Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339206

RESUMO

Methamphetamine (MA) is a highly addictive drug, and MA use disorder is often comorbid with anxiety and cognitive impairment. These comorbid conditions are theorized to reflect glutamate-related neurotoxicity within the frontal cortical regions. However, our prior studies of MA-sensitized mice indicate that subchronic, behaviorally non-contingent MA treatment is sufficient to dysregulate glutamate transmission in mouse brain. Here, we extend this prior work to a mouse model of high-dose oral MA self-administration (0.8, 1.6, or 3.2 g/L; 1 h sessions × 7 days) and show that while female C57BL/6J mice consumed more MA than males, MA-experienced mice of both sexes exhibited some signs of anxiety-like behavior in a behavioral test battery, although not all effects were concentration-dependent. No MA effects were detected for our measures of visually cued spatial navigation, spatial learning, or memory in the Morris water maze; however, females with a history of 3.2 g/L MA exhibited reversal-learning deficits in this task, and mice with a history of 1.6 g/L MA committed more working-memory incorrect errors and relied upon a non-spatial navigation strategy during the radial-arm maze testing. Relative to naïve controls, MA-experienced mice exhibited several changes in the expression of certain glutamate receptor-related proteins and their downstream effectors within the ventral and dorsal areas of the prefrontal cortex, the hippocampus, and the amygdala, many of which were sex-selective. Systemic pretreatment with the mGlu1-negative allosteric modulator JNJ 162596858 reversed the anxiety-like behavior expressed by MA-experienced mice in the marble-burying test, while systemic pretreatment with NMDA or the NMDA antagonist MK-801 bi-directionally affected the MA-induced reversal-learning deficit. Taken together, these data indicate that a relatively brief history of oral MA is sufficient to induce some signs of anxiety-like behavior and cognitive dysfunction during early withdrawal that reflect, at least in part, MA-induced changes in the corticolimbic expression of certain glutamate receptor subtypes of potential relevance to treating symptoms of MA use disorder.


Assuntos
Metanfetamina , Masculino , Camundongos , Animais , Feminino , Metanfetamina/toxicidade , N-Metilaspartato/farmacologia , Camundongos Endogâmicos C57BL , Receptores de Glutamato , Ácido Glutâmico/metabolismo , Cognição , Aprendizagem em Labirinto
2.
Ecotoxicol Environ Saf ; 269: 115769, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039856

RESUMO

Prenatal exposure to methamphetamine (METH) is an issue of global concern due to its adverse effects on offspring, particularly its impact on liver health, an area still not fully understood. Inulin, a recognized prebiotic, is thought to potentially ameliorate these developmental disorders and toxic injuries in progeny. To investigate the effects of prenatal METH exposure on the liver and the role of gut microbiota, we established a murine model, the subjects of which were exposed to METH prenatally and subsequently treated with inulin. Our findings indicate that prenatal METH exposure causes liver damage in offspring, as evidenced by a decreased liver index, histopathological changes, diminished glycogen synthesis, hepatic dysfunction, and alterations in mRNA profiles. Furthermore, it impairs the antioxidant system and induces oxidative stress, possibly due to changes in cecal microbiota and dysregulation of bile acid homeostasis. However, maternal inulin supplementation appears to restore the gut microbiota in offspring and mitigate the hepatotoxic effects induced by prenatal METH exposure. Our study provides definitive evidence of METH's transgenerational hepatotoxicity and suggests that maternal inulin supplementation could be an effective preventive strategy.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Metanfetamina , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Camundongos , Animais , Humanos , Metanfetamina/toxicidade , Inulina/farmacologia , Suplementos Nutricionais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
3.
Neurotoxicology ; 99: 305-312, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979660

RESUMO

Methamphetamine (METH) is a psychostimulant with a very high addiction rate. Prolonged use of METH has been observed as one of the root causes of neurotoxicity. Melatonin (Mel) has been found to have a significant role in METH-induced neurotoxicity. This study aimed to investigate the restorative effect of Mel on behavioral flexibility in METH-induced cognitive deficits. Male Sprague-Dawley rats were randomly assigned to be intraperitoneally injected with saline (control) or Meth at 5 mg/kg for 7 consecutive days. Then, METH injection was withdrawn and rats in each group were subcutaneously injected with saline or Mel at 10 mg/kg for 14 consecutive days. The stereotypic behavioral test and attentional set-shifting task (ASST) were used to evaluate neurological functions and cognitive flexibility, respectively. Rats developed abnormal features of stereotyped behaviors and deficits in cognitive flexibility after 7 days of METH administration. However, post-treatment with Mel for 14 days after METH withdrawal dramatically ameliorated the neurological and cognitive deficits in METH-treated rats. Blood biomarkers indicated METH-induced systemic low-grade inflammation. Moreover, METH-induced endoplasmic reticulum (ER) stress in the prefrontal cortex was diminished by melatonin supplementation. These findings might reveal the therapeutic potential of Mel in METH toxicity-induced neurological and cognitive deficits.


Assuntos
Estimulantes do Sistema Nervoso Central , Melatonina , Metanfetamina , Síndromes Neurotóxicas , Ratos , Masculino , Animais , Metanfetamina/toxicidade , Melatonina/farmacologia , Melatonina/uso terapêutico , Ratos Sprague-Dawley , Estimulantes do Sistema Nervoso Central/toxicidade , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Cognição , Estresse do Retículo Endoplasmático
4.
Neurotoxicology ; 99: 70-81, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37729970

RESUMO

BACKGROUND: One of the most powerful stimulants of the central nervous system is methamphetamine (METH). Linalool has a neuroprotective effect against ischemia injury by reducing oxidative stress and apoptosis. The present study investigated whether linalool can reverse the hypothalamus neurotoxicity and proteome disturbance in METH-treated rats. BRIEF METHOD: A total of 36 male albino rats were split into two equal groups (normal and METH-treated). Three equal subgroups of normal rats were created; Control, Linalool (25 mg/kg), and Linalool (50 mg/kg); Normal rats were given daily oral doses of 1 ml of distilled water, 25 mg/kg linalool, and 50 mg/kg of linalool, respectively. METH groups were divided into 3 equal subgroups; METH-treated rats, Linalool (25 mg/kg)+METH-treated, and Linalool (50 mg/kg)+METH-treated subgroups; METH-treated rats received daily and oral doses of 1 ml distilled water, 25 mg/kg linalool, and 50 mg/kg of linalool, respectively. RESULTS: According to the data obtained, METH caused a decrease of the sucrose preference test, travel distance test, and center square entries test, superoxide dismutase, glutathione peroxidase, catalase, NADPH oxidase, interleukin-10 but a rise in the center square duration test, tail suspension test, and forced swimming test, malondialdehyde, conjugated dienes, oxidative index, serotonin, dopamine, norepinephrine, γ-aminobutyric acid, tumour necrosis factor-α, interleukin-1ß, interleukin-6 levels. When compared to the control group, rats treated with METH had lower sodium/potassium ATPase activity and missing of prothrombin, fibrinogen, and ceruloplasmin protein bands in the hypothalamus. In METH-treated rats, daily and oral co-administration with linalool brought all these parameters back to values that were close to control. SIGNIFICANCE: According to obtained data, linalool could protect the hypothalamus against METH-induced neurotoxicity and proteome disturbance probably by modifying oxidative stress, neurotransmitters, inflammation, sodium/potassium-ATPase activity, proteome disturbance, and tissue histology in METH-treated rats where higher dose of linalool was more efficient than lower dose.


Assuntos
Estimulantes do Sistema Nervoso Central , Metanfetamina , Síndromes Neurotóxicas , Ratos , Masculino , Animais , Metanfetamina/toxicidade , Proteoma/metabolismo , Antioxidantes/farmacologia , Síndromes Neurotóxicas/metabolismo , Hipotálamo/metabolismo , Potássio , Adenosina Trifosfatases/metabolismo , Sódio , Água
5.
Adv Neurobiol ; 32: 385-416, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37480467

RESUMO

Curcumin is a well-known antioxidant used as traditional medicine in China and India since ages to treat variety of inflammatory ailments as a food supplement. Curcumin has antitumor properties with neuroprotective effects in Alzheimer's disease. Curcumin elevates brain-derived neurotrophic factor (BDNF) and dopamine (DA) levels in the brain indicating its role in substance abuse. Methamphetamine (METH) is one of the most abused substances in the world that induces profound neurotoxicity by inducing breakdown of the blood-brain barrier (BBB), vasogenic edema and cellular injuries. However, influence of curcumin on METH-induced neurotoxicity is still not well investigated. In this investigation, METH neurotoxicity and neuroprotective effects of curcumin nanodelivery were examined in a rat model. METH (20 mg/kg, i.p.) neurotoxicity is evident 4 h after its administration exhibiting breakdown of BBB to Evans blue albumin in the cerebral cortex, hippocampus, cerebellum, thalamus and hypothalamus associated with vasogenic brain edema as seen measured using water content in all these regions. Nissl attaining exhibited profound neuronal injuries in the regions of BBB damage. Normal curcumin (50 mg/kg, i.v.) 30 min after METH administration was able to reduce BBB breakdown and brain edema partially in some of the above brain regions. However, TiO2 nanowired delivery of curcumin (25 mg/kg, i.v.) significantly attenuated brain edema, neuronal injuries and the BBB leakage in all the brain areas. BDNF level showed a significant higher level in METH-treated rats as compared to saline-treated METH group. Significantly enhanced DA levels in METH-treated rats were also observed with nanowired delivery of curcumin. Normal curcumin was able to slightly elevate DA and BDNF levels in the selected brain regions. Taken together, our observations are the first to show that nanodelivery of curcumin induces superior neuroprotection in METH neurotoxicity probable by enhancing BDNF and DA levels in the brain, not reported earlier.


Assuntos
Edema Encefálico , Curcumina , Metanfetamina , Fármacos Neuroprotetores , Animais , Ratos , Fator Neurotrófico Derivado do Encéfalo , Dopamina , Metanfetamina/toxicidade , Fármacos Neuroprotetores/farmacologia , Nanofios/química , Sistemas de Liberação de Fármacos por Nanopartículas/química , Sistemas de Liberação de Fármacos por Nanopartículas/farmacologia
6.
Oxid Med Cell Longev ; 2022: 8400876, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387263

RESUMO

Chronic and long-term methamphetamine (METH) abuse is bound to cause damages to multiple organs and systems, especially the central nervous system (CNS). Icariside II (ICS), a type of flavonoid and one of the main active ingredients of the traditional Chinese medicine Epimedium, exhibits a variety of biological and pharmacological properties such as anti-inflammatory, antioxidant, and anticancer activities. However, whether ICS could protect against METH-induced neurotoxicity remains unknown. Based on a chronic METH abuse mouse model, we detected the neurotoxicity after METH exposure and determined the intervention effect of ICS and the potential mechanism of action. Here, we found that METH could trigger neurotoxicity, which was characterized by loss of dopaminergic neurons, depletion of dopamine (DA), activation of glial cells, upregulation of α-synuclein (α-syn), abnormal dendritic spine plasticity, and dysfunction of motor coordination and balance. ICS treatment, however, alleviated the above-mentioned neurotoxicity elicited by METH. Our data also indicated that when ICS combated METH-induced neurotoxicity, it was accompanied by partial correction of the abnormal Kelch 2 like ECH2 associated protein 1 (Keap1)-nuclear factor erythroid-2-related factor 2 (Nrf2) pathway and oxidative stress response. In the presence of ML385, an inhibitor of Nrf2, ICS failed to activate the Nrf2-related protein expression and reduce the oxidative stress response. More importantly, ICS could not attenuate METH-induced dopaminergic neurotoxicity and behavioral damage when the Nrf2 was inhibited, suggesting that the neuroprotective effect of ICS on METH-induced neurotoxicity was dependent on activating the Keap1-Nrf2 pathway. Although further research is needed to dig deeper into the actual molecular targets of ICS, it is undeniable that the current results imply the potential value of ICS to reduce the neurotoxicity of METH abusers.


Assuntos
Metanfetamina , Síndromes Neurotóxicas , Animais , Camundongos , Dopamina/metabolismo , Flavonoides/uso terapêutico , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Metanfetamina/toxicidade , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
7.
Brain Res Bull ; 184: 76-87, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35398540

RESUMO

As a psychoactive substance abused worldwide, methamphetamine (METH) abuse leads to multiple neurodegenerative symptoms including memory deficits. Terminalia chebula retzius extracts (TREs) isolated by our lab have great antioxidant activity and its effect on METH-induced memory deficits has not been investigated yet. The present study was designed to investigate the protective effect of TREs on METH induced cell apoptosis in vitro and memory deficits in vivo. The results showed that TREs treatment attenuated free radical release and improved cell survival of primary hippocampal neurons after METH injury. In the Morris water maze task, TREs treatment reversed METH-induced learning and memory deficits in acquisition and retention. Moreover, TREs reduced oxidative stress in the serum and hippocampus of mice. Additionally, extracellular regulated protein kinases (ERK1/2) pathway and the nuclear factor E2-related factor 2 (Nrf2) pathway were inactivated after METH treatment, and were significantly activated after TREs pretreatment. These findings suggest that TREs may exert potent neuroprotective effect via activation of both ERK and Nrf2 pathways, thus providing a basis for its potential use for ameliorating memory deficits induced by METH.


Assuntos
Metanfetamina , Terminalia , Animais , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Metanfetamina/toxicidade , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Terminalia/metabolismo
8.
Exp Neurol ; 345: 113811, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34298012

RESUMO

Methamphetamine (METH) is a highly addictive and powerful central nervous system psychostimulant with no FDA-approved pharmacotherapy. Parkin is a neuroprotective protein and its loss of function contributes to Parkinson's disease. This study used 3-month-old homozygous parkin knockout (PKO) rats to determine whether loss of parkin protein potentiates neurotoxicity of chronic METH to the nigrostriatal dopamine pathway. PKO rats were chronically treated with 10 mg/kg METH for 10 consecutive days and assessed for neurotoxicity markers in the striatum on the 5th and 10th day of withdrawal from METH. The PKO rats showed higher METH-induced hyperthermia; however, they did not display augmented deficits in dopaminergic and serotonergic neurotoxicity markers, astrocyte activation or decreased mitochondrial enzyme levels as compared to wild-type (WT) rats. Interestingly, saline-treated PKO rats had lower levels of dopamine (DA) as well as mitochondrial complex I and II levels while having increased basal levels of glial fibrillary acidic protein (GFAP), a marker of gliosis. These results indicate PKO display a certain resistance to METH neurotoxicity, possibly mediated by lowered DA levels and downregulated mitochondria.


Assuntos
Estimulantes do Sistema Nervoso Central/toxicidade , Dopamina/metabolismo , Locomoção/efeitos dos fármacos , Metanfetamina/toxicidade , Ubiquitina-Proteína Ligases/deficiência , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Estimulantes do Sistema Nervoso Central/administração & dosagem , Dopamina/genética , Esquema de Medicação , Hipertermia Induzida/efeitos adversos , Hipertermia Induzida/métodos , Locomoção/fisiologia , Masculino , Metanfetamina/administração & dosagem , Ratos , Ratos Long-Evans , Ratos Transgênicos , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Ubiquitina-Proteína Ligases/genética
9.
Molecules ; 26(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923340

RESUMO

Curcumin (CUR), a natural polyphenol extracted from rhizome of the Curcuma longa L, has received great attention for its multiple potential health benefits as well as disease prevention. For instance, CUR protects against toxic agents acting on the human body, including the nervous system. In detail, CUR possesses, among others, strong effects as an autophagy activator. The present study indicates that CUR counteracts methamphetamine (METH) toxicity. Such a drug of abuse is toxic by disturbing the autophagy machinery. We profited from an unbiased, low variable cell context by using rat pheochromocytoma PC12 cell line. In such a system, a strong protection was exerted by CUR against METH toxicity. This was associated with increased autophagy flux, merging of autophagosomes with lysosomes and replenishment of autophagy vacuoles with LC3, which instead is moved out from the vacuoles by METH. This is expected to enable the autophagy machinery. In fact, while in METH-treated cells the autophagy substrates α-synuclein accumulates in the cytosol, CUR speeds up α-synuclein clearance. Under the effects of CUR LC3 penetrate in autophagy vacuoles to commit them to cell clearance and promotes the autophagy flux. The present data provide evidence that CUR counteracts the neurotoxic effects induced by METH by promoting autophagy.


Assuntos
Curcumina/farmacologia , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Curcuma/química , Curcumina/química , Humanos , Metanfetamina/toxicidade , Fármacos Neuroprotetores/química , Síndromes Neurotóxicas/patologia , Células PC12 , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos
10.
Am J Chin Med ; 49(1): 95-111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33416022

RESUMO

Methamphetamine (METH) is an extremely addictive drug that has raised serious public health concerns recently. METH addiction not only results in neuronal cytotoxicity, but it also affects immune cell activity, including T lymphocytes. 6,4,7[Formula: see text]-trihydroxyflavanone (THF), isolated from Dalbergia odorifera, has been studied for its antibacterial activity, but evidence for whether THF has an anti-cytotoxic and protective effect on T cell activation exposed to METH is lacking. In this study, results showed that treatment with THF was not cytotoxic to Jurkat T cells but dose-dependently mitigated the cytotoxicity induced by exposure to METH. The Western blot results demonstrating pre-treatment with THF maintained the expression of anti-apoptotic proteins and phosphorylation of PI3K/Akt/mTOR downregulated by treatment with METH. Furthermore, we found that decreased expression of IL-2 and CD69 by METH exposure was partially restored, and viability was significantly prevented by pre-treatment with THF in activated T cells. These findings were involved in re-elevated expression of anti-apoptotic proteins as well as recovered pathways including MAPK/PI3K/Akt/mTOR in activated T cells pre-exposed to METH. Our results suggest beneficial effects of THF against the cytotoxic and immune-modulating effect of METH on T cells and therapeutic potential of THF for patients with immunodeficiency caused by METH addiction.


Assuntos
Apoptose/efeitos dos fármacos , Isoflavonas/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Metanfetamina/efeitos adversos , Linfócitos T/imunologia , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Células Cultivadas , Dalbergia/química , Humanos , Síndromes de Imunodeficiência/tratamento farmacológico , Síndromes de Imunodeficiência/etiologia , Isoflavonas/isolamento & purificação , Isoflavonas/uso terapêutico , Células Jurkat , Metanfetamina/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Fitoterapia , Transtornos Relacionados ao Uso de Substâncias/complicações , Linfócitos T/patologia , Serina-Treonina Quinases TOR/metabolismo
11.
Hum Exp Toxicol ; 39(8): 1118-1129, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32162539

RESUMO

OBJECTIVE: Methamphetamine (MA) abuse induces neurotoxicity and causes neuronal cell apoptosis. Gastrodin is a traditional Chinese herbal medicine used for the treatment of nerve injuries, spinal cord injuries, and some central nervous system diseases as well. The present study investigated the neuroprotective effects of gastrodin against MA-induced neurotoxicity in neuronal cells and its potential protective mechanism. METHODS: The primary cortex neuronal culture was divided into four groups (control group, MA group, MA + gastrodin group, and MA + gastrodin + small interfering RNA group). The neurotoxicity of MA was assessed by detecting apoptotic cells by terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling assay and cell viability by cell counting kit 8 (CCK-8) method, the Tuj1-positive cells and the average axonal length were detected by immunofluorescence, and the expressions of cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), cAMP-response element-binding (CREB), and brain-derived neurotrophic factor (BDNF) proteins were detected by Western blot. RESULTS: The results of CCK-8 assay showed that 0.5 mM MA was an optimal concentration that induced neurotoxicity (p < 0.01). Pretreatment with 25 mg/L gastrodin exerted maximum protective effects on neuronal cells. The expression levels of cAMP, PKA, phosphorylated PKA, CREB, phosphorylated CREB, and BDNF proteins were decreased in the MA group, and pretreatment with gastrodin upregulated the expression levels of these proteins (p < 0.01). The expressions of PKA and CREB proteins showed no significant changes in the control group, MA group, and gastrodin group. Compared the MA + gastrodin + small interfering RNA group with MA + gastrodin group, the Tuj1-positive cells and the average axonal length were decreased significantly, while the number of apoptotic cells was increased (p < 0.05). CONCLUSION: Gastrodin has neuroprotective effects against MA-induced neurotoxicity, which exerts neuroprotective effects via regulation of cAMP/PKA/CREB signaling pathway and upregulates the expression of BDNF.


Assuntos
Álcoois Benzílicos/farmacologia , Glucosídeos/farmacologia , Metanfetamina/toxicidade , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Córtex Motor/citologia , Neurônios/metabolismo , Ratos Sprague-Dawley
12.
Pharmacol Biochem Behav ; 192: 172912, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32201298

RESUMO

RATIONALE: Methylenedioxymethamphetamine (MDMA) and methcathinone (MCAT) are abused psychostimulant drugs that produce adverse effects in human users that include hepatotoxicity and death. Recent work has suggested a connection between hepatotoxicity, elevations in plasma ammonia, and brain glutamate function for methamphetamine (METH)-induced neurotoxicity. OBJECTIVES: These experiments investigated the effect of ambient temperature on the toxicity and lethality produced by MDMA and MCAT in mice, and whether these effects might involve similar mechanisms to those described for METH neurotoxicity. RESULTS: Under low (room temperature) ambient temperature conditions, MDMA induced hepatotoxicity, elevated plasma ammonia levels, and induced lethality. Under the same conditions, even a very high dose of MCAT produced limited toxic or lethal effects. High ambient temperature conditions potentiated the toxic and lethal effects of both MDMA and MCAT. CONCLUSION: These studies suggest that hepatotoxicity, plasma ammonia, and brain glutamate function are involved in MDMA-induced lethality, as has been shown for METH neurotoxicity. The toxicity and lethality of both MDMA and MCAT were potentiated by high ambient temperatures. Although an initial mouse study reported that several cathinones were much less toxic than METH or MDMA, the present results suggest that it will be essential to assess the potential dangers posed by these drugs under high ambient temperatures.


Assuntos
Estimulantes do Sistema Nervoso Central/toxicidade , Temperatura Alta , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/mortalidade , Propiofenonas/toxicidade , Amônia/sangue , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Ácido Glutâmico/metabolismo , Masculino , Metanfetamina/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Síndromes Neurotóxicas/sangue , Transdução de Sinais/efeitos dos fármacos , Transtornos Relacionados ao Uso de Substâncias/mortalidade
13.
Neurotoxicology ; 78: 36-46, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32050087

RESUMO

The increased diffusion of the so-called novel psychoactive substances (NPS) and their continuous change in structure andconceivably activity has led to the need of a rapid screening method to detect their biological effects as early as possible after their appearance in the market. This problem is very felt in forensic pathology and toxicology, so the preclinical study is fundamental in the approach to clinical and autopsy cases of difficult interpretation intoxication. Zebrafish is a high-throughput suitable model to rapidly hypothesize potential aversive or beneficial effects of novel molecules. In the present study, we measured and compared the behavioral responses to two novel neuroactive drugs, namely APINAC, a new cannabimimetic drug, and methiopropamine (MPA), a methamphetamine-like compound, on zebrafish larvae (ZL) and adult mice. By using an innovative statistical approach (general additive models), it was found that the spontaneous locomotor activity was impaired by the two drugs in both species: the disruption extent varied in a dose-dependent and time-dependent manner. Sensorimotor function was also altered: i) the visual object response was reduced in mice treated with APINAC, whereas it was not after exposure to MPA; ii) the visual placing responses were reduced after treatment with both NPS in mice. Furthermore, the visual motor response detected in ZL showed a reduction after treatment with APINAC during light-dark and dark-light transition. The same pattern was found in the MPA exposed groups only at the dark-light transition, while at the transition from light to dark, the individuals showed an increased response. In conclusion, the present study highlighted the impairment of spontaneous motor and sensorimotor behavior induced by MPA and APINAC administration in both species, thus confirming the usefulness of ZL as a model for a rapid behavioural-based drug screening.


Assuntos
Comportamento Animal/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Toxicologia Forense/métodos , Psicotrópicos/toxicidade , Peixe-Zebra , Adamantano/análogos & derivados , Adamantano/toxicidade , Animais , Indazóis/toxicidade , Masculino , Metanfetamina/análogos & derivados , Metanfetamina/toxicidade , Camundongos Endogâmicos ICR , Tiofenos/toxicidade
14.
Neurotox Res ; 37(4): 883-892, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32080803

RESUMO

Methamphetamine (METH) is a popular psychostimulant due to its long-lasting effects and inexpensive production. METH intoxication is known to increase oxidative stress leading to neuronal damage. Thus, preventing the METH-induced oxidative stress can potentially mitigate neuronal damage. Previously, our laboratory found that epigallocatechin gallate (EGCG), a strong antioxidant found in green tea, can protect against the METH-induced apoptosis and dopamine terminal toxicity in the striatum of mice. In the present study, we evaluated the anti-oxidative properties of EGCG on the METH-induced oxidative stress using CD-1 mice. First, we demonstrated that mice pretreated with EGCG 30 min prior to the METH injection (30 mg/kg, ip) showed protection against the striatal METH-induced reduction of tyrosine hydroxylase without mitigating hyperthermia. In addition, injecting a single high dose of METH caused the reduction of striatal glutathione peroxidase activity at 24 h after the METH injection. Interestingly, pretreatment with EGCG 30 min prior to the METH injection prevented the METH-induced reduction of glutathione peroxidase activity. Moreover, we utilized Western blots to quantify the glutathione peroxidase 4 protein level in the striatum. The results showed that METH decreased striatal glutathione peroxidase 4 protein level, and the reduction was prevented by EGCG pretreatment. Finally, we observed that the METH-induced increase of striatal catalase and copper/zinc superoxide dismutase protein levels were also attenuated by pretreatment with EGCG. Taken together, our data indicate that EGCG is an effective agent that can be used to mitigate the METH-induced striatal toxicity in the mouse brain.


Assuntos
Antioxidantes/farmacologia , Catequina/análogos & derivados , Corpo Estriado/metabolismo , Dopamina/metabolismo , Metanfetamina/toxicidade , Estresse Oxidativo/fisiologia , Animais , Catequina/farmacologia , Estimulantes do Sistema Nervoso Central/toxicidade , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos
15.
Pharmacology ; 105(5-6): 300-310, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31825931

RESUMO

INTRODUCTION: Rhynchophylline, as a traditional Chinese medicine, was used for the treatment of drug addiction. OBJECTIVE: To investigate miRNAs expression profile in the rat hearts of methamphetamine dependence and the intervention mechanisms of rhynchophylline. MATERIALS AND METHODS: This study detected the expression profile of miRNAs in the methamphetamine-induced rat hearts by microarray and verified the expression of miR-133a-5P and Rho-associated, coiled-coil containing protein kinase 2 (ROCK2) protein. RESULTS: After conditioned place preference training, methamphetamine significantly increased the time spent in the drug-paired compartment, while rhynchophylline and MK-801 could reduce the time. Cluster analysis results of miRNAs showed that compared with the control group, the expression of miR-133a-5p in methamphetamine-induced rat hearts was decreased significantly; rhynchophylline could significantly increase the expression of miR-133a-5p. The result was verified by real-time polymerase chain reaction. The results of target gene predictive software and related research showed that ROCK2 protein may be the target gene of miR-133a-5p. The immunohistochemistry results of heart tissues showed that the expression of ROCK2 protein was significantly upregulated in the methamphetamine group and downregulate in the rhynchophylline group; the difference between the MK-801 group and the methamphetamine group was not significant. The result of western blot was consistent with the immunohistochemistry. CONCLUSION: The active ingredient of Chinese herbal medicine rhynchophylline can effectively inhibit the formation of methamphetamine-dependent conditional place preference (CPP) effect in rats to some extent. MiR-133a-5p may participate in the cardioprotective effects of CPP rats by targeting ROCK2.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/tratamento farmacológico , Coração/efeitos dos fármacos , Metanfetamina/toxicidade , MicroRNAs/metabolismo , Oxindóis/farmacologia , Quinases Associadas a rho/genética , Transtornos Relacionados ao Uso de Anfetaminas/genética , Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Transtornos Relacionados ao Uso de Anfetaminas/prevenção & controle , Animais , Comportamento Animal/efeitos dos fármacos , Cardiotônicos , Condicionamento Operante/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Expressão Gênica/efeitos dos fármacos , Masculino , Miocárdio/metabolismo , Oxindóis/uso terapêutico , Ratos , Ratos Sprague-Dawley , Quinases Associadas a rho/metabolismo
16.
Hum Psychopharmacol ; 34(5): e2710, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31441135

RESUMO

INTRODUCTION: Methamphetamine associated psychosis (MAP) represents a mental disorder induced by chronic methamphetamine use in a subset of users. The prevalence of the disorder has increased in several countries in Europe and Asia where methamphetamine use has increased. MAP remains difficult to distinguish from primary psychiatric disorders, especially schizophrenia, creating complications in prescribing treatment plans to patients. DESIGN: This narrative review sought to summarize difficulties related to MAP diagnosis and highlight the need for a better treatment model. Current best practices are described and potential novel therapies and future research suggested. RESULTS: Results suggest that clear biological and clinical differences appear between patients presenting with MAP and schizophrenia and that there may exist distinct subgroups within MAP itself. MAP-specific treatment studies have been few and have focused on the use of antipsychotic medication. Antipsychotic treatment has been shown to alleviate the psychotic symptoms of MAP but produce debilitating adverse effects and fail to adequately address methamphetamine use in patients. CONCLUSIONS: Continued identification of subgroups within the heterogenous MAP population may lead to better diagnosis, treatment, and outcomes for patients. Psychosocial therapies should be explored in addressing the cooccurring substance use and psychosis in the treatment of MAP.


Assuntos
Metanfetamina/toxicidade , Psicoses Induzidas por Substâncias/terapia , Antipsicóticos/uso terapêutico , Terapia Cognitivo-Comportamental , Eletroacupuntura , Terapia por Exercício , Humanos , Inflamação/complicações , Neurotransmissores/fisiologia , Estresse Oxidativo , Córtex Pré-Frontal/fisiologia , Psicoses Induzidas por Substâncias/etiologia , Esquizofrenia/etiologia
17.
Neurotox Res ; 36(2): 376-386, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31201732

RESUMO

Repeated methamphetamine (METH) exposure can cause severe neurotoxicity to the central nervous system, and lead to memory deficits. L-Stepholidine (L-SPD) is a structurally identified alkaloid extract of the Chinese herb Stephania intermedia, which elicits dopamine (DA) D1-type receptors partial agonistic activity and D2-type receptors antagonistic activity. In this study, we investigated the effect of L-SPD on METH-induced memory deficits in mice and its underlying mechanisms. We found that repeated exposure to METH (10 mg/kg, i.p., once per day for 7 consecutive days) impaired memory functions in the novel object recognition experiment. Pretreatment of L-SPD (10 mg/kg, i.p.) significantly improved METH-induced memory deficits in mice. Meanwhile, the protein expression of dopaminergic D2 receptors in hippocampus area was significantly increased by repeated METH exposure, while the protein expression of dopamine transporter (DAT) was significantly reduced. Additionally, the protein expression of phospho-protein kinase A (p-PKA) was significantly increased by repeated METH exposure. The hyperpolarization-activated cyclic-nucleotide-gated non-selective cation 1 (HCN1) channel, which was a key regulator of memory functions and could be regulated by p-PKA, was also significantly increased by repeated METH exposure. These changes caused by METH could be prevented by L-SPD pretreatment. Therefore, our data firstly showed that pretreatment of L-SPD exhibited the protective effect against METH-induced memory deficits, possibly through reducing METH-induced upregulation of dopaminergic pathway and HCN1 channels.


Assuntos
Berberina/análogos & derivados , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/prevenção & controle , Metanfetamina/toxicidade , Fármacos Neuroprotetores/uso terapêutico , Animais , Berberina/uso terapêutico , Dopaminérgicos/toxicidade , Agonistas de Dopamina/uso terapêutico , Antagonistas de Dopamina/uso terapêutico , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória
18.
Neurotox Res ; 36(2): 347-356, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31069753

RESUMO

Methamphetamine (Meth) is a widely abused stimulant. High-dose Meth induces degeneration of dopaminergic neurons through p53-mediated apoptosis. A recent study indicated that treatment with the p53 inhibitor, pifithrin-alpha (PFT-α), antagonized Meth-mediated behavioral deficits in mice. The mechanisms underpinning the protective action of PFT-α against Meth have not been identified, and hence, their investigation is the focus of this study. Primary dopaminergic neuronal cultures were prepared from rat embryonic ventral mesencephalic tissue. High-dose Meth challenge reduced tyrosine hydroxylase immunoreactivity and increased terminal deoxynucleotidyl transferase-mediated dNTP nick-end labeling (TUNEL) labeling. PFT-α significantly antagonized these responses. PFT-α also reduced Meth-activated translocation of p53 to the nucleus, an initial step before transcription. Previous studies have indicated that p53 can also activate cell death through transcription-independent pathways. We found that PFT-α attenuated endoplasmic reticulum (ER) stressor thapsigargin (Tg)-mediated loss of dopaminergic neurons. ER stress was further monitored through the release of Gaussia luciferase (GLuc) from SH-SY5Y cells overexpressing GLuc-based Secreted ER Calcium-Modulated Protein (GLuc-SERCaMP). Meth or Tg significantly increased GLuc release in to the media, with PFT-α significantly reducing GLuc release. Additionally, PFT-α significantly attenuated Meth-induced CHOP expression. In conclusion, our data indicate that PFT-α is neuroprotective against Meth-mediated neurodegeneration via transcription-dependent nuclear and -independent cytosolic ER stress pathways.


Assuntos
Benzotiazóis/farmacologia , Estimulantes do Sistema Nervoso Central/toxicidade , Neurônios Dopaminérgicos/efeitos dos fármacos , Metanfetamina/toxicidade , Tolueno/análogos & derivados , Animais , Linhagem Celular Tumoral , Células Cultivadas , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Feminino , Humanos , Gravidez , Ratos , Tolueno/farmacologia
19.
Nutr Res ; 58: 84-94, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30340818

RESUMO

Methamphetamine (METH) exposure can cause severe effects to the nervous system; however, the underlying molecular mechanism of neurotoxicity caused by METH is still unclear. Oxidative stress and apoptosis are linked in the pathophysiology of many neurodegenerative diseases. Krill oil (KO) benefits human health via its strong antioxidant ability. Therefore, we hypothesized that KO supplementation might effectively prevent METH-induced neurotoxicity via the inhibition of apoptotic responses and oxidative damages. In this study, PC12 cells were exposed to both METH (3 mmol/L) and KO (0.1, 0.2, 0.4, 0.8 µg/mL) in vitro for 24 h, and the following parameters were measured to detect apoptosis and oxidative stress responses that were triggered by METH: cell viability, the oxidative enzyme system, NO production, ROS production, apoptosis, mitochondrial membrane potential and protein expression of cleaved caspase-3. The results indicate that KO mitigates the apoptotic response post-METH exposure in PC 12 cells by increasing cell viability, decreasing protein expression of cleaved caspase-3, reducing apoptotic rates, and decreasing dissipation of mitochondrial membrane potential. In addition, the study revealed increases in SOD and GSH activity, and decreases in MDA content, NO and ROS production, suggesting that KO is beneficial in reducing oxidative stress, which may also play a role in the regulation of METH-triggered apoptotic response. Consequently, these data indicate that KO could potentially alleviate METH-induced neurotoxicity via the reduction of apoptotic responses and oxidative damages.


Assuntos
Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Gorduras Insaturadas na Dieta/uso terapêutico , Euphausiacea/química , Metanfetamina/toxicidade , Síndromes Neurotóxicas/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Caspase 3/metabolismo , Sobrevivência Celular , Gorduras Insaturadas na Dieta/farmacologia , Suplementos Nutricionais , Glutationa/metabolismo , Malondialdeído/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/fisiopatologia , Óxido Nítrico/metabolismo , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
20.
Neurotox Res ; 34(3): 627-639, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29934756

RESUMO

Methamphetamine (METH), an amphetamine derivate, may increase the risk of developing Parkinson's disease (PD). Human and animal studies have shown that METH produces persistent dopaminergic neurotoxicity in the nigrostriatal pathway, despite initial partial recovery. To determine the processes leading to early compensation, we studied the detailed morphology and distribution of tyrosine hydroxylase immunoreactive fibers (TH-ir) classified by their thickness (types I-IV) before and after METH. Applying three established neurotoxic regimens of METH: single high dose (1 × 30 mg/kg), multiple lower doses (3 × 5 mg/kg) or (3 × 10 mg/kg), we show that METH primarily damages type I fibers (the thinner ones), and to a much lesser extend types II-IV fibers including sterile axons. The striatal TH terminal partial recovery process, consisting of a progressive regrowth increases in types II, III, and IV fibers, demonstrated by co-localization of GAP-43, a sprouting marker, was observed 3 days post-METH treatment. In addition, we demonstrate the presence of growth-cone-like TH-ir structures, indicative of new terminal generation as well as improvement in motor functions after 3 days. A temporal relationship was observed between decreases in TH-expression and increases in silver staining, a marker of degeneration. Striatal regeneration was associated with an increase in astroglia and decrease in microglia expression, suggesting a possible role for the neuroimmune system in regenerative processes. Identification of regenerative compensatory mechanisms in response to neurotoxic agents could point to novel mechanisms in countering the neurotoxicity and/or enhancing the regenerative processes.


Assuntos
Estimulantes do Sistema Nervoso Central/toxicidade , Corpo Estriado/fisiopatologia , Dopamina/metabolismo , Metanfetamina/toxicidade , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/patologia , Animais , Proteínas de Ligação ao Cálcio , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/ultraestrutura , Modelos Animais de Doenças , Proteína GAP-43/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/patologia , Terminações Pré-Sinápticas/ultraestrutura , Transtornos Psicomotores/etiologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Coloração pela Prata , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA