Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nutrients ; 16(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542681

RESUMO

Preeclampsia is a primary placental disorder, with impaired placental vascularization leading to uteroplacental hypoperfusion. We aimed to investigate differences in metal and metalloid content between the placentas of women with preeclampsia and healthy controls. This was a case-control study in 63 women with preeclampsia and 113 healthy women. Clinical data were obtained from medical records. Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure the placental metals and metalloids content. Compared with healthy control subjects, preeclampsia was associated with a significantly lower concentration of essential elements (magnesium, calcium, iron, copper, zinc, and selenium) in the placental tissue. After multivariable adjustment, an interquartile range (IQR) increase in selenium concentration was associated with a reduced risk of preeclampsia with an OR of 0.50 (95% CI: 0.33-0.77). The joint effects of multiple selected metals and metalloids were associated with a reduced risk of preeclampsia. The lower placental magnesium, chromium, iron, zinc, and selenium concentrations of preeclampsia cases indicate a potential link to its pathogenesis. It also provides an intriguing avenue for future research in revealing the underlying mechanisms and potential intervention strategies for preeclampsia.


Assuntos
Metaloides , Pré-Eclâmpsia , Selênio , Gravidez , Feminino , Humanos , Placenta/química , Metaloides/análise , Estudos de Casos e Controles , Magnésio/análise , Zinco , Ferro/análise
2.
PLoS One ; 19(2): e0294740, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315674

RESUMO

Increasing illicit drug use is one of the main problems in most countries or societies. Monitoring heavy metals and trace elements in this vulnerable group seems to be necessary. Therefore, we assessed the urinary trace element and toxic metals/metalloids concentrations (Zinc (Zn), Iron (Fe), Copper (Cu), Chromium (Cr), Lead (Pb), Cadmium (Cd), Arsenic (As), Nickel (Ni), and Mercury (Hg)) in opium, tramadol, and cannabis users compared to healthy subjects. In this cross-sectional study, patients with substance use disorder (SUD) (n = 74) were divided into four groups: cannabis, tramadol, opium, and mixed (simultaneous use of more than one of the three studied substances), along with a healthy group (n = 60). Urine samples were prepared by dispersive liquid-liquid microextraction method so that heavy metals/metalloids could be measured by ICP-MS. The mean urinary concentration of Cu (48.15 vs. 25.45; 89.2%, p<0.001), Hg (1.3 vs. 0.10; 1200%, p < 0.001), and Zn (301.95 vs. 210; 43.8%, p < 0.001) was markedly lower among patients with SUD. The mean urinary concentration of other elements including As (1.9 vs. 4.1; 115.8%), Cd (0.1 vs. 1.10; 1000%), Cr (6.80 vs. 11.65; 71.3%), Ni (2.95 vs. 4.95; 67.8%), and Pb (1.5 vs. 7.9; 426.6%) were significantly higher among patients with SUD compared to healthy subjects. When sub-groups were compared, no significant differences were observed between their trace element levels (Kruskal-Wallis test, p > 0.05). This can be an indication that regardless of the type of drug, the levels of trace elements are changed with respect to healthy individuals. Our results showed that illicit drug use causes changes in urinary trace element/heavy metal/metalloid levels and highlights the need for monitoring heavy metals and trace elements in individuals with substance use disorder. Assessment of different elements in biological samples of drug dependents may be useful for implementing new prevention and treatment protocols. In case of changes in their levels, complementary recommendations, attention to diet, and periodic assessment of toxic metal levels within treatment programs will be needed.


Assuntos
Arsênio , Drogas Ilícitas , Mercúrio , Metaloides , Metais Pesados , Transtornos Relacionados ao Uso de Substâncias , Oligoelementos , Tramadol , Humanos , Oligoelementos/urina , Cádmio/urina , Estudos Transversais , Chumbo , Ópio , Cromo , Níquel , Arsênio/urina
3.
ACS Chem Biol ; 19(2): 289-299, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38295274

RESUMO

Glutathione reductase-like metalloid reductase (GRLMR) is an enzyme that reduces selenodiglutathione (GS-Se-SG), forming zerovalent Se nanoparticles (SeNPs). Error-prone polymerase chain reaction was used to create a library of ∼10,000 GRLMR variants. The library was expressed in BL21Escherichia coli in liquid culture with 50 mM of SeO32- present, under the hypothesis that the enzyme variants with improved GS-Se-SG reduction kinetics would emerge. The selection resulted in a GRLMR variant with two mutations. One of the mutations (D-E) lacks an obvious functional role, whereas the other mutation is L-H within 5 Šof the enzyme active site. This mutation places a second H residue within 5 Šof an active site dicysteine. This GRLMR variant was characterized for NADPH-dependent reduction of GS-Se-SG, GSSG, SeO32-, SeO42-, GS-Te-SG, and TeO32-. The evolved enzyme demonstrated enhanced reduction of SeO32- and gained the ability to reduce SeO42-. This variant is named selenium reductase (SeR) because of its emergent broad activity for a wide variety of Se substrates, whereas the parent enzyme was specific for GS-Se-SG. This study overall suggests that new biosynthetic routes are possible for inorganic nanomaterials using laboratory-directed evolution methods.


Assuntos
Metaloides , Nanopartículas , Selênio , Oxirredutases/genética , Selênio/química , Cistina
4.
Environ Res ; 238(Pt 2): 117194, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37748669

RESUMO

Most migratory shorebird species are declining, some are endangered, and some may be vulnerable to contaminants on long distance travel between wintering grounds and high latitude breeding grounds. We examined whether shorebirds accumulated trace elements at the Delaware Bay (New Jersey) stopover by testing the null hypothesis that there was no difference in the levels of arsenic, cadmium, chromium, lead, mercury, and selenium in blood of three species of shorebirds collected early in their stopover compared to levels in blood collected about two weeks later near the end of the stopover, before departing for breeding grounds. There were significantly higher levels of all metals and metalloids in the blood of ruddy turnstone (Arenaria interpres) later in May than earlier. There were seasonal increases in blood levels of arsenic and selenium for all three species. Chromium and lead levels also increased in red knots (Calidris canutus). These increases occurred although the birds were only present for about two weeks. Levels of arsenic, mercury, and lead in knots and selenium in sanderlings (Calidrris alba), exceeded reported effects levels. These results have potential implications for studying the refueling physiology, energetics, and feeding behavior of migratory shorebirds. However, they also suggest cause for concern because the increased contaminant loads occur in a short period, and the high metal level bolus received all in a few days may result in adverse effects.


Assuntos
Arsênio , Charadriiformes , Mercúrio , Metaloides , Selênio , Animais , New Jersey , Chumbo , Delaware , Arsênio/análise , Selênio/análise , Baías , Mercúrio/análise , Cromo
5.
Curr Environ Health Rep ; 10(4): 353-368, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37665544

RESUMO

PURPOSE OF REVIEW: Metals and metalloids are known for their nutritional as well as toxic effects in humans. In the context of the SARS-CoV-2 pandemic, understanding the role of metals on COVID-19 infection is becoming important due to their role in infectious diseases. During the past 2 years, a significant number of studies have examined the impact of metals and metalloids on COVID-19 morbidity and mortality. We conducted a systematic review of peer-reviewed manuscripts on the association of metals and metalloids with SARS-CoV-2 infection and COVID-19 severity published since the onset of the pandemic. RECENT FINDINGS: We searched for epidemiological studies available through the PubMed database published from January 2020 to December 2022. Of 92 studies identified, 20 met our inclusion criteria. These articles investigated the association of zinc (Zn), iron (Fe), selenium (Se), manganese (Mn), cadmium (Cd), arsenic (As), copper (Cu), magnesium (Mg), chromium (Cr), and/or lead (Pb) levels on SARS-CoV-2 infection and/or COVID-19 severity. Of the ten metals and metalloids of interest that reported either positive, negative, or no associations, Zn yielded the highest number of articles (n = 13), followed by epidemiological studies on Se (n = 7) and Fe (n = 5). Elevated serum Zn and Se were associated with reduced COVID-19 severity and mortality. Similarly, higher levels of serum Fe were associated with lower levels of cellular damage and symptoms of SARS-CoV-2 infection and with faster recovery from COVID-19. On the other hand, higher serum and urinary Cu and serum Mg levels were associated with higher COVID-19 severity and mortality. Along with the positive or negative effects, some studies reported no impact of metals on SARS-CoV-2 infection. This systematic review suggests that metals, particularly Zn, Fe, and Se, may help reduce the severity of COVID-19, while Cu and Mg may aggravate it. Our review suggests that future pandemic mitigation strategies may evaluate the role of Zn, Se, and Fe as potential therapeutic interventions.


Assuntos
COVID-19 , Metaloides , Metais Pesados , Selênio , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Metais , Zinco , Cádmio , Estudos Epidemiológicos
6.
Chemosphere ; 337: 139366, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37391078

RESUMO

Acid Mine Drainage (AMD) contains various metal/metalloid ions such as Fe, Cu, and As, which all impact seriously on mine ecosystems. Currently, the commonly used chemical methods for treating AMD may cause secondary pollution to appear in the environment. In this study, one-step simultaneous biomass synthesis of iron nanoparticles (Fe NPs) using tea extracts for the removal of heavy metals/metalloids in AMD is proposed. Characterizations revealed that the Fe NPs presented severely agglomerated particles with an average particle size of 119.80 ± 4.94 nm, on which various AMD-derived metal(loid)s, including As, Cu, and Ni, were uniformly dispersed. The biomolecules participating in the reaction in the tea extract were identified as polyphenols, organic acids, and sugars, which acted as complexing agents, reducing agents, covering/stabilizing agents, and promoted electron transfer. Meanwhile, the best reaction conditions (reaction time = 3.0 h, volume ratio of AMD and tea extract = 1.0:1.5, concentration of extract = 60 g/L, and T = 303 K) were obtained. Finally, the simultaneous formation of Fe NPs and their removal of heavy metals/metalloids from AMD was proposed, mainly involving the formation of Fe NPs and adsorption, co-precipitation, and reduction processes of heavy metals/metalloids.


Assuntos
Metaloides , Metais Pesados , Nanopartículas , Poluentes Químicos da Água , Ferro/química , Biomassa , Ecossistema , Metais Pesados/análise , Nanopartículas/química , Chá , Metaloides/análise , Poluentes Químicos da Água/análise
7.
Environ Pollut ; 327: 121585, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37040831

RESUMO

Urbanisation and associated anthropogenic activities release large quantities of toxic metals and metalloids into the environment, where they may bioaccumulate and threaten both wildlife and human health. In highly transformed landscapes, terrestrial carnivores may be at increased risk of exposure through biomagnification. We quantified metallic element and metalloid exposure in blood of caracals (Caracal caracal), an adaptable felid inhabiting the rapidly urbanising, coastal metropole of Cape Town, South Africa. Using redundancy analysis and mixed-effect models, we explored the influence of demography, landscape use, and diet on the concentration of 11 metals and metalloids. Although species-specific toxic thresholds are lacking, arsenic (As) and chromium (Cr) were present at potentially sublethal levels in several individuals. Increased use of human-transformed landscapes, particularly urban areas, roads, and vineyards, was significantly associated with increased exposure to aluminium (Al), cobalt (Co) and lead (Pb). Foraging closer to the coast and within aquatic food webs was associated with increased levels of mercury (Hg), selenium (Se) and arsenic, where regular predation on seabirds and waterbirds likely facilitates transfer of metals from aquatic to terrestrial food webs. Further, several elements were linked to lower haemoglobin levels (chromium, mercury, manganese, and zinc) and elevated levels of infection-fighting cells (mercury and selenium). Our results highlight the importance of anthropogenic activities as major environmental sources of metal contamination in terrestrial wildlife, including exposure across the land-ocean continuum. These findings contribute towards the growing evidence suggesting cities are particularly toxic areas for wildlife. Co-exposure to a suite of metal pollutants may threaten the long-term health and persistence of Cape Town's caracal population in unexpected ways, particularly when interacting with additional known pollutant and pathogen exposure. The caracal is a valuable sentinel for assessing metal exposure and can be used in pollution monitoring programmes to mitigate exposure and promote biodiversity conservation in human-dominated landscapes.


Assuntos
Arsênio , Poluentes Ambientais , Mercúrio , Metaloides , Metais Pesados , Selênio , Animais , Humanos , Arsênio/análise , Selênio/análise , África do Sul , Metais/análise , Mercúrio/análise , Poluentes Ambientais/análise , Cromo/análise , Metaloides/análise , Animais Selvagens , Oceanos e Mares , Metais Pesados/análise , Monitoramento Ambiental
8.
Sci Total Environ ; 882: 163100, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37023822

RESUMO

BACKGROUND: Arsenic (As), cadmium (Cd) and copper (Cu) are hazardous for kidney function, while the effects of selenium (Se) and zinc (Zn) were unexplored for the narrow safe range of intake. Interactions exists between these multiple metal/metalloid exposures, but few studies have investigated the effects. METHODS: A cross-sectional survey was performed among 2210 adults across twelve provinces in China between 2020 and 2021. Urinary As, Cd, Cu, Se and Zn were measured using inductively coupled plasma-mass spectrometry (ICP-MS). Serum creatinine (Scr) and N-acetyl-beta-D glucosaminidases (urine NAG) were quantified in serum and urine, respectively. Kidney function was evaluated by the estimated glomerular filtration rate (eGFR). We employed logistic regression and Bayesian kernel machine regression (BKMR) models to explore the individual and joint effects of urinary metals/metalloids on the risk of impaired renal function (IRF) or chronic kidney disease (CKD), respectively. RESULTS: Association was found between As (OR = 1.24, 95 % CI: 1.03, 1.48), Cd (OR = 1.65, 95 % CI: 1.35, 2.02), Cu (OR = 1.90, 95 % CI: 1.59, 2.29), Se (OR = 1.51, 95 % CI: 1.24, 1.85) and Zn (OR = 1.33, 95 % CI: 1.09, 1.64) and the risk of CKD. Moreover, we observed association between As (OR = 1.18, 95 % CI: 1.07, 1.29), Cu (OR = 1.14, 95 % CI: 1.04, 1.25), Se (OR = 1.15, 95 % CI: 1.06, 1.26) and Zn (OR = 1.12, 95 % CI: 1.02, 1.22) and the risk of IRF. Additionally, it was found that Se exposure may strength the association of urinary As, Cd and Cu with IRF. Furthermore, it is worth noting that Se and Cu contributed greatest to the inverse association in IRF and CKD, respectively. CONCLUSION: Our findings suggested that metal/metalloid mixtures were associated with kidney dysfunction, Se and Cu were inverse factors. Additionally, interactions between them may affect the association. Further studies are needed to assess the potential risks for metal/metalloid exposures.


Assuntos
Arsênio , Metaloides , Insuficiência Renal Crônica , Selênio , Adulto , Humanos , Estudos Transversais , Cádmio , Teorema de Bayes , Metais , Arsênio/urina , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/epidemiologia , Rim
9.
Environ Sci Pollut Res Int ; 30(11): 31905-31915, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36459323

RESUMO

A cross-sectional study was conducted in 2016 in Zhejiang Province, China, to evaluate the body burdens of metals and metalloids associated with renal dysfunction in populations living near electroplating industries. We recruited 236 subjects and performed physical examinations, determined the blood and urinary levels of arsenic (As), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), antimony (Sb), and selenium (Se) by an inductively coupled plasma mass spectrometer (ICP-MS), and measured three renal impairment biomarkers, namely nacetyl-ß-D-glucosaminidase (NAG), retinol-binding protein (RBP), and ß2-microglobulin (BMG). The proportion of abnormal nasal symptoms in the exposure group (10.1%) was much higher than in the control group (0; p < 0.05). The blood and urinary levels of As, Cd, and Se in the exposure group were significantly higher than those in the control group (p < 0.05). The blood levels of Mn and Pb, as well as the urinary levels of Cr and Ni, were significantly higher in the exposure group than in the control group (p < 0.05). The exposure group demonstrated higher levels of NAG, RBP, and BMG than the control group (0.51 vs. 0.14 mg/g creatinine, 12.79 vs. 9.26 IU/g creatinine, and 1.39 vs. 0.78 mg/g creatinine, respectively; p < 0.05). Urinary BMG was positively correlated with urinary Cd levels (r = 0.223, p < 0.05), while urinary RBP was correlated with blood Cd levels (r = 0.151, p < 0.05) and urinary Cd, Cr, Ni, and Se levels (r = 0.220, 0.303, 0.162, and 0.306, respectively; p < 0.05). In conclusion, our study indicated that a population living in the vicinity of electroplating industries had high body burdens of certain metals and metalloids associated with non-negligible renal dysfunction.


Assuntos
Nefropatias , Metaloides , Selênio , Humanos , Cádmio/análise , Estudos Transversais , Creatinina/urina , Galvanoplastia , Chumbo , Cromo , Níquel , Manganês , Nefropatias/induzido quimicamente , Nefropatias/epidemiologia , Nível de Saúde , Exposição Ambiental , Acetilglucosaminidase/urina
10.
Environ Pollut ; 317: 120780, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36460187

RESUMO

Heavy metal (loid) pollution is a significant threat to human health, as the intake of heavy metal (loid)s can cause disturbances in intestinal microbial ecology and metabolic disorders, leading to intestinal and systemic diseases. Therefore, it is important to understand the effects of heavy metal (loid)s on intestinal microorganisms and the necessary approaches to restore them after damage. This review provides a summary of the effects of common toxic elements, such as lead (Pb), cadmium (Cd), chromium (Cr), and metalloid arsenic (As), on the microbial community and structure, metabolic pathways and metabolites, and intestinal morphology and structure. The effects of heavy metal (loid)s on metabolism are focused on energy, nitrogen, and short-chain fatty acid metabolism. We also discussed the main solutions for recovery of intestinal microorganisms from the effects of heavy metal (loid)s, namely the supplementation of probiotics, recombinant bacteria with metal resistance, and the non-toxic transformation of heavy metal (loid) ions by their own intestinal flora. This article provides insight into the toxic effects of heavy metals and As on gut microorganisms and hosts and provides additional therapeutic options to mitigate the damage caused by these toxic elements.


Assuntos
Arsênio , Metaloides , Metais Pesados , Poluentes do Solo , Humanos , Metais Pesados/toxicidade , Metais Pesados/análise , Arsênio/análise , Cromo , Cádmio , Medição de Risco , Poluentes do Solo/análise , Monitoramento Ambiental , China , Solo
11.
Ecotoxicol Environ Saf ; 249: 114395, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508783

RESUMO

Traditional Chinese medicine (TCM) is still considered a global complementary or alternative medical system, but exogenous hazardous contaminants remain in TCM even after decocting. Besides, it is time-consuming to conduct a risk assessment of trace elements in TCMs with a non-automatic approach due to the wide variety of TCMs. Here, we present MRTCM, a cloud-computing infrastructure for automating the probabilistic risk assessment of metals and metalloids in TCM. MRTCM includes a consumption database and a pollutant database involving forty million rows of consumption data and fourteen types of TCM potentially toxic elements concentrations. The algorithm of probabilistic risk assessment was also packaged in MRTCM to assess the risks of eight elements with Monte Carlo simulation. The results demonstrated that 96.64% and 99.46% had no non-carcinogenic risk (hazard indices (HI) were < 1.0) for animal and herbal medicines consumers, respectively. After twenty years of exposure, less than 1% of the total carcinogenic risk (CRt) was > 10-4 for TCM consumers, indicating that they are at potential risk for carcinogenicity. Sensitivity analysis revealed that annual consumption and concentration were the main variables affecting the assessment results. Ultimately, a priority management list of TCMs was also generated, indicating that more attention should be paid to the non-carcinogenic risks of As, Mn, and Hg and the carcinogenic risks of As and Cr in Pheretima and Cr in Arcae Conch. In general, MRTCM could significantly enhance the efficiency of risk assessment in TCM and provide reasonable guidance for policymakers to optimize risk management.


Assuntos
Mercúrio , Metaloides , Metais Pesados , Animais , Metais Pesados/toxicidade , Metais Pesados/análise , Medicina Tradicional Chinesa , Metaloides/análise , Mercúrio/análise , Medição de Risco , Carcinógenos/análise , Monitoramento Ambiental/métodos
12.
Sci Total Environ ; 856(Pt 2): 159140, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36191717

RESUMO

To evaluate metal(loid) contamination in tea leaves and assess health risks of tea drinking in China, metal(loid) concentrations in tea leaves from major tea-producing provinces were determined. Nine metal(loid)s (Al, Cr, Co, Ni, Cu, Zn, As, Cd and Pb) were measured in a total of 217 tea samples representing five tea varieties (black tea, dark tea, green tea, oolong tea and white tea) from seven major tea-producing provinces of China (Fujian, Guangdong, Henan, Hunan, Jiangsu, Yunnan and Zhejiang). The results indicated that tea samples from Hunan Province had the highest metal(loid) concentrations, likely due its high prevalence of heavy industrial activities and soil pollution. The concentrations of As and Pb in dark tea were markedly higher than those in other tea varieties. A strong Spearman correlation coefficient (0.78, P < 0.001) of As and Pb in all the tea varieties has also been found, indicating their similar sources. Human health risk assessment for the nine analyzed metal(loid)s indicated that co-exposure to these metal(loids) may not cause significant health risks (hazard index [HI] > 1 suggests considerable health risks). Among the five tea varieties, metal(loids)s in dark and green tea induced relatively higher health risks, with 90th percentile HI values approached 0.8. Co (53.6 %-84.5 %) and Al (3.33 %-15.8 %) made the highest contributions to the HI of the selected tea commodities. Thus, public and regulatory agencies should reduce excessive Co and Al accumulation in these tea varieties during cultivation and production processes.


Assuntos
Metaloides , Metais Pesados , Poluentes do Solo , Humanos , Metais Pesados/análise , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Chumbo , China , Medição de Risco , Chá , Metaloides/análise , Solo
13.
Artigo em Inglês | MEDLINE | ID: mdl-36141460

RESUMO

Children are highly vulnerable to chemical exposure. Thus, metal and metalloid in infant formulas are a concern, although studies in this regard are still relatively scarce. Thus, the presence of aluminum, arsenic, cadmium, tin, mercury, lead, and uranium was investigated in infant formulas marketed in Brazil by inductively coupled plasma mass spectrometry, and the Target Hazard Quotients (THQ) and Target Cancer Risk (TCR) were calculated in to assess the potential risk of toxicity for children who consume these products continuously. Aluminum ranging from 0.432 ± 0.049 to 1.241 ± 0.113 mg·kg-1, arsenic from 0.012 ± 0.009 to 0.034 ± 0.006 mg·kg-1, and tin from 0.007 ± 0.003 to 0.095 ± 0.024 mg·kg-1 were the major elements, while cadmium and uranium were present at the lowest concentrations. According to the THQ, arsenic contents in infant formulas showed a THQ > 1, indicating potential health risk concerns for newborns or children. Minimal carcinogenic risks were observed for the elements considered carcinogenic. Metabolic and nutritional interactions are also discussed. This study indicates the need to improve infant formula surveillance concerning contamination by potentially toxic and carcinogenic elements.


Assuntos
Arsênio , Mercúrio , Metaloides , Metais Pesados , Neoplasias , Urânio , Criança , Humanos , Lactente , Recém-Nascido , Alumínio/análise , Arsênio/análise , Arsênio/toxicidade , Brasil/epidemiologia , Cádmio/análise , Carcinógenos/análise , Carcinógenos/toxicidade , Saúde da Criança , Contaminação de Alimentos/análise , Intoxicação por Metais Pesados , Fórmulas Infantis/análise , Mercúrio/análise , Metaloides/análise , Metais Pesados/análise , Receptores de Antígenos de Linfócitos T , Medição de Risco , Estanho/análise , Urânio/análise
14.
Microbiol Res ; 263: 127144, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35908425

RESUMO

Studies about biodegradation potential in soils often refer to artificially contaminated and simplified systems, overlooking the complexity associated with contaminated sites in a real context. This work aims to provide a holistic view on microbiome assembly and functional diversity in the model site SIN Brescia-Caffaro (Italy), characterized by historical and uneven contamination by organic and inorganic compounds. Here, physical and chemical analyses and microbiota characterization were applied on one-hundred-twenty-seven soil samples to unravel the environmental factors driving bacterial community assembly and biodegradation potential in three former agricultural fields. Chemical analyses showed a patchy distribution of metals, metalloids and polychlorinated biphenyls (PCB) and allowed soil categorization according to depth and area of collections. Likewise, the bacterial community structure, described by molecular fingerprinting and 16S rRNA gene analyses, was significantly different according to collection site and depth. Pollutant concentrations (i.e., hexachloro-biphenyls, arsenic and mercury), nitrogen content and parameters related to soil texture were identified as main drivers of microbiota assembly, being significantly correlated to bacterial community composition. Moreover, bacteria putatively involved in the aerobic degradation of PCBs were enriched over the total bacterial community in topsoils, where the highest activity was recorded using fluorescein hydrolysis as proxy. Metataxonomic analyses revealed the presence of bacteria having metabolic pathways related to PCB degradation and tolerance to heavy metals and metalloids in the topsoil samples collected in all areas. Overall, the provided dissection of soil microbiota structure and its degradation potential in the SIN Brescia-Caffaro can contribute to target specific areas for rhizoremediation implementation. Metagenomics studies could be implemented in the future to understand if specific degradative pathways are present in historically polluted sites characterized by the co-occurrence of multiple classes of contaminants.


Assuntos
Metaloides , Bifenilos Policlorados , Poluentes do Solo , Biodegradação Ambiental , Metaloides/análise , Bifenilos Policlorados/análise , Bifenilos Policlorados/metabolismo , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo , Poluentes do Solo/metabolismo
15.
ACS Nano ; 16(7): 10904-10917, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35797013

RESUMO

Semimetallic nanomaterials as photothermal agents for bioimaging and cancer therapy have attracted tremendous interest. However, the poor photothermal stability, low biocompatibility, and single component limit their therapeutic efficiency in cancer treatment. Here, manganese-doped VSe2 semimetallic nanosheets were prepared and subsequently modified with chitosan (named VSe2/Mn-CS NSs) for combined enzyme catalytic and photothermal therapy. VSe2/Mn-CS NSs show high photothermal property with a photothermal conversion efficiency of 34.61% upon 808 nm near-infrared laser irradiation. In the tumor microenvironment, VSe2/Mn-CS NSs can convert endogenous H2O2 into lethal hydroxyl radicals (•OH) to induce cancer cell apoptosis. The interaction between glutathione (GSH) and Se-Se bonds in VSe2/Mn-CS NSs results in the depletion of GSH level, and the valence states transition of manganese ions is also beneficial for the GSH consumption. This dual depletion of GSH markedly enhances the peroxidase (POD) activity, leading to the high •OH production and the improved therapeutic effect. What is more, the T1-weighted magnetic resonance and photoacoustic imaging endow VSe2/Mn-CS NSs with the ability to guide and track the treatment process. Our study provides a research strategy for the application of semimetallic nanomaterials in cancer diagnosis and treatment.


Assuntos
Hipertermia Induzida , Metaloides , Neoplasias , Humanos , Manganês/uso terapêutico , Peróxido de Hidrogênio , Glutationa , Hipertermia Induzida/métodos , Microambiente Tumoral , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
16.
Artigo em Inglês | MEDLINE | ID: mdl-35742553

RESUMO

As there is some evidence that the risk for Alzheimer's disease (AD) is partially attributable to environmental exposure to some metals and metalloids, we examined an association between AD and arsenic, chromium, and selenium in 53 AD patients and 217 controls. Urinary arsenic, blood chromium, and selenium were determined by inductively coupled plasma mass spectrometry. Logistic regression models calculating odds ratios (ORs) and 95% confidence intervals (CI) were used to estimate AD association with arsenic, chromium, and selenium. In AD patients, urinary arsenic and blood chromium were significantly higher, while blood selenium was significantly lower compared to controls. Increased blood selenium was related to a significant decrease in the odds of AD after adjustment for risk factors. Blood selenium per 1 kg × 10-9/m3 × 10-4 increment was associated with 1.4 times lower risk of AD (OR = 0.71; 95% CI 0.58-0.87). A significant increase in the odds of AD associated with increased blood chromium was also seen in the adjusted model: the OR per 1 kg × 10-9/m3 × 10-3 chromium increment was 2.39 (95% CI 1.32-4.31). The association of urinary arsenic with the risk of AD was not significant. The data obtained provide evidence that selenium reduces the risk of Alzheimer's disease, while chromium increases it.


Assuntos
Doença de Alzheimer , Arsênio , Metaloides , Selênio , Doença de Alzheimer/epidemiologia , Arsênio/análise , Cádmio/análise , Cromo/análise , Humanos , Metais/análise , Selênio/análise
17.
Artigo em Inglês | MEDLINE | ID: mdl-35742647

RESUMO

Exposure to heavy metals could lead to adverse health effects by oxidative reactions or inflammation. Some essential elements are known as reactors of anti-inflammatory enzymes or coenzymes. The relationship between tumor necrosis factor alpha (TNF-α) and heavy metal exposures was reported. However, the interaction between toxic metals and essential elements in the inflammatory response remains unclear. This study aimed to explore the association between arsenic (As), cadmium (Cd), lead (Pb), cobalt (Co), copper (Cu), selenium (Se), and zinc (Zn) in blood and TNF-α as well as kidney function. We enrolled 421 workers and measured the levels of these seven metals/metalloids and TNF-α in blood; kidney function was calculated by CKD-EPI equation. We applied weighted quantile sum (WQS) regression and group WQS regression to assess the effects of metal/metalloid mixtures to TNF-α and kidney function. We also approached the relationship between metals/metalloids and TNF-α by generalized additive models (GAM). The relationship of the exposure−response curve between Pb level and TNF-α in serum was found significantly non-linear after adjusting covariates (p < 0.001). Within the multiple-metal model, Pb, As, and Zn were associated with increased TNF-α levels with effects dedicated to the mixture of 50%, 31%, and 15%, respectively. Grouped WQS revealed that the essential metal group showed a significantly negative association with TNF-α and kidney function. The toxic metal group found significantly positive associations with TNF-α, serum creatinine, and WBC but not for eGFR. These results suggested Pb, As, Zn, Se, and mixtures may act on TNF-α even through interactive mechanisms. Our findings offer insights into what primary components of metal mixtures affect inflammation and kidney function during co-exposure to metals; however, the mechanisms still need further research.


Assuntos
Arsênio , Metaloides , Metais Pesados , Selênio , Arsênio/toxicidade , Exposição Ambiental/análise , Intoxicação por Metais Pesados , Humanos , Inflamação , Rim , Chumbo/toxicidade , Metais Pesados/toxicidade , Fator de Necrose Tumoral alfa , Zinco/toxicidade
18.
Plant Biol (Stuttg) ; 24(6): 913-919, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35583793

RESUMO

Selenium (Se) is a metalloid mineral nutrient for human and animal health. Plants are the main foodstuff source of the Se intake of humans. For plants, the addition of an appropriate amount of Se could promotes growth and development, and improves the tolerance to environmental stress, especially stress from some of heavy metals (HM) stress, such as cadmium (Cd) and mercury (Hg). This paper mainly reviews and summarizes the physiological mechanism of Se in enhancing HM stress tolerance in plants. The antagonistic effect of Se on HM is a comprehensive effect that includes many physiological mechanisms. Se can promote the removal of excessive reactive oxygen species and reduce the oxidative damage of plant cells under HM elements stress. Se participates in the regulation of the transportation and distribution of HM ions in plants, and alleviates the damage caused by of HM stress. Moreover, Se combine with HM elements to form Se-HM complexes and promote the production of phytochelatins (PCs), thereby reducing the accumulation of HM ions in plants. Overall, Se plays an important role in plant response to HM stress, but current studies mainly focus on physiological mechanism, and further in-depth study on the molecular mechanism is essential to confirm the participation of Se in plant response to environmental stress. This review helps to comprehensively understand the physiological mechanism of Se in plant tolerance against to HM stress of plants, and provides important theoretical support for the practical application of Se in environmental remediation and agricultural development.


Assuntos
Mercúrio , Metaloides , Metais Pesados , Selênio , Cádmio/toxicidade , Humanos , Mercúrio/toxicidade , Metaloides/farmacologia , Metais Pesados/toxicidade , Fitoquelatinas , Plantas , Espécies Reativas de Oxigênio , Selênio/farmacologia , Estresse Fisiológico
19.
Environ Sci Pollut Res Int ; 29(36): 54292-54308, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35298802

RESUMO

In the present study, mercury (Hg), cadmium (Cd), lead (Pb), selenium (Se), and arsenic (As) were measured in liver, kidney, and feathers of adult, juvenile, and chick seagulls (Larus michahellis) collected from the northwest of Spain. Age, sex, and the geographical location of samples were considered variables that can influence metal bioaccumulation, for which concentrations were determined by means of ICP-MS. The mean concentrations (dry weight) found in seagulls were 7.01 ± 0.37 mg Hg/kg, 22.82 ± 2.83 mg Cd/kg, 7.36 ± 1.36 mg Pb/kg, 18.64 ± 0.63 mg Se/kg, and 10.64 ± 0.59 mg As/kg. Regarding the different factors analyzed, Hg was the only metal showing sex-related differences, being significantly higher (p < 0.05) the concentrations found in feathers of males (1.26 ± 0.12 mg/kg) than those in females (0.99 ± 0.11 mg/kg). A highly significant (p < 0.01) increase in levels of some metals was found in liver related to the increase of age: Hg (adults (A) 3.33 ± 0.22 mg/kg vs chicks (C) 1.76 ± 0.28 mg/kg), Cd (A 4.74 ± 0.62 mg/kg vs C 1.79 ± 0.2), Pb (A 0.65 ± 0.12 mg/kg vs juveniles 0.4 ± 0.11 mg/kg), and Se (A 7.56 ± 0.43 mg/kg vs C 5.24 ± 0.53 mg/kg). Positive correlations between Cd-Hg and Se-Hg were found in liver (p < 0.001), kidney (p < 0.001), and feathers (p < 0.05 and p < 0.001, respectively). The associations found may reflect antagonistic interactions between Se and Cd on Hg toxicity. The results suggest that L. michahellis can reveal local contamination around the foraging and breeding sites and can be a very useful monitoring instrument for assessing heavy metal contamination and sentinel species of environmental health.


Assuntos
Arsênio , Charadriiformes , Poluentes Ambientais , Mercúrio , Metaloides , Metais Pesados , Selênio , Animais , Cádmio , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Plumas/química , Feminino , Chumbo , Masculino , Mercúrio/análise , Metais Pesados/análise , Espanha
20.
Environ Toxicol Pharmacol ; 92: 103859, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35358731

RESUMO

Heavy metals and metalloid exposure are among the most common factors responsible for reproductive toxicity in human beings. Several studies have indicated that numerous metals and metalloids can display severe adverse properties on the human reproductive system. Metals like lead, silver, cadmium, uranium, vanadium, and mercury and metalloids like arsenic have been known to induce reproductive toxicity. Moderate to minute quantities of lead may affect several reproductive parameters and even affect semen quality. The ecological and industrial exposures to the various heavy metals and metalloids have disastrous effects on the reproductive system ensuing in infertility. This work emphasizes the mechanism and pathophysiology of the aforementioned heavy metals and metalloids in reproductive toxicity. Additionally, this work aims to cover the classical protective mechanisms of zinc, melatonin, chelation therapy, and other trending methods to prevent heavy metal-induced reproductive toxicity.


Assuntos
Arsênio , Metaloides , Metais Pesados , Arsênio/toxicidade , Cádmio , Humanos , Metaloides/toxicidade , Metais Pesados/toxicidade , Análise do Sêmen
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA