Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Tradit Chin Med ; 40(4): 584-592, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32744025

RESUMO

OBJECTIVE: To investigate efficacy of Lidan Tang (LDT) on gallstone induced by high fat diet in mice, and to study its underlying mechanism. METHODS: Mice were fed with high fat diet every day and treated with LDT (9.01 times of human clinic dosage). Mice were randomly divided into 6 groups as control group, gallstone model group (high-fat diet), positive control ursodeoxycholic acid (UDCA) group (80 mg·kg-1·d-1, i.g.), LDT low dose group (6 kg/d, i.g.), LDT middle dose group (12 kg/d, i.g.), and LDT high dose group (24 kg/d, i.g.). The whole experiment was lasted for 4 weeks. The levels of ALT, AST, LDH, CHO, HDL-C and LDL-C in serum were measured, the pathological sections were observed by hematoxylin-eosin staining, the activities of antioxidant enzymes were measured by kits, and the proteins related to oxidative stress and lipid transport were detected by Western blot analysis. RESULTS: LDT could significantly reduce the contents of ALT and AST in serum and improve the pathological tissue of liver. LDT could significantly reduce the content of MDA and LPO, and increase the level of GSH and GSH-PX in liver tissue. The data of Western blot showed that LDT had antioxidant effect promoting Keap1/Nrf2 pathway and regulated the process of lipid transport, which was statistically significant. In addition, LDT treatment inhibited the expression of ATP-binding cassette transports ABCG5/8 in liver, and reduced cholesterol transport from the hepatocytes to the gallbladder. CONCLUSION: LDT has protective effect on gallstones induced by high fat diet in mice, which might be based on the protective effect on liver, including enhancing the antioxidant capacity of liver and reducing the production of lipid peroxides.


Assuntos
Coledocolitíase/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Coledocolitíase/etiologia , Coledocolitíase/genética , Coledocolitíase/metabolismo , Dieta Hiperlipídica/efeitos adversos , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos
2.
Clin Investig Arterioscler ; 31(6): 251-260, 2019.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-31097214

RESUMO

INTRODUCTION: High Density Lipoproteins (HDL) are dysfunctional in hypercholesterolemia patients. The hypothesis was tested that nicotinamide (NAM) administration will influence HDL metabolism and reverse cholesterol transport from macrophages to the liver and feces in vivo (m-RCT) in a murine model of hypercholesterolemia. METHODS: Apolipoprotein E-deficient (KOE) mice were challenged with a high-fat diet for 4 weeks. The effect of different doses of NAM on cholesterol metabolism, and the ability of HDL to promote m-RCT was assessed. RESULTS: The administration of NAM to KOE mice produced an increase (∼1.5-fold; P<0.05) in the plasma levels of cholesterol, which was mainly accounted for by the non-HDL fraction. NAM produced a [3H]-cholesterol plasma accumulation (∼1.5-fold) in the m-RCT setting. As revealed by kinetic analysis, the latter was mainly explained by an impaired clearance of circulating non-HDL (∼0.8-fold). The relative content of [3H]-tracer was lowered in the livers (∼0.6-fold) and feces (>0.5-fold) of NAM-treated mice. This finding was accompanied by a significant (or trend close to significance) up-regulation of the relative gene expression of Abcg5 and Abcg8 in the liver (Abcg5: 2.9-fold; P<0.05; Abcg8: 2.4-fold; P=0.06) and small intestine (Abcg5: 2.1-fold; P=0.15; Abcg8: 1.9-fold; P<0.05) of high-dose, NAM-treated mice. CONCLUSION: The data from this study show that the administration of NAM to KOE mice impaired m-RCT in vivo. This finding was partly due to a defective hepatic clearance of plasma non-HDL.


Assuntos
Apolipoproteínas E/deficiência , Colesterol/metabolismo , Hipercolesterolemia/metabolismo , Fígado/metabolismo , Niacinamida/administração & dosagem , Complexo Vitamínico B/administração & dosagem , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Transporte Biológico/efeitos dos fármacos , Colesterol/sangue , Dieta Hiperlipídica , Fezes , Expressão Gênica , Lipoproteínas/genética , Lipoproteínas HDL , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima
3.
Commun Biol ; 2: 20, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30675518

RESUMO

Cardiovascular disease is expected to remain the leading cause of death worldwide despite the introduction of proprotein convertase subtilisin/kexin type 9 inhibitors that effectively control cholesterol. Identifying residual risk factors for cardiovascular disease remains an important step for preventing and clinically managing the disease. Here we report cardiac injury and increased mortality occurring despite a 50% reduction in plasma cholesterol in a mouse model of phytosterolemia, a disease characterized by elevated levels of dietary plant sterols in the blood. Our studies show accumulation of stigmasterol, one of phytosterol species, leads to left ventricle dysfunction, cardiac interstitial fibrosis and macrophage infiltration without atherosclerosis, and increased mortality. A pharmacological inhibitor of sterol absorption prevents cardiac fibrogenesis. We propose that the pathological mechanism linking clinical sitosterolemia to the cardiovascular outcomes primarily involves phytosterols-induced cardiac fibrosis rather than cholesterol-driven atherosclerosis. Our studies suggest stigmasterol is a potent and independent risk factor for cardiovascular disease.


Assuntos
Hipercolesterolemia/complicações , Enteropatias/complicações , Erros Inatos do Metabolismo Lipídico/complicações , Miocárdio/patologia , Fitosteróis/efeitos adversos , Estigmasterol/farmacologia , Disfunção Ventricular Esquerda/induzido quimicamente , Disfunção Ventricular Esquerda/mortalidade , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Aterosclerose , Sobrevivência Celular/efeitos dos fármacos , Suplementos Nutricionais , Fibrose , Células Endoteliais da Veia Umbilical Humana , Humanos , Lipoproteínas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
J Nutr Biochem ; 47: 29-34, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28501703

RESUMO

Xanthohumol, a prominent prenyl flavonoid from the hop plant (Humulus lupulus L.), is suggested to be antiatherogenic since it reportedly increases high-density lipoprotein (HDL) cholesterol levels. It is not clear whether xanthohumol promotes reverse cholesterol transport (RCT), the most important antiatherogenic property of HDL; therefore, we investigated the effects of xanthohumol on macrophage-to-feces RCT using a hamster model as a CETP-expressing species. In vivo RCT experiments showed that xanthohumol significantly increased fecal appearance of the tracer derived from intraperitoneally injected [3H]-cholesterol-labeled macrophages. Ex vivo experiments were then employed to investigate the detailed mechanism by which xanthohumol enhanced RCT. Cholesterol efflux capacity from macrophages was 1.5-fold higher in xanthohumol-fed hamsters compared with the control group. In addition, protein expression and lecithin-cholesterol acyltransferase activity in the HDL fraction were significantly higher in xanthohumol-fed hamsters compared with the control, suggesting that xanthohumol promoted HDL maturation. Hepatic transcript analysis revealed that xanthohumol increased mRNA expression of abcg8 and cyp7a1. In addition, protein expressions of liver X receptor α and bile pump export protein were increased in the liver by xanthohumol administration when compared with the control, implying that it stimulated bile acid synthesis and cholesterol excretion to feces. In conclusion, our data demonstrate that xanthohumol improves RCT in vivo through cholesterol efflux from macrophages and excretion to feces, leading to antiatherosclerosis effects. It remains to be elucidated whether enhancement of RCT by xanthohumol could prove valuable in humans.


Assuntos
Anticolesterolemiantes/uso terapêutico , Colesterol/metabolismo , Suplementos Nutricionais , Flavonoides/uso terapêutico , Fármacos Gastrointestinais/uso terapêutico , Hipercolesterolemia/prevenção & controle , Macrófagos/metabolismo , Propiofenonas/uso terapêutico , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Aterosclerose/etiologia , Aterosclerose/prevenção & controle , Transporte Biológico , Colesterol/sangue , Colesterol 7-alfa-Hidroxilase/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fezes/química , Regulação da Expressão Gênica no Desenvolvimento , Hipercolesterolemia/imunologia , Hipercolesterolemia/metabolismo , Hipercolesterolemia/fisiopatologia , Eliminação Intestinal , Lipoproteínas HDL/sangue , Lipoproteínas HDL/metabolismo , Fígado/enzimologia , Fígado/imunologia , Fígado/metabolismo , Macrófagos/imunologia , Masculino , Mesocricetus , Fosfatidilcolina-Esterol O-Aciltransferase/sangue , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo
5.
Nutr Rev ; 75(2): 134-145, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158760

RESUMO

Low-density lipoprotein cholesterol (LDL-C) plays a causal role in atherosclerosis. One way to reduce LDL-C levels is to inhibit cholesterol absorption. Plant sterols and stanols compete with cholesterol for absorption in the intestine and induce an average decrease in LDL-C by 5% to 15% in a dose-dependent manner, but not in all individuals. This review focuses on the interindividual variability in response to dietary supplementation with plant sterols and stanols. Dietary plant sterols and stanols have no significant effects on LDL-C in substantial numbers of individuals. Higher responses, in absolute value and percentage of LDL-C, are observed in individuals with higher cholesterol absorption and a lower rate of cholesterol synthesis. Some data provide evidence of the influence of genetics on the response to plant sterols and stanols. Further studies in large populations are required to extend these conclusions about genetic influences.


Assuntos
Anticolesterolemiantes/administração & dosagem , Colesterol/sangue , Fitosteróis/administração & dosagem , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/sangue , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/sangue , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Apolipoproteínas E/sangue , Apolipoproteínas E/genética , Dieta , Suplementos Nutricionais , Grão Comestível/química , Frutas/química , Humanos , Lipoproteínas/sangue , Lipoproteínas/genética , Proteínas de Membrana/sangue , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras , Metanálise como Assunto , Nozes/química , Óleos de Plantas/química , Polimorfismo Genético , Ensaios Clínicos Controlados Aleatórios como Assunto , Sitosteroides/administração & dosagem , Verduras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA