Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anim Reprod Sci ; 221: 106570, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32861120

RESUMO

In vitro manipulation of spermatozoa leads to deleterious changes of structure and function that occur mainly due to oxidative stress, therefore, prevention or treatment is a strategy to improve the functions of processed sperm. In the present study, the aim was to evaluate the effects of MnTBAP supplementation, a compound with antioxidant activity, on in vitro capacitation conditions of thawed equine sperm. For this purpose, stallion spermatozoa (2 × 106 cells/mL) were incubated in the sperm-TLP base medium for 4 h in which there were three different conditions: non-capacitating, capacitating, and capacitating plus 150 mM MnTBAP. There were incubations for 4 h at 37.5 °C in a humidified air atmosphere. Sample analysis was performed immediately after thawing (0 h), and at the end of the incubation period (4 h), unless otherwise indicated. The following variables were evaluated for spermatozoa: plasma membrane integrity and fluidity, acrosome integrity, intracellular calcium concentrations, intracellular pH, tyrosine phosphorylation, ATP concentrations, motility and heterologous zona-binding assay, using flow cytometry, fluorescent microscopy and/or chemiluminescence, depending on the most appropriate procedure for the variable being evaluated. Results indicated that capacitation-like changes were synergistically induced by the cAMP agonists, phosphodiesterase inhibitor and bicarbonate. The presence of bovine serum albumin was harmful to the plasma membrane. The MnTBAP supplementation had a positive effect on viability-related markers (plasma membrane integrity, membrane fluidity, associated with greater intracellular pH) when there were capacitating conditions. In conclusion, the activity of MnTBAP contributes to improving the in vitro incubation conditions of frozen-thawed stallion sperm.


Assuntos
Criopreservação/veterinária , Cavalos/fisiologia , Metaloporfirinas/farmacologia , Preservação do Sêmen/veterinária , Capacitação Espermática/efeitos dos fármacos , Animais , Masculino
2.
Radiat Environ Biophys ; 59(1): 99-109, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31728622

RESUMO

Treatment of differentiated thyroid cancer often involves administration of radioactive iodine (I-131) for remnant ablation or adjuvant therapy. However, there is morbidity associated with I-131 therapy, which can result in both acute and chronic complications. Currently, there are no approved radioprotectors that can be used in conjunction with I-131 to reduce complications in thyroid cancer therapy. It is well known that the damaging effects of ionizing radiation are mediated, in part, by the formation of reactive oxygen species (ROS). A potent scavenger of ROS, Mn(III)meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin (MnTnBuOE-2-PyP), has radioprotective and anti-tumor effects in various cancer models including head and neck, prostate, and brain tumors exposed to external beam radiation therapy. Female C57BL/6 mice were administered I-131 orally at doses of 0.0085-0.01 mCi/g (3.145 × 105 to 3.7 × 105 Bq) of body weight with or without MnTnBuOE-2-PyP. We measured acute external inflammation, blood cell counts, and collected thyroid tissue and salivary glands for histological examination. We found oral administration of I-131 caused an acute decrease in platelets and white blood cells, caused facial swelling, and loss of thyroid and salivary tissues. However, when MnTnBuOE-2-PyP was given during and after I-131 administration, blood cell counts remained in the normal range, less facial inflammation was observed, and the salivary glands were protected from radiation-induced killing. These data indicate that MnTnBuOE-2-PyP may be a potent radioprotector of salivary glands in thyroid cancer patients receiving I-131 therapy.


Assuntos
Radioisótopos do Iodo/efeitos adversos , Metaloporfirinas/uso terapêutico , Protetores contra Radiação/uso terapêutico , Compostos Radiofarmacêuticos/efeitos adversos , Neoplasias da Glândula Tireoide/radioterapia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Metaloporfirinas/farmacologia , Camundongos Endogâmicos C57BL , Protetores contra Radiação/farmacologia , Glândulas Salivares/efeitos dos fármacos , Glândulas Salivares/patologia , Glândulas Salivares/efeitos da radiação , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/patologia , Glândula Tireoide/efeitos da radiação , Neoplasias da Glândula Tireoide/patologia
3.
Nanoscale ; 11(21): 10429-10438, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31112176

RESUMO

Fluorescent dyes, as a key factor in fluorescence imaging, usually exhibit a low signal-to-noise ratio (SNR) due to the limited loading capacities of delivery systems (usually less than 10.0 wt%) and their uncontrolled release. Herein, we developed a type of pH-responsive nanoplatform (MnO2/ZnCOF@Au&BSA) based on a zinc porphyrin covalent organic framework (COF), in which the zinc porphyrin (ZnPor) loading rate is 22.5 wt%. At pH = 7.4, the interlinked ZnPor in the assembly state did not show a fluorescence signal ("off" state). Together with the pH-triggered disintegration of ZnCOF in tumor cells (pH = 5.5), the scattered ZnPor displayed an obvious fluorescence signal recovery ("on" state). Simultaneously, the shed BSA-coated gold nanoparticles ingeniously caused the fluorescence signal to be further amplified through the metal-enhanced fluorescence effect, which was about 3.0-fold higher in vivo than in the free ZnPor group. Combined with the excellent photothermal therapy effect by the nanoplatform itself with the tumor inhibition rate of 79.5%, this nanosystem effectively solves the problem of low loading capacities and imaging SNR by traditional delivery systems, and successfully develops the potential of COFs for fluorescence imaging, achieving the purpose of integration of diagnosis and treatment.


Assuntos
Sistemas de Liberação de Medicamentos , Ouro , Hipertermia Induzida , Compostos de Manganês , Metaloporfirinas , Nanoestruturas/química , Neoplasias Experimentais/terapia , Óxidos , Fotoquimioterapia , Animais , Feminino , Ouro/química , Ouro/farmacologia , Células Hep G2 , Humanos , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Metaloporfirinas/química , Metaloporfirinas/farmacologia , Camundongos , Óxidos/química , Óxidos/farmacologia
4.
Macromol Biosci ; 19(5): e1800407, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30721575

RESUMO

The development of plant viral nanoparticles (VNP) loaded with different molecular versions of a photodynamic drug is described. Specifically, tobacco mosaic virus (TMV) and tobacco mild green mosaic virus (TMGMV) are developed as drug carriers that encapsulate the monocationic, dicationic, tricationic, and tetracationic versions of a porphyrin-based photosensitizer drug (Zn-Por). While TMV has been extensively explored for various nanotechnology applications, this is the first study investigating TMGMV for medical applications. Light-activated cancer cell killing of Zn-Por-loaded VNPs is studied in vitro using melanoma and cervical cancer models. Native and nucleolin-targeted VNP drug carriers are developed and their efficacy assessed. A fivefold increase in cancer cell killing is observed using nucleolin-targeted TMV loaded with tricationic Zn-Por and displaying the nucleolin-specific F3 peptide.


Assuntos
Melanoma Experimental/tratamento farmacológico , Metaloporfirinas , Nanopartículas , Fotoquimioterapia , Vírus do Mosaico do Tabaco/química , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Metaloporfirinas/química , Metaloporfirinas/farmacologia , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico
5.
Mol Med Rep ; 19(3): 1809-1816, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30628677

RESUMO

The extract of Sappan Lignum, the heartwood of Caesalpinia sappan L., has been used in medicine to improve blood circulation. Recently, the application of microwave extraction methods has been a major focus of research into the extraction of components from natural sources. In this experiment, we compared the anti­inflammatory effects of Sappan Lignum prepared by heat­70% EtOH extraction (CSE­H­70E) and microwave­70% EtOH extraction (CSE­MW­70E). High­performance liquid chromatography analysis was used to identify the compounds in these extracts. The heat­70% EtOH and microwave­70% EtOH extracts of Sappan Lignum had different chromatograms. CSE­MW­70E significantly inhibited the protein expression of iNOS and COX­2, PGE2, TNF­α, and reduced NO and IL­1ß production in macrophages exposed to LPS, whereas, only high concentrations of CSE­H­70E (20 µg/ml) resulted in any effects. Furthermore, CSE­MW­70E upregulated heme oxygenase­1 (HO­1) expression. In addition, the use of tin protoporphyrin, an inhibitor of HO­1, confirmed the inhibitory effects of CSE­MW­70E on pro­inflammatory mediators. These results suggested that the CSE­MW­70E­mediated upregulation of HO­1 played an important role in the anti­inflammatory effects of macrophages. Therefore, these findings showed that microwave extraction can be utilized to improve the extraction efficiency and biological activity of Sappan Lignum.


Assuntos
Anti-Inflamatórios/farmacologia , Fabaceae/química , Heme Oxigenase-1/metabolismo , Micro-Ondas , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Animais , Cromatografia Líquida de Alta Pressão , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , DNA/metabolismo , Dinoprostona/metabolismo , Heme Oxigenase-1/genética , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Metaloporfirinas/farmacologia , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Nitritos/metabolismo , Ligação Proteica/efeitos dos fármacos , Protoporfirinas/farmacologia , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Free Radic Biol Med ; 129: 323-337, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30268890

RESUMO

We previously demonstrated that co-exposing pre-steatotic hepatocytes to benzo[a]pyrene (B[a]P), a carcinogenic environmental pollutant, and ethanol, favored cell death. Here, the intracellular mechanisms underlying this toxicity were studied. Steatotic WIF-B9 hepatocytes, obtained by a 48h-supplementation with fatty acids, were then exposed to B[a]P/ethanol (10 nM/5 mM, respectively) for 5 days. Nitric oxide (NO) was demonstrated to be a pivotal player in the cell death caused by the co-exposure in steatotic hepatocytes. Indeed, by scavenging NO, CPTIO treatment of co-exposed steatotic cells prevented not only the increase in DNA damage and cell death, but also the decrease in the activity of CYP1, major cytochrome P450s of B[a]P metabolism. This would then lead to an elevation of B[a]P levels, thus possibly suggesting a long-lasting stimulation of the transcription factor AhR. Besides, as NO can react with superoxide anion to produce peroxynitrite, a highly oxidative compound, the use of FeTPPS to inhibit its formation indicated its participation in DNA damage and cell death, further highlighting the important role of NO. Finally, a possible key role for AhR was pointed out by using its antagonist, CH-223191. Indeed it prevented the elevation of ADH activity, known to participate to the ethanol production of ROS, notably superoxide anion. The transcription factor, NFκB, known to be activated by ROS, was shown to be involved in the increase in iNOS expression. Altogether, these data strongly suggested cooperative mechanistic interactions between B[a]P via AhR and ethanol via ROS production, to favor cell death in the context of prior steatosis.


Assuntos
Benzo(a)pireno/toxicidade , Citocromo P-450 CYP1A1/genética , Etanol/toxicidade , Ácidos Graxos/farmacologia , Hepatócitos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Compostos Azo/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Benzoatos/farmacologia , Linhagem Celular Tumoral , Quimera , Citocromo P-450 CYP1A1/antagonistas & inibidores , Citocromo P-450 CYP1A1/metabolismo , Dano ao DNA , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hepatócitos/patologia , Imidazóis/farmacologia , Metaloporfirinas/farmacologia , NF-kappa B/genética , NF-kappa B/metabolismo , Necrose/induzido quimicamente , Necrose/genética , Necrose/metabolismo , Óxido Nítrico/agonistas , Pirazóis/farmacologia , Ratos , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Superóxidos/agonistas , Superóxidos/antagonistas & inibidores , Superóxidos/metabolismo
7.
Nutrients ; 10(7)2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30029533

RESUMO

Oxidative stress-mediated neuron damage is considered an important contributor to the pathogenesis and development of neurodegenerative diseases. Taraxacum officinale has been reported to possess antioxidant activities. However, whether it can protect neurons against oxidative damage and the underlying molecular mechanisms have not been fully determined. In the present study, we examined the neuroprotective effects of ethanol extracts of this plant (ETOW) on glutamate-induced oxidative stress in HT22 cells. Both cell viability and reactive oxygen species (ROS) assays showed that ETOW effectively attenuated glutamate-induced cytotoxicity and ROS generation. Furthermore, our results revealed that ETOW increased the expression of heme oxygenase-1 (HO-1) and promoted the nuclear translocation of nuclear factor erythroid 2-related factor-2 (Nrf2). The inhibitory effects of ETOW on glutamate-stimulated cell toxicity and ROS production were partially reversed by tin protoporphyrin (SnPP), an HO activity inhibitor. Taken together, these results demonstrate that ETOW can protect HT22 cells against glutamate-induced oxidative damage by inducing the Nrf2/HO-1 pathways. Our study supports the idea that Taraxacum officinale Wigg. is a promising agent for preventing neurodegenerative diseases.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Proteínas de Membrana/agonistas , Fator 2 Relacionado a NF-E2/agonistas , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Taraxacum/química , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Indução Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Ácido Glutâmico/intoxicação , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metaloporfirinas/farmacologia , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fármacos Neuroprotetores/química , Protoporfirinas/farmacologia , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
8.
J Alzheimers Dis ; 63(3): 1173-1189, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29710707

RESUMO

Oxidative stress and amyloid-ß (Aß) oligomers have been implicated in Alzheimer's disease (AD). The growth and maintenance of neuronal networks are influenced by brain derived neurotrophic factor (BDNF) expression, which is promoted by protein kinase C epsilon (PKCɛ). We investigated the reciprocal interaction among oxidative stress, Aß, and PKCɛ levels and subsequent PKCɛ-dependent MnSOD and BDNF expression in hippocampal pyramidal neurons. Reduced levels of PKCɛ, MnSOD, and BDNF and an increased level of Aß were also found in hippocampal neurons from autopsy-confirmed AD patients. In cultured human primary hippocampal neurons, spherical aggregation of Aß (amylospheroids) decreased PKCɛ and MnSOD. Treatment with t-butyl hydroperoxide (TBHP) increased superoxide, the oxidative DNA/RNA damage marker, 8-OHG, and Aß levels, but reduced PKCɛ, MnSOD, BDNF, and cultured neuron density. These changes were reversed with the PKCɛ activators, bryostatin and DCPLA-ME. PKCɛ knockdown suppressed PKCɛ, MnSOD, and BDNF but increased Aß. In cultured neurons, the increase in reactive oxygen species (ROS) associated with reduced PKCɛ during neurodegeneration was inhibited by the SOD mimetic MnTMPyP and the ROS scavenger NAc, indicating that strong oxidative stress suppresses PKCɛ level. Reduction of PKCɛ and MnSOD was prevented with the PKCɛ activator bryostatin in 5-6-month-old Tg2576 AD transgenic mice. In conclusion, oxidative stress and Aß decrease PKCɛ expression. Reciprocally, a depression of PKCɛ reduces BDNF and MnSOD, resulting in oxidative stress. These changes can be prevented with the PKCɛ-specific activators.


Assuntos
Doença de Alzheimer/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Regulação para Baixo/fisiologia , Hipocampo/patologia , Neurônios/metabolismo , Proteína Quinase C-épsilon/deficiência , Adjuvantes Imunológicos/farmacologia , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Briostatinas/metabolismo , Briostatinas/farmacologia , Células Cultivadas , Feminino , Feto/anatomia & histologia , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Masculino , Metaloporfirinas/farmacologia , Camundongos , Pessoa de Meia-Idade , Morfolinos/farmacologia , Proteína Quinase C-épsilon/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Transfecção , terc-Butil Hidroperóxido/farmacologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-29698685

RESUMO

Cadmium is a highly toxic environmental pollutant that can cause many adverse effects including cancer, neurological disease and kidney damage. Aquatic amphibians are particularly susceptible to this toxicant as it was shown to cause developmental abnormalities and genotoxic effects. In mammalian cells, the accumulation of heme oxygenase-1 (HO-1), which catalyzes the breakdown of heme into CO, free iron and biliverdin, was reported to protect cells against potentially lethal concentrations of CdCl2. In the present study, CdCl2 treatment of A6 kidney epithelial cells, derived from the frog, Xenopus laevis, induced the accumulation of HO-1, heat shock protein 70 (HSP70) and HSP30 as well as an increase in the production of aggregated protein and aggresome-like structures. Treatment of cells with inhibitors of HO-1 enzyme activity, tin protoporphyrin (SnPP) and zinc protoporphyrin (ZnPP), enhanced CdCl2-induced actin cytoskeletal disorganization and the accumulation of HO-1, HSP70, aggregated protein and aggresome-like structures. Treatment of cells with hemin and baicalein, which were previously shown to provide cytoprotection against various stresses, induced HO-1 accumulation in a concentration-dependent manner. Also, treatment of cells with hemin and baicalein suppressed CdCl2-induced actin dysregulation and the accumulation of aggregated protein and aggresome-like structures. This cytoprotective effect was inhibited by SnPP. These results suggest that HO-1-mediated protection against CdCl2 toxicity includes the maintenance of actin cytoskeletal and microtubular structure and the suppression of aggregated protein and aggresome-like structures.


Assuntos
Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Proteínas de Choque Térmico HSP30/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Heme Oxigenase-1/metabolismo , Rim/efeitos dos fármacos , Agregação Patológica de Proteínas/induzido quimicamente , Animais , Antioxidantes/química , Antioxidantes/metabolismo , Linhagem Celular , Suplementos Nutricionais , Inibidores Enzimáticos/farmacologia , Flavanonas/antagonistas & inibidores , Flavanonas/metabolismo , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/química , Hemina/antagonistas & inibidores , Hemina/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Rim/citologia , Rim/metabolismo , Rim/patologia , Metaloporfirinas/farmacologia , Microscopia Confocal , Agregação Patológica de Proteínas/patologia , Agregação Patológica de Proteínas/prevenção & controle , Protoporfirinas/farmacologia , Proteínas de Xenopus/agonistas , Proteínas de Xenopus/antagonistas & inibidores , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo , Xenopus laevis
10.
Am J Transplant ; 18(8): 1879-1889, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29464912

RESUMO

Islet transplantation has become a well-established therapy for select patients with type 1 diabetes. Viability and engraftment can be compromised by the generation of oxidative stress encountered during isolation and culture. We evaluated whether the administration of BMX-001 (MnTnBuOE-2-PyP5+ [Mn(III) meso-tetrakis-(N-b-butoxyethylpyridinium-2-yl)porphyrin]) and its earlier derivative, BMX-010 (MnTE-2-PyP [Mn(III) meso-tetrakis-(N-methylpyridinium-2-yl)porphyrin]) could improve islet function and engraftment outcomes. Long-term culture of human islets with BMX-001, but not BMX-010, exhibited preserved in vitro viability. Murine islets isolated and cultured for 24 hours with 34 µmol/L BMX-001 exhibited improved insulin secretion (n = 3 isolations, P < .05) in response to glucose relative to control islets. In addition, 34 µmol/L BMX-001-supplemented murine islets exhibited significantly reduced apoptosis as indicated by terminal deoxynucleotidyl transferase dUTP nick end labeling, compared with nontreated control islets (P < .05). Murine syngeneic islets transplanted under the kidney capsule at a marginal dose of 150 islets revealed 58% of 34 µmol/L BMX-001-treated islet recipients became euglycemic (n = 11 of 19) compared with 19% of nontreated control islet recipients (n = 3 of 19, P < .05). Of murine recipients receiving a marginal dose of human islets cultured with 34 µmol/L BMX-001, 92% (n = 12 of 13) achieved euglycemia compared with 57% of control recipients (n = 8 of 14, P = .11). These results demonstrate that the administration of BMX-001 enhances in vitro viability and augments murine marginal islet mass engraftment.


Assuntos
Apoptose/efeitos dos fármacos , Materiais Biomiméticos/farmacologia , Diabetes Mellitus Experimental/prevenção & controle , Ilhotas Pancreáticas/efeitos dos fármacos , Metaloporfirinas/farmacologia , Animais , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Glucose/farmacologia , Sobrevivência de Enxerto , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Oxirredução , Superóxido Dismutase/metabolismo
11.
Theriogenology ; 108: 16-21, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29182942

RESUMO

Overproduction of reactive oxygen species during sperm freeze-thawing process leads to membrane lipid peroxidation, DNA damage, motility loss, and subsequent death. This oxidative stress can be alleviated by the addition of some antioxidants to semen extenders prior to freezing. This study was performed to evaluate the in vitro effectiveness of MnTBAP (a cell permeable antioxidant) on stallion sperm freezability and in vivo fertility rate. Twenty-one ejaculates were, collected with missouri model artificial vagina (n = 3 stallions, seven ejaculate each), and diluted (1:2 v/v) with phosphocaseinate base INRA extender, containing 0 (control), 100, 200 and 300 µM of MnTBAP and frozen using acontrolled-rate freezing system. The following parameters were determined: sperm motility, viability, membrane integrity, acrosome abnormalities, lipid peroxidation and DNA fragmentation. MnTBAP improved horse semen quality parameters in a dose-dependent manner. The100 µM concentration of MnTBAP did not show a significant difference in semen parameters compare with control group (p > 0.05). Accordingly, the extender supplemented with 200 µM resulted in higher sperm total and progressive motility (55.3 ± 4.28% and 33.2 ± 2.90%), viability (43.9 ± 2.14%), and membrane integrity (50.8 ± 2.14%), provided a greater protective effect in the percentage of total abnormalities compare to other groups (p < 0.05), and showed lower sperm with damaged DNA with lower MDA levels (p < 0.001). Higher concentrations (300 µM) not only did not improve the results but inversely affected sperm parameters. Twelve mares were used for fertility trial in the cross over study of 60 deep horn inseminations performed using control (9/30 pregnancy/mare) and 200 µM - MnTBAP (14/30 pregnancy/mere) groups frozen semen. The Average pregnancy rates were not significantly different between control and treated group (30% and 46.66%respectively) (p > 0.05). Under the conditions of this study, 200 µM - MnTBAP reduced the oxidative stress and protect the DNA fragmentation of Arabian stallion sperm during cryopreservation; but did not improved pregnancy rates.


Assuntos
Criopreservação/veterinária , Fragmentação do DNA , Cavalos/fisiologia , Metaloporfirinas/farmacologia , Análise do Sêmen/veterinária , Animais , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Dimetil Sulfóxido , Feminino , Glicerol , Peroxidação de Lipídeos , Masculino , Gravidez , Sêmen
12.
Toxicol Appl Pharmacol ; 326: 34-42, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28400118

RESUMO

Reactive oxygen species are a well-defined therapeutic target for Parkinson's disease (PD) and pharmacological agents that catalytically scavenge reactive species are promising neuroprotective strategies for treatment. Metalloporphyrins are synthetic catalytic antioxidants that mimic the body's own antioxidant enzymes i.e. superoxide dismutases and catalase. The goal of this study was to determine if newly designed metalloporphyrins have enhanced pharmacodynamics including oral bioavailability, longer plasma elimination half-lives, penetrate the blood brain barrier, and show promise for PD treatment. Three metalloporphyrins (AEOL 11216, AEOL 11203 and AEOL 11114) were identified in this study as potential candidates for further pre-clinical development. Each of these compounds demonstrated blood brain barrier permeability by the i.p. route and two of three compounds (AEOL 11203 and AEOL 11114) were orally bioavailable. All of these compounds protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity, including dopamine depletion in the striatum, dopaminergic neuronal loss in the substantial nigra, and increased oxidative/nitrative stress indices (glutathione disulfide and 3-nitrotyrosine) in the ventral midbrain of the mice without inhibiting MPTP metabolism. Daily therapeutic dosing of these metalloporphyrins were well tolerated without accumulation of brain manganese levels or behavioral alterations assessed by open field and rotarod tests. The study identified two orally active metalloporphyrins and one injectable metalloporphyrin as clinical candidates for further development in PD.


Assuntos
Antioxidantes/farmacologia , Antiparkinsonianos/farmacologia , Encéfalo/efeitos dos fármacos , Intoxicação por MPTP/prevenção & controle , Metaloporfirinas/farmacologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Administração Oral , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/farmacocinética , Comportamento Animal/efeitos dos fármacos , Disponibilidade Biológica , Biomarcadores/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Permeabilidade Capilar , Modelos Animais de Doenças , Dopamina/metabolismo , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Injeções Intraperitoneais , Intoxicação por MPTP/etiologia , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/fisiopatologia , Masculino , Metaloporfirinas/administração & dosagem , Metaloporfirinas/farmacocinética , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacocinética , Teste de Desempenho do Rota-Rod
13.
ACS Chem Neurosci ; 7(10): 1374-1382, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27442690

RESUMO

The effect of the bis-sulfonated iron(III) corrole (1-Fe), a potent decomposition catalyst of reactive oxygen species, on rescuing SN4741 cells that were damaged by 6-hydroxydopamine (6-OHDA) was investigated as an in vitro model system for studying cell death of dopaminergic neurons in the substantia nigra. Important findings that accompanied the ability to rescue dopaminergic neurons were increased expression of phenotypic dopaminergic proteins, such as tyrosine hydroxylase (TH) and dopamine transporter (DAT), which were significantly depleted upon 6-OHDA-mediated damage. 1-Fe also elevated expression levels of aldehyde dehydrogenase 1 (ALDH-1), previously disclosed as a cardinal protein in the pathogenesis of Parkinson's disease. Since these findings suggested that 1-Fe affects quite a wide range of intracellular mechanisms, vital intracellular pathways that involve neuroplasticity, growth, differentiation and survival of neurons, were examined. Phosphatidylinositol 3-kinase (PI3K) and protein kinase c (PKC) were found to be involved, as pharmacological inhibitors of these kinases abolished the neurorescue effect of 1-Fe. 1-Fe also elevated the expression of antiapoptotic protein Bcl-2, which is essential for proper mitochondrial function and cellular survival. The overall conclusion is that 1-Fe is capable of rescuing already damaged neuronal cells by a variety of mechanisms that are beyond its antioxidant activity.


Assuntos
Antioxidantes/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Metaloporfirinas/farmacologia , Fármacos Neuroprotetores/farmacologia , Família Aldeído Desidrogenase 1 , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Isoenzimas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Oxidopamina/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Retinal Desidrogenase/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
14.
Biol Pharm Bull ; 39(6): 1007-12, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27251503

RESUMO

In this study we investigated the effect of free heme, the local level of which was increased by bleeding, on the intestinal barrier function, using human epithelial colorectal adenocarcinoma cells (Caco-2). Our results show that the addition of hemin to the culture medium markedly disrupted the barrier function, which was significantly improved by glutamine supplementation. Although hemin treatment caused the increased expression of heme oxygenase (HO)-1, the inhibition of HO activity resulted in the aggravation of hemin-induced barrier dysfunction. Up-regulation of HO-1 by pretreatment with a low concentration of hemin almost completely prevented hemin-induced barrier dysfunction. Taken together, these observations indicate that an abnormally high level of intracellular free heme causes barrier dysfunction, probably through the modulation of proteins forming tight junctions.


Assuntos
Hemorragia Gastrointestinal/metabolismo , Heme Oxigenase-1/metabolismo , Mucosa Intestinal/metabolismo , Ácido Ascórbico/farmacologia , Células CACO-2 , Glutamina/farmacologia , Heme Oxigenase-1/antagonistas & inibidores , Hemina/farmacologia , Humanos , Malondialdeído/metabolismo , Metaloporfirinas/farmacologia
15.
PLoS One ; 10(10): e0139003, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26426815

RESUMO

OBJECTIVE: Daily application of far-red light from the onset of diabetes mitigated diabetes-induced abnormalities in retinas of albino rats. Here, we test the hypothesis that photobiomodulation (PBM) is effective in diabetic, pigmented mice, even when delayed until weeks after onset of diabetes. Direct and indirect effects of PBM on the retina also were studied. METHODS: Diabetes was induced in C57Bl/6J mice using streptozotocin. Some diabetics were exposed to PBM therapy (4 min/day; 670 nm) daily. In one study, mice were diabetic for 4 weeks before initiation of PBM for an additional 10 weeks. Retinal oxidative stress, inflammation, and retinal function were measured. In some mice, heads were covered with a lead shield during PBM to prevent direct illumination of the eye, or animals were treated with an inhibitor of heme oxygenase-1. In a second study, PBM was initiated immediately after onset of diabetes, and administered daily for 2 months. These mice were examined using manganese-enhanced MRI to assess effects of PBM on transretinal calcium channel function in vivo. RESULTS: PBM intervention improved diabetes-induced changes in superoxide generation, leukostasis, expression of ICAM-1, and visual performance. PBM acted in part remotely from the retina because the beneficial effects were achieved even with the head shielded from the light therapy, and because leukocyte-mediated cytotoxicity of retinal endothelial cells was less in diabetics treated with PBM. SnPP+PBM significantly reduced iNOS expression compared to PBM alone, but significantly exacerbated leukostasis. In study 2, PBM largely mitigated diabetes-induced retinal calcium channel dysfunction in all retinal layers. CONCLUSIONS: PBM induces retinal protection against abnormalities induced by diabetes in pigmented animals, and even as an intervention. Beneficial effects on the retina likely are mediated by both direct and indirect mechanisms. PBM is a novel non-pharmacologic treatment strategy to inhibit early changes of diabetic retinopathy.


Assuntos
Retinopatia Diabética/radioterapia , Terapia com Luz de Baixa Intensidade , Pigmentação/efeitos da radiação , Animais , Canais de Cálcio/metabolismo , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/metabolismo , Masculino , Metaloporfirinas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos da radiação , Protoporfirinas/farmacologia , Retina/efeitos dos fármacos , Retina/patologia , Retina/efeitos da radiação
16.
PLoS One ; 10(9): e0137388, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26397111

RESUMO

The superoxide dismutase mimetic manganese [III] tetrakis [5,10,15,20]-benzoic acid porphyrin (MnTBAP) is a potent antioxidant compound that has been shown to limit weight gain during short-term high fat feeding without preventing insulin resistance. However, whether MnTBAP has therapeutic potential to treat pre-existing obesity and insulin resistance remains unknown. To investigate this, mice were treated with MnTBAP or vehicle during the last five weeks of a 24-week high fat diet (HFD) regimen. MnTBAP treatment significantly decreased body weight and reduced white adipose tissue (WAT) mass in mice fed a HFD and a low fat diet (LFD). The reduction in adiposity was associated with decreased caloric intake without significantly altering energy expenditure, indicating that MnTBAP decreases adiposity in part by modulating energy balance. MnTBAP treatment also improved insulin action in HFD-fed mice, a physiologic response that was associated with increased protein kinase B (PKB) phosphorylation and expression in muscle and WAT. Since MnTBAP is a metalloporphyrin molecule, we hypothesized that its ability to promote weight loss and improve insulin sensitivity was regulated by heme oxygenase-1 (HO-1), in a similar fashion as cobalt protoporphyrins. Despite MnTBAP treatment increasing HO-1 expression, administration of the potent HO-1 inhibitor tin mesoporphyrin (SnMP) did not block the ability of MnTBAP to alter caloric intake, adiposity, or insulin action, suggesting that MnTBAP influences these metabolic processes independent of HO-1. These data demonstrate that MnTBAP can ameliorate pre-existing obesity and improve insulin action by reducing caloric intake and increasing PKB phosphorylation and expression.


Assuntos
Adiposidade/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Insulina/fisiologia , Metaloporfirinas/farmacologia , Obesidade/tratamento farmacológico , Animais , Fármacos Antiobesidade/uso terapêutico , Glicemia , Dieta Hiperlipídica/efeitos adversos , Avaliação Pré-Clínica de Medicamentos , Ingestão de Energia/efeitos dos fármacos , Metabolismo Energético , Homeostase , Masculino , Metaloporfirinas/uso terapêutico , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo
17.
J Mol Cell Cardiol ; 85: 104-16, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26004364

RESUMO

Cardiac dysfunction in obesity is associated with mitochondrial dysfunction, oxidative stress and altered insulin sensitivity. Whether oxidative stress directly contributes to myocardial insulin resistance remains to be determined. This study tested the hypothesis that ROS scavenging will improve mitochondrial function and insulin sensitivity in the hearts of rodent models with varying degrees of insulin resistance and hyperglycemia. The catalytic antioxidant MnTBAP was administered to the uncoupling protein-diphtheria toxin A (UCP-DTA) mouse model of insulin resistance (IR) and obesity, at early and late time points in the evolution of IR, and to db/db mice with severe obesity and type-two diabetes. Mitochondrial function was measured in saponin-permeabilized cardiac fibers. Aconitase activity and hydrogen peroxide emission were measured in isolated mitochondria. Insulin-stimulated glucose oxidation, glycolysis and fatty acid oxidation rates were measured in isolated working hearts, and 2-deoxyglucose uptake was measured in isolated cardiomyocytes. Four weeks of MnTBAP attenuated glucose intolerance in 13-week-old UCP-DTA mice but was without effect in 24-week-old UCP-DTA mice and in db/db mice. Despite the absence of improvement in the systemic metabolic milieu, MnTBAP reversed cardiac mitochondrial oxidative stress and improved mitochondrial bioenergetics by increasing ATP generation and reducing mitochondrial uncoupling in all models. MnTBAP also improved myocardial insulin mediated glucose metabolism in 13 and 24-week-old UCP-DTA mice. Pharmacological ROS scavenging improves myocardial energy metabolism and insulin responsiveness in obesity and type 2 diabetes via direct effects that might be independent of changes in systemic metabolism.


Assuntos
Antioxidantes/farmacologia , Síndrome Metabólica/tratamento farmacológico , Metaloporfirinas/farmacologia , Mitocôndrias Cardíacas/metabolismo , Animais , Antioxidantes/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Metabolismo Energético , Ácidos Graxos/metabolismo , Homeostase , Insulina/sangue , Resistência à Insulina , Síndrome Metabólica/sangue , Metaloporfirinas/uso terapêutico , Camundongos Endogâmicos C57BL , Camundongos Obesos , Miocárdio/metabolismo , Estresse Oxidativo , Transdução de Sinais
18.
Free Radic Biol Med ; 83: 89-100, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25725417

RESUMO

The manganese porphyrin, manganese (III) meso-tetrakis N-ethylpyridinium-2-yl porphyrin (MnTE-2-PyP(5+)), acts as a pro-oxidant in the presence of intracellular H2O2. Mitochondria are the most prominent source of intracellular ROS and important regulators of the intrinsic apoptotic pathway. Due to the increased oxidants near and within the mitochondria, we hypothesized that the mitochondria are a target of the pro-oxidative activity of MnTE-2-PyP(5+) and that we could exploit this effect to enhance the chemotherapeutic response in lymphoma. In this study, we demonstrate that MnTE-2-PyP(5+) modulates the mitochondrial redox environment and sensitizes lymphoma cells to antilymphoma chemotherapeutics. MnTE-2-PyP(5+) increased dexamethasone-induced mitochondrial ROS and oxidation of the mitochondrial glutathione pool in lymphoma cells. The combination treatment induced glutathionylation of Complexes I, III, and IV in the electron transport chain, and decreased the activity of Complexes I and III, but not the activity of Complex IV. Treatment with the porphyrin and dexamethasone also decreased cellular ATP levels. Rho(0) malignant T-cells with impaired mitochondrial electron transport chain function were less sensitive to the combination treatment than wild-type cells. These findings suggest that mitochondria are important for the porphyrin's ability to enhance cell death. MnTE-2-PyP(5+) also augmented the effects of 2-deoxy-D-glucose (2DG), an antiglycolytic agent. In combination with 2DG, MnTE-2-PyP(5+) increased protein glutathionylation, decreased ATP levels more than 2DG treatment alone, and enhanced 2DG-induced cell death in primary B-ALL cells. MnTE-2-PyP(5+) did not enhance dexamethasone- or 2DG-induced cell death in normal cells. Our findings suggest that MnTE-2-PyP(5+) has potential as an adjuvant for the treatment of hematologic malignancies.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético/efeitos dos fármacos , Metaloporfirinas/farmacologia , Oxidantes/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Neoplasias do Timo/tratamento farmacológico , Animais , Sobrevivência Celular/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Eletroforese em Gel Bidimensional , Glutationa/metabolismo , Peróxido de Hidrogênio/farmacologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Neoplasias do Timo/metabolismo , Neoplasias do Timo/patologia , Células Tumorais Cultivadas
19.
Theriogenology ; 83(8): 1321-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25698161

RESUMO

Manganese(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin chloride (MnTE) is a cell-permeable superoxide dismutase mimetic agent which can convert superoxide to hydrogen peroxide (H2O2). Supplementation of MnTE to a commercial semen extender can protect sperm from superoxide but not H2O2. Therefore, we proposed that addition of catalase (0.0, 200, or 400 IU/mL) in combination with MnTE (0.1 µM) may further improve the cryopreservation efficiency of goat semen in commercially optimized freezing media such as Andromed. Therefore, ejaculates were obtained from three adult bucks twice a week during the breeding season and diluted with Andromed supplemented with or without MnTE and catalase and were frozen in liquid nitrogen. Sperm parameters and reactive oxygen species contents were evaluated 2 hours after dilution (before freezing) and after freezing/thawing. The results revealed that all the treatments significantly (P ≤ 0.05) improved sperm motility, viability, and membrane integrity after freezing and reduced reactive oxygen species content compared with the control group, but maximum improvement was obtained in MnTE + 400 IU/mL catalase. In addition, supplementation with these antioxidants significantly (P ≤ 0.05) increases the cleavage rate after IVF. In conclusion, the results of present study suggest that addition of antioxidant MnTE or catalase to commercial optimized media, such as Andromed, improves total motility, membrane integrity, and viability of goat semen samples after thawing. But the degree of improvement for these parameters significantly (P ≤ 0.05) higher when MnTE and catalase were simultaneously added to the cryopreservation media.


Assuntos
Catalase/farmacologia , Cabras , Metaloporfirinas/farmacologia , Análise do Sêmen/veterinária , Sêmen/fisiologia , Superóxido Dismutase , Animais , Antioxidantes/farmacologia , Criopreservação/métodos , Criopreservação/veterinária , Crioprotetores , Técnicas de Cultura Embrionária , Feminino , Fertilização in vitro/veterinária , Temperatura Alta , Peróxido de Hidrogênio/metabolismo , Masculino , Espécies Reativas de Oxigênio/análise , Preservação do Sêmen/métodos , Preservação do Sêmen/veterinária , Motilidade dos Espermatozoides , Superóxidos/metabolismo
20.
PLoS One ; 9(12): e115362, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25506911

RESUMO

High temperature requirement protein A1 (HtrA1), a secreted serine protease of the HtrA family, is associated with a multitude of human diseases. However, the exact functions of HtrA1 in these diseases remain poorly understood. We seek to unravel the mechanisms of HtrA1 by elucidating its interactions with chemical or biological modulators. To this end, we screened a small molecule library of 500 bioactive compounds to identify those that alter the formation of extracellular HtrA1 complexes in the cell culture medium. An initial characterization of two novel hits from this screen showed that protoporphyrin IX (PPP-IX), a precursor in the heme biosynthetic pathway, and its metalloporphyrin (MPP) derivatives fostered the oligomerization of HtrA1 by binding to the protease domain. As a result of the interaction with MPPs, the proteolytic activity of HtrA1 against Fibulin-5, a specific HtrA1 substrate in age-related macular degeneration (AMD), was increased. This physical interaction could be abolished by the missense mutations of HtrA1 found in patients with cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). Furthermore, knockdown of HtrA1 attenuated apoptosis induced by PPP-IX. These results suggest that PPP-IX, or its derivatives, and HtrA1 may function as co-factors whereby porphyrins enhance oligomerization and the protease activity of HtrA1, while active HtrA1 elevates the pro-apoptotic actions of porphyrin derivatives. Further analysis of this interplay may shed insights into the pathogenesis of diseases such as AMD, CARASIL and protoporphyria, as well as effective therapeutic development.


Assuntos
Protoporfirinas/farmacologia , Serina Endopeptidases/efeitos dos fármacos , Apoptose , Avaliação Pré-Clínica de Medicamentos , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Humanos , Metaloporfirinas/metabolismo , Metaloporfirinas/farmacologia , Ligação Proteica , Estrutura Quaternária de Proteína , Protoporfirinas/metabolismo , Serina Endopeptidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA