studies revealed that mitochondria-associated membranes (MAM), the sites connecting mitochondria and the ER, may be implicated in skeletal muscle aging. In this arena, the potential of Polygonatum sibiricum polysaccharide (PSP) emerges as a beacon of hope. PSP, with its remarkable antioxidant and anti-senescence properties, is on the cusp of a therapeutic revolution, offering a promising strategy to mitigate the impacts of sarcopenia. PURPOSE: The objective of this research is to explore the effects of PSP on age-related muscle dysfunction and the underlying mechanisms involved both in vivo and in vitro. METHODS: In this investigation, we used in vitro experiments using D-galactose (D-gal)-induced aging in C2C12 myotubes and in vivo experiments on aged mice. Key indices were assessed, including reactive oxygen species (ROS) levels, mitochondrial function, the expression of aging-related markers, and the key proteins of mitochondria and MAM fraction. Differentially expressed genes (DEGs) related to mitochondria and ER were identified, and bioinformatic analyses were performed to explore underlying mechanisms. Muscle mass and function were determined to evaluate the quantity and quality of skeletal muscle in vivo. RESULTS: PSP treatment effectively mitigated oxidative stress and mitochondrial malfunction caused by D-gal in C2C12 myotubes, preserving mitochondrial fitness and reducing MAM formation. Besides, PSP attenuated D-gal-induced increases in Ca2+ concentrations intracellularly by modulating the calcium-related proteins, which were also confirmed by gene ontology (GO) analysis of DEGs. In aged mice, PSP increased muscle mass and improved grip strength, hanging time, and other parameters while reducing ROS levels and increasing antioxidant enzyme activities in skeletal muscle tissue. CONCLUSION: PSP offers protection against age-associated muscle impairments. The proposed mechanism suggests that modulation of calcium homeostasis via regulation of the MAM results in a favorable functional outcome during skeletal muscle aging. The results of this study highlight the prospect of PSP as a curative intervention for sarcopenia and affiliated pathological conditions, warranting further investigation.


Assuntos
Envelhecimento , Cálcio , Homeostase , Músculo Esquelético , Polygonatum , Polissacarídeos , Espécies Reativas de Oxigênio , Animais , Polissacarídeos/farmacologia , Polygonatum/química , Camundongos , Homeostase/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Cálcio/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Envelhecimento/efeitos dos fármacos , Masculino , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Sarcopenia/tratamento farmacológico , Membranas Mitocondriais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Linhagem Celular , Camundongos Endogâmicos C57BL , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Antioxidantes/farmacologia , Membranas Associadas à Mitocôndria
2.
ACS Appl Mater Interfaces ; 16(10): 13234-13246, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38411590

RESUMO

Carnitine palmitoyltransferase 1A (CPT1A), which resides on the mitochondrial outer membrane, serves as the rate-limiting enzyme of fatty acid ß-oxidation. Identifying the compounds targeting CPT1A warrants a promising candidate for modulating lipid metabolism. In this study, we developed a CPT1A-overexpressed mitochondrial membrane chromatography (MMC) to screen the compounds with affinity for CPT1A. Cells overexpressing CPT1A were cultured, and subsequently, their mitochondrial membrane was isolated and immobilized on amino-silica gel cross-linked by glutaraldehyde. After packing the mitochondrial membrane column, retention components of MMC were performed with LC/MS, whose analytic peaks provided structural information on compounds that might interact with mitochondrial membrane proteins. With the newly developed MMC-LC/MS approach, several Chinese traditional medicine extracts, such as Scutellariae Radix and Polygoni Cuspidati Rhizoma et Radix (PCRR), were analyzed. Five noteworthy compounds, baicalin, baicalein, wogonoside, wogonin, and resveratrol, were identified as enhancers of CPT1A enzyme activity, with resveratrol being a new agonist for CPT1A. The study suggests that MMC serves as a reliable screening system for efficiently identifying modulators targeting CPT1A from complex extracts.


Assuntos
Carnitina O-Palmitoiltransferase , Metabolismo dos Lipídeos , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/química , Carnitina O-Palmitoiltransferase/metabolismo , Resveratrol , Membranas Mitocondriais , Cromatografia
3.
J Bioenerg Biomembr ; 56(2): 101-115, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38231368

RESUMO

During their long evolutionary history, jellyfish have faced changes in multiple environmental factors, to which they may selectively fix adaptations, allowing some species to survive and inhabit diverse environments. Previous findings have confirmed the jellyfish's ability to synthesize large ATP amounts, mainly produced by mitochondria, in response to environmental challenges. This study characterized the respiratory chain from the mitochondria of the jellyfish Stomolophus sp2 (previously misidentified as Stomolophus meleagris). The in-gel activity from isolated jellyfish mitochondria confirmed that the mitochondrial respiratory chain contains the four canonical complexes I to IV and F0F1-ATP synthase. Specific additional activity bands, immunodetection, and mass spectrometry identification confirmed the occurrence of four alternative enzymes integrated into a branched mitochondrial respiratory chain of Stomolophus sp2: an alternative oxidase and three dehydrogenases (two NADH type II enzymes and a mitochondrial glycerol-3-phosphate dehydrogenase). The analysis of each transcript sequence, their phylogenetic relationships, and each protein's predicted models confirmed the mitochondrial alternative enzymes' identity and specific characteristics. Although no statistical differences were found among the mean values of transcript abundance of each enzyme in the transcriptomes of jellyfish exposed to three different temperatures, it was confirmed that each gene was expressed at all tested conditions. These first-time reported enzymes in cnidarians suggest the adaptative ability of jellyfish's mitochondria to display rapid metabolic responses, as previously described, to maintain energetic homeostasis and face temperature variations due to climate change.


Assuntos
Membranas Mitocondriais , Cifozoários , Animais , Transporte de Elétrons , Filogenia , Membranas Mitocondriais/metabolismo , Cifozoários/química , Cifozoários/metabolismo , Mitocôndrias/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons
4.
Exp Mol Med ; 56(1): 142-155, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38172593

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease. Despite intensive research, considerable information on NAFLD development remains elusive. In this study, we examined the effects of vitamin D on age-induced NAFLD, especially in connection with mitochondrial abnormalities. We observed the prevention of NAFLD in 22-month-old C57BL/6 mice fed a vitamin D3-supplemented (20,000 IU/kg) diet compared with mice fed a control (1000 IU/kg) diet. We evaluated whether vitamin D3 supplementation enhanced mitochondrial functions. We found that the level of mitochondrial contact site and cristae organizing system (MICOS) 60 (Mic60) level was reduced in aged mice, and this reduction was specifically restored by vitamin D3. In addition, depletion of Immt, the human gene encoding the Mic60 protein, induced changes in gene expression patterns that led to fat accumulation in both HepG2 and primary hepatocytes, and these alterations were effectively prevented by vitamin D3. In addition, silencing of the vitamin D receptor (VDR) decreased the Mic60 levels, which were recovered by vitamin D treatment. To assess whether VDR directly regulates Mic60 levels, we performed chromatin immunoprecipitation and reporter gene analysis. We discovered that VDR directly binds to the Immt 5' promoter region spanning positions -3157 to -2323 and thereby upregulates Mic60. Our study provides the first demonstration that a reduction in Mic60 levels due to aging may be one of the mechanisms underlying the development of aging-associated NAFLD. In addition, vitamin D3 could positively regulate Mic60 expression, and this may be one of the important mechanisms by which vitamin D could ameliorate age-induced NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Lactente , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Vitamina D/farmacologia , Vitamina D/uso terapêutico , Vitamina D/metabolismo , Membranas Associadas à Mitocôndria , Camundongos Endogâmicos C57BL , Membranas Mitocondriais/metabolismo
5.
Int J Mol Sci ; 24(15)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37569861

RESUMO

The progressive deterioration of function and structure of brain cells in neurodegenerative diseases is accompanied by mitochondrial dysfunction, affecting cellular metabolism, intracellular signaling, cell differentiation, morphogenesis, and the activation of programmed cell death. However, most of the efforts to develop therapies for Alzheimer's and Parkinson's disease have focused on restoring or maintaining the neurotransmitters in affected neurons, removing abnormal protein aggregates through immunotherapies, or simply treating symptomatology. However, none of these approaches to treating neurodegeneration can stop or reverse the disease other than by helping to maintain mental function and manage behavioral symptoms. Here, we discuss alternative molecular targets for neurodegeneration treatments that focus on mitochondrial functions, including regulation of calcium ion (Ca2+) transport, protein modification, regulation of glucose metabolism, antioxidants, metal chelators, vitamin supplementation, and mitochondrial transference to compromised neurons. After pre-clinical evaluation and studies in animal models, some of these therapeutic compounds have advanced to clinical trials and are expected to have positive outcomes in subjects with neurodegeneration. These mitochondria-targeted therapeutic agents are an alternative to established or conventional molecular targets that have shown limited effectiveness in treating neurodegenerative diseases.


Assuntos
Mitocôndrias , Doenças Neurodegenerativas , Humanos , Animais , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Membranas Mitocondriais/metabolismo , Desenho de Fármacos , Ensaios Clínicos como Assunto , Edição de Genes
6.
J Biol Chem ; 299(8): 105001, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37394006

RESUMO

NADH-ubiquinone (UQ) oxidoreductase (complex I) couples electron transfer from NADH to UQ with proton translocation in its membrane part. The UQ reduction step is key to triggering proton translocation. Structural studies have identified a long, narrow, tunnel-like cavity within complex I, through which UQ may access a deep reaction site. To elucidate the physiological relevance of this UQ-accessing tunnel, we previously investigated whether a series of oversized UQs (OS-UQs), whose tail moiety is too large to enter and transit the narrow tunnel, can be catalytically reduced by complex I using the native enzyme in bovine heart submitochondrial particles (SMPs) and the isolated enzyme reconstituted into liposomes. Nevertheless, the physiological relevance remained unclear because some amphiphilic OS-UQs were reduced in SMPs but not in proteoliposomes, and investigation of extremely hydrophobic OS-UQs was not possible in SMPs. To uniformly assess the electron transfer activities of all OS-UQs with the native complex I, here we present a new assay system using SMPs, which were fused with liposomes incorporating OS-UQ and supplemented with a parasitic quinol oxidase to recycle reduced OS-UQ. In this system, all OS-UQs tested were reduced by the native enzyme, and the reduction was coupled with proton translocation. This finding does not support the canonical tunnel model. We propose that the UQ reaction cavity is flexibly open in the native enzyme to allow OS-UQs to access the reaction site, but their access is obstructed in the isolated enzyme as the cavity is altered by detergent-solubilizing from the mitochondrial membrane.


Assuntos
Complexo I de Transporte de Elétrons , Ubiquinona , Animais , Bovinos , Ubiquinona/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Membranas Mitocondriais/metabolismo , NAD/metabolismo , Prótons , Lipossomos
7.
Cells ; 12(11)2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37296633

RESUMO

Astrocytes play a key role in brain functioning by providing energy to neurons. Increased astrocytic mitochondrial functions by Korean red ginseng extract (KRGE) have been investigated in previous studies. KRGE administration induces hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in astrocytes in the adult mouse brain cortex. VEGF expression can be controlled by transcription factors, such as the HIF-1α and estrogen-related receptor α (ERRα). However, the expression of ERRα is unchanged by KRGE in astrocytes of the mouse brain cortex. Instead, sirtuin 3 (SIRT3) expression is induced by KRGE in astrocytes. SIRT3 is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase that resides in the mitochondria and maintains mitochondrial homeostasis. Mitochondrial maintenance requires oxygen, and active mitochondria enhance oxygen consumption, resulting in hypoxia. The effects of SIRT3 on HIF-1α-mediated mitochondria functions induced by KRGE are not well established. We aimed to investigate the relationship between SIRT3 and HIF-1α in KRGE-treated normoxic astrocyte cells. Without changing the expression of the ERRα, small interfering ribonucleic acid targeted for SIRT3 in astrocytes substantially lowers the amount of KRGE-induced HIF-1α proteins. Reduced proline hydroxylase 2 (PHD2) expression restores HIF-1α protein levels in SIRT3-depleted astrocytes in normoxic cells treated with KRGE. The translocation of outer mitochondrial membranes 22 (Tom22) and Tom20 is controlled by the SIRT3-HIF-1α axis, which is activated by KRGE. KRGE-induced Tom22 increased oxygen consumption and mitochondrial membrane potential, as well as HIF-1α stability through PHD2. Taken together, in normoxic astrocytes, KRGE-induced SIRT3 activated the Tom22-HIF-1α circuit by increasing oxygen consumption in an ERRα-independent manner.


Assuntos
Panax , Sirtuína 3 , Camundongos , Animais , Membranas Mitocondriais/metabolismo , Sirtuína 3/metabolismo , Astrócitos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Panax/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
8.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(4): 318-324, 2023 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-37087549

RESUMO

Objective To study the effect and mechanism of blueberry on regulating the mitochondrial inner membrane protein mitofilin/Mic60 in an in vitro model of metabolic dysfunction-associated liver disease (MAFLD). Methods L02 human hepatocytes were induced by free fatty acids (FFA) to establish MAFLD cell model. A normal group, a model group, an 80 µg/mL blueberry treatment group, a Mic60 short hairpin RNA (Mic60 shRNA) transfection group, and Mic60 knockdown combined with an 80 µg/mL blueberry treatment group were established. The intracellular lipid deposition was observed by oil red O staining, and the effect of different concentrations of blueberry pulp on the survival rate of L02 cells treated with FFA was measured by MTT assay. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (TC), superoxide dismutase (SOD) activity, glutathione (GSH) and malondialdehyde (MDA) contents were measured by visible spectrophotometry. The expression of reactive oxygen species (ROS) in hepatocytes was observed by fluorescence microscopy, and the mRNA and protein expression of Mic60 were detected by real-time quantitative PCR and Western blot analysis, respectively. Results After 24 hours of FFA stimulation, a large number of red lipid droplets in the cytoplasm of L02 cells was observed, and the survival rate of L02 cells treated with 80 µg/mL blueberry was higher. The results of ALT, AST, TG, TC, MDA and the fluorescence intensity of ROS in blueberry treated group were lower than those in model group, while the levels of SOD, GSH, Mic60 mRNA and protein in blueberry treated group were higher than those in model group. Conclusion Blueberry promotes the expression of Mic60, increases the levels of SOD and GSH in hepatocytes, and reduces the production of ROS, thus alleviating the injury of MAFLD hepatocytes and regulating the disorder of lipid metabolism.


Assuntos
Mirtilos Azuis (Planta) , Hepatócitos , Hepatopatias , Extratos Vegetais , Superóxidos , Humanos , Mirtilos Azuis (Planta)/química , Hepatócitos/metabolismo , Fígado/metabolismo , Hepatopatias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Extratos Vegetais/farmacologia
9.
J Periodontal Res ; 58(1): 53-69, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36373245

RESUMO

BACKGROUND AND OBJECTIVE: Melatonin plays an important role in various beneficial functions, including promoting differentiation. However, effects on osteogenic differentiation, especially in human periodontal cells (hPDLCs), still remain inconclusive. Mitochondria are highly dynamic organelles that play an important role in various biological processes in cells, including energy metabolism and oxidative stress reaction. Furthermore, the translocase of the outer mitochondrial membrane 20 (TOM20) is responsible for recognizing and transporting precursor proteins. Thus, the objective of this study was to evaluate the functionality of melatonin on osteogenesis in human periodontal cells and to explore the involved mechanism of mitochondria. METHODS: The hPDLCs were extracted and identified by flow cytometry and multilineage differentiation. We divided hPDLCs into control group, osteogenic induction group, and osteogenesis with melatonin treatment group (100, 10, and 1 µM). Then we used a specific siRNA to achieve interference of TOM20. Alizarin red and Alkaline phosphatase staining and activity assays were performed to evaluate osteogenic differentiation. Osteogenesis-related genes and proteins were measured by qPCR and western blot. Mitochondrial functions were tested using ATP, NAD+/NADH, JC-1, and Seahorse Mito Stress Test kits. Finally, TOM20 and mitochondrial dynamics-related molecules expression were also assessed by qPCR and western blot. RESULTS: Our results showed that melatonin-treated hPDLCs had higher calcification and ALP activity as well as upregulated OCN and Runx2 expression at mRNA and protein levels, which was the most obvious in 1 µM melatonin-treated group. Meanwhile, melatonin supplement elevated intracellular ATP production and mitochondrial membrane potential by increasing mitochondrial oxidative metabolism, hence causing a lower NAD+ /NADH ratio. In addition, we also found that melatonin treatment raised TOM20 level and osteogenesis and mitochondrial functions were both suppressed after knocking down TOM20. CONCLUSION: We found that melatonin promoted osteogenesis of hPDLCs and 1 µM melatonin had the most remarkable effect. Melatonin treatment can reinforce mitochondrial functions by upregulating TOM20.


Assuntos
Melatonina , Osteogênese , Humanos , Trifosfato de Adenosina , Diferenciação Celular , Células Cultivadas , Melatonina/farmacologia , Mitocôndrias , Membranas Mitocondriais/metabolismo , NAD/metabolismo , Osteogênese/genética , Ligamento Periodontal
10.
Mitochondrion ; 68: 15-24, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36371074

RESUMO

Photobiomodulation is a term for using low-power red to near-infrared light to stimulate a variety of positive biological effects. Though the scientific and clinical acceptance of PBM as a therapeutic intervention has increased dramatically in recent years, the molecular underpinnings of the effect remain poorly understood. The putative chromophore for PBM effects is cytochrome c oxidase. It is postulated that light absorption at cytochrome c oxidase initiates a signaling cascade involving ATP and generation of reactive oxygen species (ROS), which subsequently results in improved cellular robustness. However, this hypothesis is largely based on inference and indirect evidence, and the precise molecular mechanisms that govern how photon absorption leads to these downstream effects remain poorly understood. We conducted low-power PBM-type light exposures of isolated mitochondria to 808 nm NIR light, at a number of irradiances. NIR exposure was found to enhance the activity of complex IV, depress the activity of complex III, and had no effect on the activity of complex II. Further, examining the dose-response of complex IV we found NIR enhancement did not exhibit irradiance reciprocity, indicating the effect on complex IV may not have direct photochemical basis. In summary, this research presents a novel method to interrogate the earliest stages of PBM in the mitochondria, and a unique window into the corresponding molecular mechanism(s) of induction.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Terapia com Luz de Baixa Intensidade , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Transporte de Elétrons , Terapia com Luz de Baixa Intensidade/métodos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo
11.
Artigo em Chinês | WPRIM | ID: wpr-981871

RESUMO

Objective To study the effect and mechanism of blueberry on regulating the mitochondrial inner membrane protein mitofilin/Mic60 in an in vitro model of metabolic dysfunction-associated liver disease (MAFLD). Methods L02 human hepatocytes were induced by free fatty acids (FFA) to establish MAFLD cell model. A normal group, a model group, an 80 μg/mL blueberry treatment group, a Mic60 short hairpin RNA (Mic60 shRNA) transfection group, and Mic60 knockdown combined with an 80 μg/mL blueberry treatment group were established. The intracellular lipid deposition was observed by oil red O staining, and the effect of different concentrations of blueberry pulp on the survival rate of L02 cells treated with FFA was measured by MTT assay. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (TC), superoxide dismutase (SOD) activity, glutathione (GSH) and malondialdehyde (MDA) contents were measured by visible spectrophotometry. The expression of reactive oxygen species (ROS) in hepatocytes was observed by fluorescence microscopy, and the mRNA and protein expression of Mic60 were detected by real-time quantitative PCR and Western blot analysis, respectively. Results After 24 hours of FFA stimulation, a large number of red lipid droplets in the cytoplasm of L02 cells was observed, and the survival rate of L02 cells treated with 80 μg/mL blueberry was higher. The results of ALT, AST, TG, TC, MDA and the fluorescence intensity of ROS in blueberry treated group were lower than those in model group, while the levels of SOD, GSH, Mic60 mRNA and protein in blueberry treated group were higher than those in model group. Conclusion Blueberry promotes the expression of Mic60, increases the levels of SOD and GSH in hepatocytes, and reduces the production of ROS, thus alleviating the injury of MAFLD hepatocytes and regulating the disorder of lipid metabolism.


Assuntos
Humanos , Mirtilos Azuis (Planta)/química , Hepatócitos/metabolismo , Fígado/metabolismo , Hepatopatias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Extratos Vegetais/farmacologia
12.
J Pharmacol Sci ; 148(2): 238-247, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35063139

RESUMO

Chronic magnesium (Mg) deficiency induces and exacerbates various cardiovascular diseases. We previously investigated the mechanisms underlying decline in cardiac function caused by chronic Mg deficiency and the effectiveness of Mg supplementation on this decline using the Langendorff-perfused isolated mouse heart model. Herein, we used the Langendorff-perfused isolated rat heart model to demonstrate the chronic Mg-deficient rats (Mg-deficient group) had lower the heart rate (HR) and left ventricular pressure (LVDP) than rats with normal Mg levels (normal group). Furthermore, decline in cardiac function due to hypoxia/reoxygenation injury was significantly greater in the Mg-deficient group than in the normal group. Experiments on mitochondrial permeability transition pore (mPTP) using isolated mitochondria revealed that mitochondrial membrane was fragile in the Mg-deficient group, implying that cardiac function decline through hypoxia/reoxygenation injury is associated with mitochondrial function. Mg supplementation for chronic Mg-deficient rats not only improved hypomagnesemia but also almost completely restored cardiac and mitochondrial functions. Therefore, proactive Mg supplementation in pathological conditions induced by Mg deficiency or for those at risk of developing hypomagnesemia may suppress the development and exacerbation of certain disease states.


Assuntos
Doenças Cardiovasculares/etiologia , Hipóxia/etiologia , Deficiência de Magnésio/complicações , Mitocôndrias Cardíacas , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Animais , Pressão Sanguínea , Doenças Cardiovasculares/prevenção & controle , Doença Crônica , Suplementos Nutricionais , Modelos Animais de Doenças , Frequência Cardíaca , Magnésio/administração & dosagem , Deficiência de Magnésio/patologia , Deficiência de Magnésio/fisiopatologia , Deficiência de Magnésio/terapia , Masculino , Mitocôndrias Cardíacas/fisiologia , Membranas Mitocondriais/patologia , Ratos Sprague-Dawley , Função Ventricular Esquerda
13.
Drug Chem Toxicol ; 45(4): 1614-1624, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33280443

RESUMO

The effect of Kigelia africana on mitochondrial membrane permeability transition has not been explored. In this study, the effect of a solvent fraction of Kigelia africana leaf extract on mitochondrial membrane permeability transition of rat brain and liver was evaluated. A methanol extract of K. africana leaves was fractionated into different solvents by vacuum liquid chromatography and following preliminary screening, the dichloromethane:ethylacetate (1:1) fraction was selected for further assays. Constituent phytochemicals in the fraction were revealed by thin-layer chromatography and further purification was carried out to characterize the compounds. Brain and liver mitochondria were isolated and used for mitochondrial membrane permeability transition and adenosine triphosphatase assays. Exogenous Ca2+ and Al3+ were used to trigger the mitochondrial membrane permeability transition opening. Physicochemical properties revealed by thin-layer chromatography showed that the isolated compounds were flavonoids. The extract inhibited mitochondrial membrane permeability transition opening in the presence and absence of triggering agents in brain and liver mitochondria. It also inhibited mitochondrial lipid peroxidation and adenosine triphosphatase activity. These results suggest that the extract can limit the rate of apoptosis via inhibition of mitochondrial membrane permeability transition which is pivotal to the mitochondrial apoptotic pathway and is an important therapeutic target in some pathological conditions.


Assuntos
Membranas Mitocondriais , Poro de Transição de Permeabilidade Mitocondrial , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Animais , Encéfalo/metabolismo , Cálcio/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/farmacologia , Permeabilidade , Extratos Vegetais/química , Ratos , Ratos Wistar
14.
Inflammopharmacology ; 29(6): 1733-1749, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34613566

RESUMO

Ficus mucoso is traditionally used to treat bronchial infections. This study compared the efficacy of terpene-rich fractions of F. mucoso root bark on lipopolysaccharide(LPS)-induced inflammation, liver mitochondrial permeability transition (mPT), an index of mitochondrial health, and associated pathological alterations. Terpene-Rich Fractions of Dichloromethane (TRDF) and Ethylacetate Fractions of F. mucoso (TREF) were obtained according to standard procedures. To induce systemic inflammation, a single intraperitoneal injection of 1mgLPS/kgbw was given to mice. Spectrophotometric techniques were used to evaluate the effects of the oral administration of TRDF and TREF (3 days) on levels of pro-inflammatory mediators (TNF-α, IL-1ß, IL-6) using ELSA techniques as well as antioxidant indices in normal and LPS-treated mice. The mPT pore opening, mitochondrial ATPase activity and lipid peroxidation were monitored spectrophotometrically. Our results revealed that treatment with LPS caused significant elevation in serum cytokine levels while administration of 50 and 100 mg/kg TRDF and TREF significantly reduced elevated serum levels of cytokines (TNF-α, IL-1ß, IL-6) in LPS-challenged mice. In addition, activitities of superoxide dismutase, catalase and liver marker enzymes (ALT and AST) as well as levels of mitochondrial lipid peroxides were significantly reduced in mice treated with TRDF and TREF relative to LPS-fed mice. Furthermore, LPS caused induction of opening of the liver mPT pore which was significantly inhibited by TRDF at 100 and 200 mg/kg bw by 71% and 88%, respectively, but only at 100 mg/kg TREF. Furthermore, mitochondrial ATPase activity was inhibited largely by TRDF. UPLC-ESI-MS analysis revealed the presence of terpenoid derivatives and a few aromatic metabolites in TRDF. The terpene dominance of TRDF metabolites was further justified on the 1H NMR fingerprint. Overall, TRDF is more effective as a cocktail of anti-inflammatory compounds than TREF against LPS-induced acute systemic inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Ficus/química , Extratos Vegetais/farmacologia , Terpenos/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Espectrometria de Massas , Camundongos , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Permeabilidade , Terpenos/isolamento & purificação
15.
Mol Biol Cell ; 32(21): ar32, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34495738

RESUMO

Mitochondria evolved from endosymbiotic bacteria to become essential organelles of eukaryotic cells. The unique lipid composition and structure of mitochondrial membranes are critical for the proper functioning of mitochondria. However, stress responses that help maintain the mitochondrial membrane integrity are not well understood. One reason for this lack of insight is the absence of efficient tools to specifically damage mitochondrial membranes. Here, through a compound screen, we found that two bis-biguanide compounds, chlorhexidine and alexidine, modified the activity of the inner mitochondrial membrane (IMM)-resident protease OMA1 by altering the integrity of the IMM. These compounds are well-known bactericides whose mechanism of action has centered on their damage-inducing activity on bacterial membranes. We found alexidine binds to the IMM likely through the electrostatic interaction driven by the membrane potential as well as an affinity for anionic phospholipids. Electron microscopic analysis revealed that alexidine severely perturbated the cristae structure. Notably, alexidine evoked a specific transcriptional/proteostasis signature that was not induced by other typical mitochondrial stressors, highlighting the unique property of alexidine as a novel mitochondrial membrane stressor. Our findings provide a chemical-biological tool that should enable the delineation of mitochondrial stress-signaling pathways required to maintain the mitochondrial membrane homeostasis.


Assuntos
Antibacterianos/farmacologia , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Biguanidas/farmacologia , Clorexidina/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Células HeLa , Homeostase , Humanos , Membranas/metabolismo , Metaloendopeptidases/efeitos dos fármacos , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fosfolipídeos/metabolismo
16.
Mitochondrion ; 60: 43-58, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34303006

RESUMO

Mitochondria possess transport mechanisms for import of RNA and DNA. Based on import into isolated Solanum tuberosum mitochondria in the presence of competitors, inhibitors or effectors, we show that DNA fragments of different size classes are taken up into plant organelles through distinct channels. Alternative channels can also be activated according to the amount of DNA substrate of a given size class. Analyses of Arabidopsis thaliana knockout lines pointed out a differential involvement of individual voltage-dependent anion channel (VDAC) isoforms in the formation of alternative channels. We propose several outer and inner membrane proteins as VDAC partners in these pathways.


Assuntos
Arabidopsis/genética , DNA Mitocondrial/genética , DNA de Plantas/genética , Mitocôndrias/genética , Membranas Mitocondriais/fisiologia , Solanum tuberosum/genética , Arabidopsis/metabolismo , Transporte Biológico/genética , Deleção de Genes , Solanum tuberosum/metabolismo
17.
Recent Pat Anticancer Drug Discov ; 16(3): 377-392, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33888051

RESUMO

BACKGROUND: Bee venom is a promising agent for cancer treatment due to its selective cytotoxic potential for cancer cells through apoptotic pathways. However, there is no evidence for changes in the epigenome and mitochondrial DNA copy numbers after bee venom application. The purpose of this study was to determine the impact of bee venom on cytosine modifications and mitochondrial DNA copy number variation. METHODS: A broad range of methods was applied to elucidate the impact of bee venom on neoplastic cells. These included MTT assay for detection of cytotoxicity, immunostaining of cytosine modifications and mitochondria, assessment of cellular morphology by flow cytometry, and quantification of mitochondrial DNA copy numbers using QPCR. RESULTS: Bee venom-induced cell death was selective for cancer cells, where it triggered a response characterized by alteration of cytosine modification. In contrast, normal cells were more resistant to DNA modifications. Furthermore, application of the venom resulted in variation of mitochondrial membrane permeability and mitochondrial DNA copy numbers, together with alterations in cell morphology, manifesting as reduced affected cell size. CONCLUSION: The study findings suggest that bee venom can be used as a selective DNA (de)methylating agent in cancer. Various agents (such as decitabine and 5-azacytidine) have been synthesized and developed for cancer treatment, and a range of syntheses and preparation and application methods have been described for these patented drugs. However, to the best of our knowledge, no previous research has investigated the use of bee venom or any component thereof for epigenetic therapy in cancer cells.


Assuntos
Venenos de Abelha/farmacologia , DNA Mitocondrial/efeitos dos fármacos , Epigenoma/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Animais , Apiterapia , Linhagem Celular Tumoral , Forma Celular , Tamanho Celular , Variações do Número de Cópias de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Epigenoma/genética , Células Hep G2 , Humanos , Camundongos , Mitocôndrias/genética , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Células NIH 3T3 , Permeabilidade/efeitos dos fármacos
18.
Molecules ; 26(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800399

RESUMO

Evasion from programmed cell death (apoptosis) is the main hallmark of cancer and a major cause of resistance to therapy. Many tumors simply ensure survival by over-expressing the cell-protecting (anti-apoptotic) Bcl-2 membrane protein involved in apoptotic regulation. However, the molecular mechanism by which Bcl-2 protein in its mitochondrial outer membrane location protects cells remains elusive due to the absence of structural insight; and current strategies to therapeutically interfere with these Bcl-2 sensitive cancers are limited. Here, we present an NMR-based approach to enable structural insight into Bcl-2 function; an approach also ideal as a fragment-based drug discovery platform for further identification and development of promising molecular Bcl-2 inhibitors. By using solution NMR spectroscopy on fully functional intact human Bcl-2 protein in a membrane-mimicking micellar environment, and constructs with specific functions remaining, we present a strategy for structure determination and specific drug screening of functional subunits of the Bcl-2 protein as targets. Using 19F NMR and a specific fragment library (Bionet) with fluorinated compounds we can successfully identify various binders and validate our strategy in the hunt for novel Bcl-2 selective cancer drug strategies to treat currently incurable Bcl-2 sensitive tumors.


Assuntos
Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos , Humanos , Espectroscopia de Ressonância Magnética/métodos , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Modelos Moleculares , Ligação Proteica/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/genética
19.
Cell Death Dis ; 12(3): 271, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723235

RESUMO

Cancers, including glioblastoma multiforme (GBM), undergo coordinated reprogramming of metabolic pathways that control glycolysis and oxidative phosphorylation (OXPHOS) to promote tumor growth in diverse tumor microenvironments. Adaptation to limited nutrient availability in the microenvironment is associated with remodeling of mitochondrial morphology and bioenergetic capacity. We recently demonstrated that NF-κB-inducing kinase (NIK) regulates mitochondrial morphology to promote GBM cell invasion. Here, we show that NIK is recruited to the outer membrane of dividing mitochondria with the master fission regulator, Dynamin-related protein1 (DRP1). Moreover, glucose deprivation-mediated metabolic shift to OXPHOS increases fission and mitochondrial localization of both NIK and DRP1. NIK deficiency results in decreased mitochondrial respiration, ATP production, and spare respiratory capacity (SRC), a critical measure of mitochondrial fitness. Although IκB kinase α and ß (IKKα/ß) and NIK are required for OXPHOS in high glucose media, only NIK is required to increase SRC under glucose deprivation. Consistent with an IKK-independent role for NIK in regulating metabolism, we show that NIK phosphorylates DRP1-S616 in vitro and in vivo. Notably, a constitutively active DRP1-S616E mutant rescues oxidative metabolism, invasiveness, and tumorigenic potential in NIK-/- cells without inducing IKK. Thus, we establish that NIK is critical for bioenergetic stress responses to promote GBM cell pathogenesis independently of IKK. Our data suggest that targeting NIK may be used to exploit metabolic vulnerabilities and improve therapeutic strategies for GBM.


Assuntos
Neoplasias Encefálicas/enzimologia , Metabolismo Energético , Glioblastoma/enzimologia , Mitocôndrias/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Dinaminas/genética , Dinaminas/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Dinâmica Mitocondrial , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/patologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Microambiente Tumoral , Quinase Induzida por NF-kappaB
20.
Aging (Albany NY) ; 13(8): 11010-11025, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535179

RESUMO

Ultra-violet (UV) radiation (UVR) causes significant oxidative injury to retinal pigment epithelium (RPE) cells. Obacunone is a highly oxygenated triterpenoid limonoid compound with various pharmacological properties. Its potential effect in RPE cells has not been studied thus far. Here in ARPE-19 cells and primary murine RPE cells, obacunone potently inhibited UVR-induced reactive oxygen species accumulation, mitochondrial depolarization, lipid peroxidation and single strand DNA accumulation. UVR-induced RPE cell death and apoptosis were largely alleviated by obacunone. Obacunone activated Nrf2 signaling cascade in RPE cells, causing Keap1-Nrf2 disassociation, Nrf2 protein stabilization and nuclear translocation. It promoted transcription and expression of antioxidant responsive element-dependent genes. Nrf2 silencing or CRISPR/Cas9-induced Nrf2 knockout almost reversed obacunone-induced RPE cytoprotection against UVR. Forced activation of Nrf2 cascade, by Keap1 knockout, similarly protected RPE cells from UVR. Importantly, obacunone failed to offer further RPE cytoprotection against UVR in Keap1-knockout cells. In vivo, intravitreal injection of obacunone largely inhibited light-induced retinal damage. Collectively, obacunone protects RPE cells from UVR-induced oxidative injury through activation of Nrf2 signaling cascade.


Assuntos
Benzoxepinas/farmacologia , Limoninas/farmacologia , Degeneração Macular/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Benzoxepinas/uso terapêutico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , DNA de Cadeia Simples/efeitos dos fármacos , DNA de Cadeia Simples/efeitos da radiação , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Humanos , Injeções Intravítreas , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Limoninas/uso terapêutico , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos da radiação , Degeneração Macular/etiologia , Degeneração Macular/patologia , Camundongos , Membranas Mitocondriais/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/genética , Estresse Oxidativo/efeitos da radiação , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA