Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Atherosclerosis ; 391: 117431, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408412

RESUMO

BACKGROUND AND AIMS: The gut microbe-derived metabolite trimethylamine-N-oxide (TMAO) has been implicated in the development of cardiovascular fibrosis. Endoplasmic reticulum (ER) stress occurs after the dysfunction of ER and its structure. The three signals PERK/ATF-4, IRE-1α/XBP-1s and ATF6 are activated upon ER stress. Recent reports have suggested that the activation of PERK/ATF-4 and IRE-1α/XBP-1s signaling contributes to cardiovascular fibrosis. However, whether TMAO mediates aortic valve fibrosis by activating PERK/ATF-4 and IRE-1α/XBP-1s signaling remains unclear. METHODS: Human aortic valve interstitial cells (AVICs) were isolated from aortic valve leaflets. PERK IRE-1α, ATF-4, XBP-1s and CHOP expression, and production of collagen Ⅰ and TGF-ß1 were analyzed following treatment with TMAO. The role of PERK/ATF-4 and IRE-1α/XBP-1s signaling pathways in TMAO-induced fibrotic formation was determined using inhibitors and small interfering RNA. RESULTS: Diseased valves produced greater levels of ATF-4, XBP-1, collagen Ⅰ and TGF-ß1. Interestingly, diseased cells exhibited augmented PERK/ATF-4 and IRE-1α/XBP-1s activation after TMAO stimulation. Inhibition and silencing of PERK/ATF-4 and IRE-1α/XBP-1s each resulted in enhanced suppression of TMAO-induced fibrogenic activity in diseased cells. Mice treated with dietary choline supplementation had substantially increased TMAO levels and aortic valve fibrosis, which were reduced by 3,3-dimethyl-1-butanol (DMB, an inhibitor of trimethylamine formation) treatment. Moreover, a high-choline and high-fat diet remodeled the gut microbiota in mice. CONCLUSIONS: TMAO promoted aortic valve fibrosis through activation of PERK/ATF-4 and IRE-1α/XBP-1s signaling pathways in vitro and in vivo. Modulation of diet, gut microbiota, TMAO, PERK/ATF-4 and IRE1-α/XBP-1s may be a promising approach to prevent aortic valve fibrosis.


Assuntos
Microbioma Gastrointestinal , Fator de Crescimento Transformador beta1 , Camundongos , Humanos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Valva Aórtica/metabolismo , Metilaminas/toxicidade , Metilaminas/metabolismo , Fibrose , Colágeno , Colina , Óxidos
2.
Hypertension ; 76(1): 101-112, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32520619

RESUMO

Age-related vascular endothelial dysfunction is a major antecedent to cardiovascular diseases. We investigated whether increased circulating levels of the gut microbiome-generated metabolite trimethylamine-N-oxide induces endothelial dysfunction with aging. In healthy humans, plasma trimethylamine-N-oxide was higher in middle-aged/older (64±7 years) versus young (22±2 years) adults (6.5±0.7 versus 1.6±0.2 µmol/L) and inversely related to brachial artery flow-mediated dilation (r2=0.29, P<0.00001). In young mice, 6 months of dietary supplementation with trimethylamine-N-oxide induced an aging-like impairment in carotid artery endothelium-dependent dilation to acetylcholine versus control feeding (peak dilation: 79±3% versus 95±3%, P<0.01). This impairment was accompanied by increased vascular nitrotyrosine, a marker of oxidative stress, and reversed by the superoxide dismutase mimetic 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl. Trimethylamine-N-oxide supplementation also reduced activation of endothelial nitric oxide synthase and impaired nitric oxide-mediated dilation, as assessed with the nitric oxide synthase inhibitor L-NAME (NG-nitro-L-arginine methyl ester). Acute incubation of carotid arteries with trimethylamine-N-oxide recapitulated these events. Next, treatment with 3,3-dimethyl-1-butanol for 8 to 10 weeks to suppress trimethylamine-N-oxide selectively improved endothelium-dependent dilation in old mice to young levels (peak: 90±2%) by normalizing vascular superoxide production, restoring nitric oxide-mediated dilation, and ameliorating superoxide-related suppression of endothelium-dependent dilation. Lastly, among healthy middle-aged/older adults, higher plasma trimethylamine-N-oxide was associated with greater nitrotyrosine abundance in biopsied endothelial cells, and infusion of the antioxidant ascorbic acid restored flow-mediated dilation to young levels, indicating tonic oxidative stress-related suppression of endothelial function with higher circulating trimethylamine-N-oxide. Using multiple experimental approaches in mice and humans, we demonstrate a clear role of trimethylamine-N-oxide in promoting age-related endothelial dysfunction via oxidative stress, which may have implications for prevention of cardiovascular diseases.


Assuntos
Envelhecimento/fisiologia , Endotélio Vascular/efeitos dos fármacos , Metilaminas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Acetilcolina/farmacologia , Adolescente , Adulto , Idoso , Envelhecimento/sangue , Animais , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Artéria Braquial/efeitos dos fármacos , Artéria Braquial/fisiologia , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/fisiologia , Óxidos N-Cíclicos/farmacologia , Suplementos Nutricionais , Microbioma Gastrointestinal , Humanos , Metilaminas/administração & dosagem , Metilaminas/sangue , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Óxido Nítrico/sangue , Óxido Nítrico Sintase Tipo III/metabolismo , Marcadores de Spin , Superóxidos/metabolismo , Tirosina/análogos & derivados , Tirosina/sangue , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Adulto Jovem
3.
Exp Cell Res ; 382(1): 111451, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31173767

RESUMO

Trimethylamine N-oxide (TMAO) promotes atherosclerosis in association with the functions of endothelial cells. Clock and Bmal1, as two main components of molecular circadian clock, play important regulatory roles during progression of atherogenesis. However, whether Clock and Bmal1 are involved in the regulation of endothelial proliferation disturbed by TMAO are unclear. We observed that cell proliferation of human umbilical vein endothelial cells (HUVECs) was inhibited after exposed to TMAO for 24 h. Besides, TMAO caused increased expression of lncRNA-NEAT1, Clock and Bmal1, and inhibited MAPK pathways. While MAPK pathways were blocked, the expression of Clock and Bmal1 was elevated. NEAT1 showed a circadian rhythmic expression in HUVECs, and its overexpression reduced cell proliferation. Knockdown or overexpression of NEAT1 might decrease or increase the expression of Clock and Bmal1 respectively, while raised or suppressed the expression of MAPK pathways correspondingly. Asparagus extract (AE) was found to improve the TMAO-reduced HUVECs proliferation. Moreover, it ameliorated the disorders of NEAT1, Clock, Bmal1, and MAPK signaling pathways induced by TMAO. Therefore, our findings indicated that NEAT1 regulating Clock-Bmal1 via MAPK pathways was involved in TMAO-repressed HUVECs proliferation, and AE improved endothelial proliferation by TMAO, proposing a novel mechanism for cardiovascular disease prevention.


Assuntos
Asparagaceae/química , Ritmo Circadiano/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Metilaminas/toxicidade , Extratos Vegetais/farmacologia , RNA Longo não Codificante/fisiologia , Fatores de Transcrição ARNTL/antagonistas & inibidores , Fatores de Transcrição ARNTL/biossíntese , Fatores de Transcrição ARNTL/genética , Aterosclerose/genética , Aterosclerose/fisiopatologia , Proteínas CLOCK/biossíntese , Proteínas CLOCK/genética , Divisão Celular/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Metilaminas/farmacologia , Caules de Planta/química , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia
4.
Nutrients ; 9(5)2017 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-28498348

RESUMO

In chronic kidney disease (CKD), accumulation of uremic toxins is associated with an increased risk of death. Some uremic toxins are ingested with the diet, such as phosphate and star fruit-derived caramboxin. Others result from nutrient processing by gut microbiota, yielding precursors of uremic toxins or uremic toxins themselves. These nutrients include l-carnitine, choline/phosphatidylcholine, tryptophan and tyrosine, which are also sold over-the-counter as nutritional supplements. Physicians and patients alike should be aware that, in CKD patients, the use of these supplements may lead to potentially toxic effects. Unfortunately, most patients with CKD are not aware of their condition. Some of the dietary components may modify the gut microbiota, increasing the number of bacteria that process them to yield uremic toxins, such as trimethylamine N-Oxide (TMAO), p-cresyl sulfate, indoxyl sulfate and indole-3 acetic acid. Circulating levels of nutrient-derived uremic toxins are associated to increased risk of death and cardiovascular disease and there is evidence that this association may be causal. Future developments may include maneuvers to modify gut processing or absorption of these nutrients or derivatives to improve CKD patient outcomes.


Assuntos
Microbioma Gastrointestinal , Micronutrientes/toxicidade , Insuficiência Renal Crônica/microbiologia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/mortalidade , Carnitina/administração & dosagem , Carnitina/toxicidade , Colina/administração & dosagem , Colina/toxicidade , Dieta , Humanos , Metilaminas/administração & dosagem , Metilaminas/toxicidade , Micronutrientes/administração & dosagem , Oxalatos/administração & dosagem , Oxalatos/toxicidade , Fosfatos/administração & dosagem , Fosfatos/toxicidade , Fosfatidilcolinas/administração & dosagem , Fosfatidilcolinas/toxicidade , Triptofano/administração & dosagem , Triptofano/toxicidade , Tirosina/administração & dosagem , Tirosina/toxicidade
5.
Circ Heart Fail ; 9(1): e002314, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26699388

RESUMO

BACKGROUND: Trimethylamine N-oxide (TMAO), a gut microbe-dependent metabolite of dietary choline and other trimethylamine-containing nutrients, is both elevated in the circulation of patients having heart failure and heralds worse overall prognosis. In animal studies, dietary choline or TMAO significantly accelerates atherosclerotic lesion development in ApoE-deficient mice, and reduction in TMAO levels inhibits atherosclerosis development in the low-density lipoprotein receptor knockout mouse. METHODS AND RESULTS: C57BL6/J mice were fed either a control diet, a diet containing choline (1.2%) or a diet containing TMAO (0.12%) starting 3 weeks before surgical transverse aortic constriction. Mice were studied for 12 weeks after transverse aortic constriction. Cardiac function and left ventricular structure were monitored at 3-week intervals using echocardiography. Twelve weeks post transverse aortic constriction, myocardial tissues were collected to evaluate cardiac and vascular fibrosis, and blood samples were evaluated for cardiac brain natriuretic peptide, choline, and TMAO levels. Pulmonary edema, cardiac enlargement, and left ventricular ejection fraction were significantly (P<0.05, each) worse in mice fed either TMAO- or choline-supplemented diets when compared with the control diet. In addition, myocardial fibrosis was also significantly greater (P<0.01, each) in the TMAO and choline groups relative to controls. CONCLUSIONS: Heart failure severity is significantly enhanced in mice fed diets supplemented with either choline or the gut microbe-dependent metabolite TMAO. The present results suggest that additional studies are warranted examining whether gut microbiota and the dietary choline → TMAO pathway contribute to increased heart failure susceptibility.


Assuntos
Bactérias/metabolismo , Colina/toxicidade , Dieta/efeitos adversos , Insuficiência Cardíaca/induzido quimicamente , Intestinos/microbiologia , Metilaminas/toxicidade , Animais , Cardiomegalia/sangue , Cardiomegalia/induzido quimicamente , Cardiomegalia/patologia , Colina/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Fibrose , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Metilaminas/sangue , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Edema Pulmonar/sangue , Edema Pulmonar/induzido quimicamente , Fatores de Risco , Índice de Gravidade de Doença , Volume Sistólico , Fatores de Tempo , Disfunção Ventricular Esquerda/sangue , Disfunção Ventricular Esquerda/induzido quimicamente , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA