Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(9): 23173-23183, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36318410

RESUMO

The study aimed to comprehensively determine P extraction efficiency and co-digestion of food waste (FW) and primary settled-nightsoil sludge (PSNS) process performance influenced by different hydraulic retention times (4, 7, 10, and 15 days) and mixture ratios of FW:PSNS in substrates (100:0, 75:25, 50:50, 25:75, and 0:100). P-transformation was evaluated to identify P fractionation in both supernatant and sludge accumulated in reactors. The results showed that anaerobic co-digestion was inhibited by the accumulation of undigested feedstock due to higher %PSNS found in AD4 (25FW:75PSNS) and AD5 (100PSNS). A more stable process was found in AD2 (75FW:25PSNS) under hydraulic retention time (HRT) 15 days in which COD removal efficiency and P release were 97.2 and 80.2%, respectively. This recommended condition allowed a high organic loading rate (OLR) at 12 gVS/L/day resulting in the highest biogas yield of 0.93 L/L/day. Distribution of P data demonstrated that most of P in feedstock was deposited and accumulated in sediment up to 97.8%. Poor biodegradability resulting from using shortened HRT led to high increased P-solid content in effluent. In addition, available P in effluents and accumulated P-solids in sediment obtained from the AcoD process has the potential to serve as sources for P recovery.


Assuntos
Eliminação de Resíduos , Esgotos , Esgotos/química , Anaerobiose , Biocombustíveis/análise , Alimentos , Fósforo , Reatores Biológicos , Metano/química , Digestão
2.
J Environ Sci (China) ; 127: 738-752, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522102

RESUMO

The main purpose of this research was to clarify the influence of the addition of iron (Fe) alone (0-100 mg/L) or 50 mg/L of Fe with 2 mg/L each of cobalt (Co), copper (Cu) and nickel (Ni) on the methanogenic activity of a mesophilic two-stage UASB system treating ethanol wastewater at a fixed chemical oxygen demand (COD) loading rate of 16 kg/m3/day under a continuous mode of operation and steady state condition. The addition of Fe provided the dual benefits of a reduction in both the dissolved sulfide and the hydrogen sulfide (H2S) content in produced gas, resulting in marginally improved hydrogen (H2) and methane (CH4) productivities. When the Fe dosage was increased beyond the optimum value of 50 mg/L, the process performance drastically declined, as a consequence of the high total volatile fatty acid (VFA) concentrations that inhibited both the acidogens and methanogens predominantly present in the 1st and 2nd reactors, respectively. The chemical precipitation of iron sulfide was responsible for the reduction of produced H2S in both the aqueous and gaseous phases as well as the minimization of added amounts of all other micronutrients to fulfil the sufficiency of all micronutrients for anaerobic digestion (AD). The addition of 2 mg/L each of Co, Cu and Ni together with 50 mg/L Fe resulted in the greatest enhancement in process performance, as indicated by the improved CH4 yield (mL/g COD applied) to about 42.3%, compared to that without micronutrient supplement.


Assuntos
Reatores Biológicos , Oligoelementos , Esgotos/química , Anaerobiose , Micronutrientes , Metano/química , Enxofre , Gases
3.
Chemosphere ; 309(Pt 1): 136537, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36150485

RESUMO

Co-digestion of organic waste and wastewater is receiving increased attention as a plausible waste management approach toward energy recovery. However, traditional anaerobic processes for co-digestion are particularly susceptible to severe organic loading rates (OLRs) under long-term treatment. To enhance technological feasibility, this work presented a two-stage Anaerobic Membrane Bioreactor (2 S-AnMBR) composed of a hydrolysis reactor (HR) followed by an anaerobic membrane bioreactor (AnMBR) for long-term co-digestion of food waste and kitchen wastewater. The OLRs were expanded from 4.5, 5.6, and 6.9 kg COD m-3 d-1 to optimize biogas yield, nitrogen recovery, and membrane fouling at ambient temperatures of 25-32 °C. Results showed that specific methane production of UASB was 249 ± 7 L CH4 kg-1 CODremoved at the OLR of 6.9 kg TCOD m-3 d-1. Total Chemical Oxygen Demand (TCOD) loss by hydrolysis was 21.6% of the input TCOD load at the hydraulic retention time (HRT) of 2 days. However, low total volatile fatty acid concentrations were found in the AnMBR, indicating that a sufficiently high hydrolysis efficiency could be accomplished with a short HRT. Furthermore, using AnMBR structure consisting of an Upflow Anaerobic Sludge Blanket Reactor (UASB) followed by a side-stream ultrafiltration membrane alleviated cake membrane fouling. The wasted digestate from the AnMBR comprised 42-47% Total Kjeldahl Nitrogen (TKN) and 57-68% total phosphorous loading, making it suitable for use in soil amendments or fertilizers. Finally, the predominance of fine particles (D10 = 0.8 µm) in the ultrafiltration membrane housing (UFMH) could lead to a faster increase in trans-membrane pressure during the filtration process.


Assuntos
Eliminação de Resíduos , Águas Residuárias , Águas Residuárias/química , Biocombustíveis , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Alimentos , Fertilizantes , Metano/química , Reatores Biológicos , Nitrogênio , Nutrientes , Solo
4.
Comput Biol Chem ; 94: 107567, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34500323

RESUMO

Benzimidazolium salts (3-6) were synthesized as stable N-Heterocyclic Carbene (NHC) precursors and their selenium-NHC compounds/Selenones (7-10) were prepared using water as a solvent. Characterization of each of the synthesized compounds was carried out by various analytical and spectroscopic (FT-IR, 1H-, 13C NMR) methods. X-ray crystallographic analyses of single crystals obtained for salts 3 and 5 were carried out. Synthesized salts and their Se-NHCs were tested in-vitro for their anticancer potential against Cervical Cancer Cell line from Henrietta Lacks (HeLa), Breast cancer cell line (MDA-MB-231), Adenocarcinoma cell line (A549) and human normal endothelial cell line (EA.hy926). MTT assay was used for analysis and compared with standard drug 5-flourouracil. Benzimidazolium salts (3-6) and their selenium counter parts (7-10) were found potent anticancer agents. Salt 3-5 were found to be potent anticancer against HeLa with IC50 values 0.072, 0.017 and 0.241 µM, respectively, which are less than standard drug (4.9 µM). The Se-NHCs (7-10) had also shown significant anticancer potential against HeLa with IC50 values less than standard drug. Salts 3, 4 against EA.hy926, compounds 3,5,6, and 10 against MDA-MB-321, and compounds 4, 10 against A-549 cell line were found more potent anticancer agents with IC50 values less than standard drug. Molecular docking for (7-10) showed their good anti-angiogenic potential having low binding energy and significant inhibition constant values with VEGFA (vascular endothelial growth factor), EGF (human epidermal growth factor), COX1 (cyclooxygenase-1) and HIF (hypoxia inducible factor).


Assuntos
Antineoplásicos/farmacologia , Técnicas de Química Sintética , Compostos Heterocíclicos/farmacologia , Metano/análogos & derivados , Simulação de Acoplamento Molecular , Selênio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Heterocíclicos/química , Humanos , Ligantes , Metano/química , Metano/farmacologia , Selênio/química , Células Tumorais Cultivadas
5.
Ecotoxicol Environ Saf ; 221: 112451, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34174737

RESUMO

Manganese oxides and iron oxides have been widely introduced in constructed wetlands (CWs) for sewage treatment due to their extensiveness in nature and their ability to participate in various reactions, but their effects on greenhouse gas (GHG) emissions remain unclear. Here, a set of vertical subsurface-flow CWs (Control, Fe-VSSCWs, and Mn-VSSCWs) was established to comprehensively evaluate which are the better metal substrate materials for CWs, iron oxides or manganese oxides, through water quality and the global warming potential (GWP) of nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2). The results revealed that the removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in Mn-VSSCWs were all higher than that in Fe-VSSCWs, and manganese oxides could almost completely suppress the CH4 production and reduce GWP (from 8.15 CO2-eq/m2/h to 7.17 mg CO2-eq/m2/h), however, iron oxides promoted GWP (from 8.15 CO2-eq/m2/h to 10.84 mg CO2-eq/m2/h), so manganese oxides are the better CW substrate materials to achieve effective sewage treatment while reducing the greenhouse gas effect.


Assuntos
Poluentes Atmosféricos/química , Compostos Férricos/química , Efeito Estufa/prevenção & controle , Compostos de Manganês/química , Óxidos/química , Purificação da Água/métodos , Áreas Alagadas , Análise da Demanda Biológica de Oxigênio , Dióxido de Carbono/química , Metano/química , Nitrogênio/química , Óxido Nitroso/química , Fósforo/química , Poluentes da Água/química , Qualidade da Água
6.
Chem Biol Drug Des ; 98(3): 435-444, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34051050

RESUMO

Fourteen novel selenium N-heterocyclic carbene (Se-NHC) compounds derived from 4,5-diarylimidazole were designed, synthesized, and evaluated as antiproliferative agents. Most of them were more effective toward A2780 ovarian cancer cells than HepG2 hepatocellular carcinoma cells. Among them, the most active compound 2b was about fourfold more active than the positive control ebselen against A2780 cells. In addition, this compound displayed twofold higher cytotoxicity to A2780 cells than to IOSE80 normal ovarian epithelial cells. Further studies revealed that 2b could induce reactive oxygen species production, damage mitochondrial membrane potential, block the cells in the G0/G1 phase, and finally promote A2780 cell apoptosis.


Assuntos
Antineoplásicos/síntese química , Complexos de Coordenação/química , Metano/análogos & derivados , Selênio/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Compostos Heterocíclicos/química , Humanos , Metano/química , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
7.
Acc Chem Res ; 54(5): 1209-1225, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33491448

RESUMO

Despite the astonishing diversity of naturally occurring biocatalytic processes, enzymes do not catalyze many of the transformations favored by synthetic chemists. Either nature does not care about the specific products, or if she does, she has adopted a different synthetic strategy. In many cases, the appropriate reagents used by synthetic chemists are not readily accessible to biological systems. Here, we discuss our efforts to expand the catalytic repertoire of enzymes to encompass powerful reactions previously known only in small-molecule catalysis: formation and transfer of reactive carbene and nitrene intermediates leading to a broad range of products, including products with bonds not known in biology. In light of the structural similarity of iron carbene (Fe═C(R1)(R2)) and iron nitrene (Fe═NR) to the iron oxo (Fe═O) intermediate involved in cytochrome P450-catalyzed oxidation, we have used synthetic carbene and nitrene precursors that biological systems have not encountered and repurposed P450s to catalyze reactions that are not known in the natural world. The resulting protein catalysts are fully genetically encoded and function in intact microbial cells or cell-free lysates, where their performance can be improved and optimized by directed evolution. By leveraging the catalytic promiscuity of P450 enzymes, we evolved a range of carbene and nitrene transferases exhibiting excellent activity toward these new-to-nature reactions. Since our initial report in 2012, a number of other heme proteins including myoglobins, protoglobins, and cytochromes c have also been found and engineered to promote unnatural carbene and nitrene transfer. Due to the altered active-site environments, these heme proteins often displayed complementary activities and selectivities to P450s.Using wild-type and engineered heme proteins, we and others have described a range of selective carbene transfer reactions, including cyclopropanation, cyclopropenation, Si-H insertion, B-H insertion, and C-H insertion. Similarly, a variety of asymmetric nitrene transfer processes including aziridination, sulfide imidation, C-H amidation, and, most recently, C-H amination have been demonstrated. The scopes of these biocatalytic carbene and nitrene transfer reactions are often complementary to the state-of-the-art processes based on small-molecule transition-metal catalysts, making engineered biocatalysts a valuable addition to the synthetic chemist's toolbox. Moreover, enabled by the exquisite regio- and stereocontrol imposed by the enzyme catalyst, this biocatalytic platform provides an exciting opportunity to address challenging problems in modern synthetic chemistry and selective catalysis, including ones that have eluded synthetic chemists for decades.


Assuntos
Hemeproteínas/metabolismo , Iminas/metabolismo , Metano/análogos & derivados , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Hemeproteínas/química , Iminas/química , Compostos de Ferro/química , Compostos de Ferro/metabolismo , Metano/química , Metano/metabolismo , Estrutura Molecular
8.
Angew Chem Int Ed Engl ; 60(6): 3268-3276, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33103824

RESUMO

Catalytic kinetic resolution (KR) and dynamic kinetic asymmetric transformation (DyKAT) are alternative and complementary avenues to access chiral stereoisomers of both starting materials and reaction products. The development of highly efficient chiral catalytic systems for kinetically controlled processes has therefore been one of the linchpins in asymmetric synthesis. N-heterocyclic carbene (NHC)/copper cooperative catalysis has enabled highly efficient KR and DyKAT of racemic N-tosylaziridines by [3+3] annulation with isatin-derived enals, leading to highly enantioenriched N-tosylaziridine derivatives (up to >99 % ee) and a large library of spirooxindole derivatives with high structural diversity and stereoselectivity (up to >95:5 d.r., >99 % ee). Mechanistic studies suggest that the NHC can bind reversibly to the copper catalyst without compromising its catalytic activity and regulate the catalytic activity of the copper complex to switch the chemoselection between KR and DyKAT.


Assuntos
Aziridinas/química , Cobre/química , Metano/análogos & derivados , Catálise , Reação de Cicloadição , Compostos Heterocíclicos/química , Isatina/química , Cinética , Metano/química , Oxindóis/química , Compostos de Espiro/síntese química , Compostos de Espiro/química , Estereoisomerismo
9.
Molecules ; 25(24)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322410

RESUMO

The mechanism of the carbonylation of diazomethane in the presence of iron-carbonyl-phosphine catalysts has been investigated by means of DFT calculations at the M06/def-TZVP//B97D3/def2-TZVP level of theory, in combination with the SMD solvation method. The reaction rate is determined by the formation of the coordinatively unsaturated doublet-state Fe(CO)3(P) precursor followed by the diazoalkane coordination and the N2 extrusion. The free energy of activation is predicted to be 18.5 and 28.2 kcal/mol for the PF3 and PPh3 containing systems, respectively. Thus, in the presence of less basic P-donor ligands with stronger π-acceptor properties, a significant increase in the reaction rate can be expected. According to energy decomposition analysis combined with natural orbitals of chemical valence (EDA-NOCV) calculations, diazomethane in the Fe(CO)3(phosphine)(η1-CH2N2) adduct reveals a π-donor-π-acceptor type of coordination.


Assuntos
Hidrogenase/química , Compostos de Ferro/química , Proteínas Ferro-Enxofre/química , Ferro/química , Catálise , Simulação por Computador , Diazometano/química , Elétrons , Ligantes , Metano/análogos & derivados , Metano/química , Modelos Moleculares , Estrutura Molecular , Níquel/química , Paládio/química , Fosfinas/química , Fósforo/química , Teoria Quântica
10.
Molecules ; 25(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33171911

RESUMO

N-heterocyclic carbenes (NHCs) are common ancillary ligands in organometallic compounds that are used to alter the electronic and steric properties of a metal centre. To date, various NHCs have been synthesised with different electronic properties, which can be done by modifying the backbone or changing the nitrogen substituents group. This study describes a systematic modification of NHCs by the inclusion of fluorine substituents and examines the use of selenium-NHC compounds to measure the π-accepting ability of these fluorinated NHC ligands. Evaluation of the 77Se NMR chemical shifts of the selenium adducts reveals that fluorinated NHCs have higher chemical shifts than the non-fluorinated counterparts, IMes and IPh. Higher 77Se NMR chemical shifts values indicate a stronger π-accepting ability of the NHC ligands. The findings of this study suggest that the presence of fluorine atoms has increased the π-accepting ability of the corresponding NHC ligands. This work supports the advantage of the 77Se NMR chemical shifts of selenium-NHC compounds for assessing the influence of fluorine substituents on NHC ligands.


Assuntos
Flúor/química , Compostos Heterocíclicos/química , Compostos de Selênio/química , Isótopos/química , Ligantes , Espectroscopia de Ressonância Magnética , Metano/análogos & derivados , Metano/química , Selênio/química
11.
Sci Rep ; 10(1): 19655, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184385

RESUMO

Sargassum fusiforme, which is a type of brown algae, can provide fiber and minerals to ruminant diets. In this study, dried S. fusiforme was tested in vitro at four different doses 1, 3, 5, and 10% of the total ration for its effect on ruminal fermentation characteristics, and gas profiles when incubated for 72 h. At a level of 1 and 10%, S. fusiforme supplementation augmented total volatile fatty acid (VFA) concentrations compared to that with 0% supplementation. In addition, total gas, methane, and carbon dioxide emissions significantly decreased at 3 and 24 h of incubation at this dose. An in situ trial was performed for 72 h with S. fusiforme to evaluate it as a potential feed ingredient by comparing its degradation parameters with timothy hay (Phleum pretense). 1H nuclear magnetic resonance spectroscopy profiling was used to identify and quantify metabolites of S. fusiforme. Mannitol, guanidoacetate and ethylene glycol were largely accumulated in S. fusiforme. Moreover, nutritious minerals for feed ingredients were present in S. fusiforme. Whereas a high concentration of arsenic was found in S. fusiforme, it was within the allowable limit for ruminants. Our results suggest that S. fusiforme could represent an alternative, renewable feed ingredient for ruminant diets, with nutritional, as well as environmental, benefits.


Assuntos
Ração Animal/análise , Dieta , Digestão/fisiologia , Ácidos Graxos Voláteis/metabolismo , Rúmen/metabolismo , Ruminantes/fisiologia , Sargassum/química , Animais , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Fibras na Dieta , Fermentação , Metano/química , Metano/metabolismo , Sargassum/metabolismo
12.
PLoS One ; 15(11): e0242158, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33170886

RESUMO

Calcium salts of long-chain fatty acids (CSFA) from linseed oil have the potential to reduce methane (CH4) production from ruminants; however, there is little information on the effect of supplementary CSFA on rumen microbiome as well as CH4 production. The aim of the present study was to evaluate the effects of supplementary CSFA on ruminal fermentation, digestibility, CH4 production, and rumen microbiome in vitro. We compared five treatments: three CSFA concentrations-0% (CON), 2.25% (FAL) and 4.50% (FAH) on a dry matter (DM) basis-15 mM of fumarate (FUM), and 20 mg/kg DM of monensin (MON). The results showed that the proportions of propionate in FAL, FAH, FUM, and MON were increased, compared with CON (P < 0.05). Although DM and neutral detergent fiber expressed exclusive of residual ash (NDFom) digestibility decreased in FAL and FAH compared to those in CON (P < 0.05), DM digestibility-adjusted CH4 production in FAL and FAH was reduced by 38.2% and 63.0%, respectively, compared with that in CON (P < 0.05). The genera Ruminobacter, Succinivibrio, Succiniclasticum, Streptococcus, Selenomonas.1, and Megasphaera, which are related to propionate production, were increased (P < 0.05), while Methanobrevibacter and protozoa counts, which are associated with CH4 production, were decreased in FAH, compared with CON (P < 0.05). The results suggested that the inclusion of CSFA significantly changed the rumen microbiome, leading to the acceleration of propionate production and the reduction of CH4 production. In conclusion, although further in vivo study is needed to evaluate the reduction effect on rumen CH4 production, CSFA may be a promising candidate for reduction of CH4 emission from ruminants.


Assuntos
Cálcio/química , Ácidos Graxos/química , Óleo de Semente do Linho/química , Metano/química , Microbiota , Rúmen/microbiologia , Sais/química , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Peso Corporal , Análise por Conglomerados , DNA Bacteriano/metabolismo , Detergentes , Digestão , Fermentação , Fumaratos/química , Gases , Técnicas In Vitro , Megasphaera/metabolismo , Monensin/química , RNA Ribossômico 16S/metabolismo , Selenomonas/metabolismo , Ovinos , Silagem/análise , Streptococcus/metabolismo
13.
PLoS One ; 15(9): e0238470, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32911526

RESUMO

We report a powerful method for capturing the time-resolved concentration profiles, liquid swelling and surface phenomena during the absorption of methane (CH4) in still liquid ethanol (C2D6O) and n-decane (n-C10D22) and at high spatial resolution (pixel size 21.07 µm) using neutron imaging. Absorption of supercritical methane was followed at two temperatures and two pressures of methane, namely 7.0, 37.8 °C and 80, 120 bar. Fick's second law, which was used in the liquid-fixed coordinates, enabled for an adequate parameterization of the observed concentration profiles and liquid levels using simple analytical expressions. For both studied liquids, anomalously slow diffusion was observed in the initial stage of the absorption experiment. This was ascribed to the slow formation of the surface excess on the interface, time constant ranged 130-275 s. The axial symmetry of the cell allowed for the tomographic reconstructions of the profiles of the menisci. Based on these profiles, contact angle and surface tension were evaluated using the Young-Laplace equation. Overall, neutron imaging made it possible to capture time- and space-resolved information from which the methane concentration, liquid level and meniscus shape under high-pressure conditions inside a cylindrical titanium vessel were quantitatively derived. Multiple characteristics of ethanol, a methane hydrate inhibitor, and n-decane, a model constituent of crude oil, were thus measured for the first time under industrially relevant conditions in a one-pot experiment.


Assuntos
Metano/química , Imagem Individual de Molécula/métodos , Alcanos/química , Difusão , Etanol/química , Modelos Estatísticos , Nêutrons , Petróleo , Fenômenos Físicos , Imagem Individual de Molécula/instrumentação , Temperatura , Água
14.
Nature ; 578(7795): 409-412, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32076219

RESUMO

Atmospheric methane (CH4) is a potent greenhouse gas, and its mole fraction has more than doubled since the preindustrial era1. Fossil fuel extraction and use are among the largest anthropogenic sources of CH4 emissions, but the precise magnitude of these contributions is a subject of debate2,3. Carbon-14 in CH4 (14CH4) can be used to distinguish between fossil (14C-free) CH4 emissions and contemporaneous biogenic sources; however, poorly constrained direct 14CH4 emissions from nuclear reactors have complicated this approach since the middle of the 20th century4,5. Moreover, the partitioning of total fossil CH4 emissions (presently 172 to 195 teragrams CH4 per year)2,3 between anthropogenic and natural geological sources (such as seeps and mud volcanoes) is under debate; emission inventories suggest that the latter account for about 40 to 60 teragrams CH4 per year6,7. Geological emissions were less than 15.4 teragrams CH4 per year at the end of the Pleistocene, about 11,600 years ago8, but that period is an imperfect analogue for present-day emissions owing to the large terrestrial ice sheet cover, lower sea level and extensive permafrost. Here we use preindustrial-era ice core 14CH4 measurements to show that natural geological CH4 emissions to the atmosphere were about 1.6 teragrams CH4 per year, with a maximum of 5.4 teragrams CH4 per year (95 per cent confidence limit)-an order of magnitude lower than the currently used estimates. This result indicates that anthropogenic fossil CH4 emissions are underestimated by about 38 to 58 teragrams CH4 per year, or about 25 to 40 per cent of recent estimates. Our record highlights the human impact on the atmosphere and climate, provides a firm target for inventories of the global CH4 budget, and will help to inform strategies for targeted emission reductions9,10.


Assuntos
Atmosfera/química , Combustíveis Fósseis/história , Combustíveis Fósseis/provisão & distribuição , Atividades Humanas/história , Metano/análise , Metano/história , Biomassa , Radioisótopos de Carbono , Carvão Mineral/história , Carvão Mineral/provisão & distribuição , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Camada de Gelo/química , Metano/química , Gás Natural/história , Gás Natural/provisão & distribuição , Petróleo/história , Petróleo/provisão & distribuição
15.
Nature ; 575(7781): 180-184, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31695210

RESUMO

Methane is a powerful greenhouse gas and is targeted for emissions mitigation by the US state of California and other jurisdictions worldwide1,2. Unique opportunities for mitigation are presented by point-source emitters-surface features or infrastructure components that are typically less than 10 metres in diameter and emit plumes of highly concentrated methane3. However, data on point-source emissions are sparse and typically lack sufficient spatial and temporal resolution to guide their mitigation and to accurately assess their magnitude4. Here we survey more than 272,000 infrastructure elements in California using an airborne imaging spectrometer that can rapidly map methane plumes5-7. We conduct five campaigns over several months from 2016 to 2018, spanning the oil and gas, manure-management and waste-management sectors, resulting in the detection, geolocation and quantification of emissions from 564 strong methane point sources. Our remote sensing approach enables the rapid and repeated assessment of large areas at high spatial resolution for a poorly characterized population of methane emitters that often appear intermittently and stochastically. We estimate net methane point-source emissions in California to be 0.618 teragrams per year (95 per cent confidence interval 0.523-0.725), equivalent to 34-46 per cent of the state's methane inventory8 for 2016. Methane 'super-emitter' activity occurs in every sector surveyed, with 10 per cent of point sources contributing roughly 60 per cent of point-source emissions-consistent with a study of the US Four Corners region that had a different sectoral mix9. The largest methane emitters in California are a subset of landfills, which exhibit persistent anomalous activity. Methane point-source emissions in California are dominated by landfills (41 per cent), followed by dairies (26 per cent) and the oil and gas sector (26 per cent). Our data have enabled the identification of the 0.2 per cent of California's infrastructure that is responsible for these emissions. Sharing these data with collaborating infrastructure operators has led to the mitigation of anomalous methane-emission activity10.


Assuntos
Monitoramento Ambiental , Metano/análise , Gerenciamento de Resíduos , California , Efeito Estufa , Esterco , Metano/química , Metano/metabolismo , Gás Natural , Indústria de Petróleo e Gás/métodos , Petróleo , Águas Residuárias
16.
Molecules ; 24(22)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739418

RESUMO

Two routes of preparation of mesoporous Ni-alumina materials favoring the intermediate formation of nanostructured nickel-aluminate are presented. The first one involves an aluminum containing MOF precursor used as sacrificial template to deposit nickel while the second is based on a one-pot synthesis combined to an EISA method. As shown by a set of complementary techniques, the nickel-aluminate nanospecies formed after calcination are homogeneously distributed within the developed mesoporous alumina matrices whose porous characteristics vary depending on the preparation method. A special attention is paid to electron-microscopy observations using especially STEM imaging with high chemical sensitivity and EDS elemental mapping modes that help visualizing the extremely high nickel dispersion and highlight the strong metal anchoring to the support that persists after reduction. This leads to active nickel nanoparticles particularly stable in the reaction of dry reforming of methane.


Assuntos
Óxido de Alumínio/química , Dióxido de Carbono/química , Nanopartículas Metálicas/química , Metano/química , Catálise , Nanoestruturas/química , Porosidade , Propriedades de Superfície
17.
Molecules ; 24(19)2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31590306

RESUMO

In recent years, there has been growing interest in the biomass of unicellular algae as a source of valuable metabolites. The main limitations in the commercial application of microbial biomass are associated with the costs of production thereof. Maize silage is one of the main substrates used in biogas plants in Europe. The effects of sterilized agricultural liquid digestate (LD) from methane fermentation of maize silage on the growth rates, macro and micronutrient removal efficiency, lipid content, and fatty acid profile in Auxenochlorella protothecoides were investigated. The results indicate that A. prothecoides can proliferate and accumulate lipids with simultaneous reduction of nutrients in the 1:20 diluted liquid digestate. The rate of nitrogen and phosphorus removal from the liquid digestate was 79.45% and 78.4%, respectively. Cells growing in diluted liquid digestate exhibited the maximum lipid content, i.e., 44.65%. The fatty acid profile of A. prothecoides shows a decrease in the content of linolenic acid by 20.87% and an increase in oleic acid by 32.16% in the LD, compared with the control. The liquid digestate changed the content of monounsaturated fatty acids and polyunsaturated fatty acids. The cells of A. protothecoides growing in the liquid digestate were characterized by lower PUFA content and higher MUFA levels.


Assuntos
Clorófitas/crescimento & desenvolvimento , Ácidos Graxos/metabolismo , Metano/química , Anaerobiose , Biocombustíveis/microbiologia , Biomassa , Clorófitas/metabolismo , Fermentação , Nitrogênio/metabolismo , Fósforo/metabolismo , Silagem/microbiologia , Zea mays
18.
Artigo em Inglês | MEDLINE | ID: mdl-31547583

RESUMO

Anaerobic oxidation of methane (AOM) is a common biochemical process in the ocean and it plays an important role in global climate change, elemental circulation, and atmospheric evolution over geological time. In this paper, we analyzed of δ34S, Fe, Mn, Ca/Ti, and Sr/Ti ratios, and the date of carbon and sulfur from the site SH3 of Shenhu area. Result showed that (1) 0-6 mbsf (meter blow the sea floor) was mainly affected by OSR (anaerobic oxidation of organic matters) and 7-15 mbsf was a paleo-SMTZ (sulfate-methane transition zone) position. The modern SMTZ was mainly distributed at 19-25 mbsf. The barium sulfate precipitation above the modern SMTZ indicating that the current methane leakage was stable and lasted longer during geological history. (2) By studying the change of magnetic and the different carbonate minerals, results showed that there were two AOM stages. During the early stage, Fe2+ were mainly produced by sulfide abiotic reductive dissolution. During the later stage, Fe2+ were mainly produced by the metal-AOM. (3) Study of the mineral characteristics of the paleo-SMTZ and the modern SMTZ showed that the modern SMTZ carbonate minerals were mainly low-Mg calcite and aragonite, while the paleo-SMTZ carbon minerals were mainly high Mg minerals. The reason for this difference is that the modern SMTZ layer was only experienced the first stage of anaerobic oxidation of methane. In the paleo-SMTZ layer, it has experienced two stage of anaerobic oxidation of methane. During the last stage of metal-AOM, the low Mg carbonate minerals were converted into high Mg carbonate minerals. This research confirms the presence of metal-driven methane anaerobic oxidation at the bottom of sulfate-driven methane anaerobic oxidation and during the metal-driven methane anaerobic oxidation, methane and metal oxides or hydroxides would couple to convert the in situ metal oxides or hydroxides into metal ions, meanwhile the phosphorus adsorbed on the surface of the metal oxides is released into adjacent pore water, and convert to new P-bearing minerals under suitable conditions.


Assuntos
Metais/química , Metano/química , Anaerobiose , China , Sedimentos Geológicos , Oxirredução , Fósforo/química , Sulfatos/química
19.
Environ Sci Pollut Res Int ; 26(10): 9686-9696, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30734256

RESUMO

In the present study, a detailed investigation was carried out on MoO3 alumina-supported catalysts behavior in selective catalytic reduction of SO2 to sulfur with CH4. At first, four different molybdenum catalysts with weight rates of 0, 5, 10, and 15 were impregnated on γ-alumina to be characterized using XRD, SEM, BET, BJH, and N2 adsorption. Then, to find the most active catalyst, temperature dependency test was performed on all of the prepared catalysts and the result representing Al2O3-Mo10 as the best catalyst. In next step, the effects of feed gas composition, space velocity, and long-term activity, as an important industrial factor, were tested on Al2O3-Mo10. It was revealed instantaneously from the beginning, MoO3 specie started to convert mainly into MoS2 and MoO2, and a minor part into Mo2C, which is terminated after 750 min achieving a stable condition. Thereafter, SO2 conversion and sulfur selectivity increased from 85.8 to 89.4% and 99.4 to 99.7%, respectively. XRD graph of the used catalyst and TPO thermogravimetric/mass-spectra proved possible happening of the proposed mechanism in long-term activity. At the end, mean activation energy was determined based on Arrhenius model in temperature range of 550 to 800 °C, with a value of 0.33 eV for Al2O3-Mo10.


Assuntos
Metano/química , Modelos Químicos , Dióxido de Enxofre/química , Enxofre/química , Adsorção , Óxido de Alumínio/química , Catálise , Molibdênio/química
20.
Bioresour Technol ; 274: 127-133, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30502603

RESUMO

A large amount of wastewater is generated in the processing of coffee from fruit to cup. Thermophilic high-solids co-digestion of coffee processing wastewater (CPW) and waste activated sludge (WAS) has been succeeded by anaerobic membrane bioreactor (AnMBR). Chemical oxygen demand (COD) removal efficiencies of 92 ±â€¯3% with an average methane yield of 0.28 LCH4/gCODremoved were achieved at a high solids content of 50 g/L in the AnMBR. The optimal digestion performance of 82.4% removal COD conversion to CH4 was achieved at hydraulic retention time (HRT) 10 d. Energy balance analysis revealed AnMBR has succeeded in energy positive at all the HRTs. The net energy potential (NEP) was determined to average 2.12-2.82 kJ/gCOD, amongst which the maximum NEP was achieved at HRT 15 d. These results indicated the high-solids co-digestion by AnMBR is a promising approach to maximize the bioenergy conversion from the co-substrate of CPW and WAS.


Assuntos
Café/metabolismo , Esgotos , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Café/química , Membranas Artificiais , Metano/química , Esgotos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA