Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 697
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1310-1317, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621978

RESUMO

This study investigated the effect of Erchen Decoction(ECD) on the prevention of non-alcoholic steatohepatitis(NASH) in mice and explored its possible mechanism, so as to provide scientific data for the clinical application of ECD in the prevention of NASH. C57BL/6 male mice were randomly divided into normal group(methionine and choline supplement, MCS), model group(methionine and choline deficient, MCD), low-dose ECD group(ECD_L, 6 g·kg~(-1)), medium-dose ECD group(ECD_M, 12 g·kg~(-1)), and high-dose ECD group(ECD_H, 24 g·kg~(-1)), with eight mice in each group. The MCS group was fed with an MCS diet, and the other groups were fed with an MCD diet. The mice in each group were given corresponding diets, but the drug intervention group was given low-, medium-, and high-dose ECD(10 mL·kg~(-1)·d~(-1)) by intragastric administration for six weeks on the basis of MCD diet feeding, and the mice could eat and drink freely during the whole experiment. At the end of the experiment, mice were fasted overnight(12 h) and were anesthetized with 20% urethane. Thereafter, the blood and liver tissue were collected. The serum was used to detect the levels of alanine aminotransferase(ALT), aspartate aminotransaminase(AST), interleukin-1ß(IL-1ß), interleukin-6(IL-6), interleukin-10(IL-10), and tumor necrosis factor-α(TNF-α). Liver tissue was processed by hematoxylin-eosin(HE) staining and used for hepatic histological analysis and detection of the expression levels of genes and proteins related to nuclear factor erythroid 2-related factor 2/glutathione peroxidase 4(Nrf2/GPX4) pathway by real-time quantitative reverse transcriptase-polymerase chain reaction(RT-qPCR) and Western blot analysis, respectively. The results showed that compared with the MCS group, the MCD group showed higher serum ALT and AST levels; the HE staining exhibited fat vacuoles and obvious inflammatory cell infiltration in liver tissue; serum IL-1ß, IL-6, and TNF-α levels were significantly increased, and the serum IL-10 level was significantly decreased. The mRNA expressions of fatty acid synthase(FASN), monocyte chemoattractant protein-1(MCP-1), and IL-1ß in liver tissue were significantly up-regulated, while those of GPX4, Nrf2, and NAD(P)H:quinine oxidoreductase(NQO1) were significantly down-regulated. Compared with the MCD group, the serum ALT and AST levels of ECD_M and ECD_H groups were significantly decreased, and the AST level in the ECD_L group was significantly decreased. The number of fat vacuoles and the degree of inflammatory cell infiltration in liver tissue were improved; serum IL-1ß, IL-6, and TNF-α levels were significantly decreased, but the serum IL-10 level was significantly increased only in the ECD_H group. The mRNA expressions of FASN, MCP-1, and IL-1ß in liver tissue were significantly down-regulated, and those of GPX4 and NQO1 were significantly up-regulated. The mRNA expressions of Nrf2 in ECD_M and ECD_H groups were significantly up-regulated. Western blot results showed that compared with the MCD group, the protein expression levels of Nrf2 and GPX4 in each group were significantly increased after ECD administration, and the protein expression level of FASN was significantly decreased; the protein expression of NQO1 was increased in ECD_M and ECD_H groups. In summary, ECD can reduce hepatic lipid accumulation, oxidative stress, liver inflammation, and liver injury in NASH mice, which may be related to the activation of the Nrf2/GPX4 pathway.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Masculino , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Metionina/metabolismo , Metionina/farmacologia , Interleucina-10/genética , Colina/metabolismo , Colina/farmacologia , Colina/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos Endogâmicos C57BL , Fígado , Racemetionina/metabolismo , Racemetionina/farmacologia , Dieta , RNA Mensageiro/metabolismo
2.
Nutrients ; 16(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38613029

RESUMO

Methionine dependence is a characteristic of most cancer cells where they are unable to proliferate when the essential amino acid methionine is replaced with its precursor homocysteine in the growing media. Normal cells, on the other hand, thrive under these conditions and are referred to as methionine-independent. The reaction that adds a methyl group from 5-methyltetrahydrofolate to homocysteine to regenerate methionine is catalyzed by the enzyme methionine synthase with the cofactor cobalamin (vitamin B12). However, decades of research have shown that methionine dependence in cancer is not due to a defect in the activity of methionine synthase. Cobalamin metabolism has been tied to the dependent phenotype in rare cell lines. We have identified a human colorectal cancer cell line in which the cells regain the ability to proliferation in methionine-free, L-homocystine-supplemented media when cyanocobalamin is supplemented at a level of 1 µg/mL. In human SW48 cells, methionine replacement with L-homocystine does not induce any measurable increase in apoptosis or reactive oxygen species production in this cell line. Rather, proliferation is halted, then restored in the presence of cyanocobalamin. Our data show that supplementation with cyanocobalamin prevents the activation of the integrated stress response (ISR) in methionine-deprived media in this cell line. The ISR-associated cell cycle arrest, characteristic of methionine-dependence in cancer, is also prevented, leading to the continuation of proliferation in methionine-deprived SW48 cells with cobalamin. Our results highlight differences between cancer cell lines in the response to cobalamin supplementation in the context of methionine dependence.


Assuntos
Neoplasias Colorretais , Metionina , Humanos , Metionina/farmacologia , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase , Vitamina B 12/farmacologia , Homocistina , Racemetionina , Linhagem Celular , Homocisteína , Neoplasias Colorretais/tratamento farmacológico
3.
PLoS One ; 19(4): e0301205, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625974

RESUMO

The present study investigated the potential role of different essential amino acids (AA) in striped catfish (Pangasius hypophthalmus). Fish (initial weight = 17.91±0.27 g, n = 260) were fed with eight isonitrogenous (30%), and isolipidic diets (6%) formulated to include different combinations of tryptophan (Trp), methionine (Met), and lysine (Lys) (T0: Zero AA, T1: Trp, T2: Lys, T3: Met, T4: Trp+Met, T5: Lys+Trp, T6: Met+Lys, T7: Lys+Trp+Met) for eight weeks. The dose of amino acid supplementation, whether individually or in combination, was 5g of each amino acid per kg of diet. The trial comprised eight treatments, with each treatment consisted of three replicates (n = 10/replicate). At the end of the growth experiment, the highest total body weight, crude protein, digestive enzymatic activity, immune response, and amino acids level were observed in treatments supplemented with amino acids compared to T0. After the growth experiment, fish in all treatments were exposed to Staphylococcus aureus (5×105 CFU/ml). For bacterial challenge trial, the T0 treatment was designated as positive (+ve T0) and negative control (-ve T0). Following the S. aureus challenge, fish fed with amino acids showed a better response to reactive oxygen species and lipid peroxidation, as indicated by the increased levels of catalase and superoxide dismutase. Conversely, the concentration of malondialdehyde gradually decreased in all treatments compared to the +ve T0 treatment. It is concluded that supplementation of amino acids improved the growth, protein content, and immunocompetency against S. aureus in striped catfish. The most favorable outcomes in striped catfish were shown by fish supplemented with T7 diet. These essential amino acids hold potential as efficient supplements for use in the intensive aquaculture for striped catfish.


Assuntos
Peixes-Gato , Lisina , Animais , Aminoácidos , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais , Resistência à Doença , Lisina/farmacologia , Metionina/farmacologia , Racemetionina , Staphylococcus aureus , Triptofano/farmacologia
4.
Nutrients ; 16(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542805

RESUMO

Caffeine (1,3,7-trimethylxanthine) is a widely consumed bioactive substance worldwide. Our recent study showed that a reduction in both reproduction and yolk protein production (vitellogenesis) caused by caffeine intake were improved by vitamin B12 supplementation, which is an essential co-factor in methionine metabolism. In the current study, we investigated the role of methionine in the reproduction of caffeine-ingested animals (CIAs). We assessed the effect of methionine metabolism on CIAs and found that caffeine intake decreased both methionine levels and essential enzymes related to the methionine cycle. Furthermore, we found that the caffeine-induced impairment of methionine metabolism decreased vitellogenesis and increased germ cell apoptosis in an LIN-35/RB-dependent manner. Interestingly, the increased germ cell apoptosis was restored to normal levels by methionine supplementation in CIAs. These results indicate that methionine supplementation plays a beneficial role in germ cell health and offspring development by regulating vitellogenesis.


Assuntos
Caenorhabditis elegans , Metionina , Animais , Metionina/farmacologia , Metionina/metabolismo , Cafeína/farmacologia , Cafeína/metabolismo , Apoptose , Células Germinativas , Racemetionina/metabolismo , Suplementos Nutricionais
5.
Poult Sci ; 103(5): 103580, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38428354

RESUMO

Despite the acknowledged significance of nutrition in bone development, effects of methionine (Met) and cysteine (Cys) on bone quality remain under-researched, particularly during Eimeria challenge. We investigated the effects of different supplemental Met to Cys ratios (MCR) on bone quality of broilers under Eimeria challenge. A total of 720 fourteen-day old Cobb500 broilers were allocated into a 5 × 2 factorial arrangement. Five diets with Met and Cys supplemented at MCR of 100:0, 75:25, 50:50, 25:75, and 0:100 were fed to the birds with or without Eimeria challenge. Body composition was measured by dual energy x-ray absorptiometry, and the femur bone characteristics were assessed by microtomography. Data were analyzed by two-way ANOVA and orthogonal polynomial contrast. The results reaffirmed the detrimental effects of Eimeria challenge on bone quality. On 9 d post inoculation (DPI), significant interaction effects were found for whole body bone mineral content (BMC), lean tissue weight, and body weight (P < 0.05); in the nonchallenged group (NCG), these parameters linearly decreased as MCR decreased (P < 0.05). In the challenged group (CG), body weight and lean tissue weight were unaffected by MCR, and BMC linearly increased as MCR decreased (P < 0.05). For the cortical bone of femoral metaphysis on 6 DPI, bone mineral density (BMD) linearly increased as MCR decreased (P < 0.05). Bone volume to tissue volume ratio (BV/TV) in the CG linearly increased as MCR decreased (P < 0.05). On 9 DPI, BMC and TV linearly increased as MCR decreased (P < 0.05) in the NCG. BMD and BV/TV changed quadratically as MCR decreased (P < 0.05). For the trabecular bone of femoral metaphysis on 9 DPI, BV/TV, and trabecular number linearly increased as MCR decreased (P < 0.05) in the NCG. For the femoral diaphysis, BV, TV, BMC on 6 DPI, and BMD on 9 DPI linearly increased as MCR decreased (P < 0.05). In conclusion, this study showed that both Eimeria challenge and varying supplemental MCR could influence bone quality of broilers.


Assuntos
Absorciometria de Fóton , Ração Animal , Densidade Óssea , Galinhas , Coccidiose , Cisteína , Dieta , Suplementos Nutricionais , Eimeria , Metionina , Doenças das Aves Domésticas , Animais , Galinhas/fisiologia , Eimeria/fisiologia , Ração Animal/análise , Metionina/administração & dosagem , Metionina/farmacologia , Metionina/análogos & derivados , Coccidiose/veterinária , Coccidiose/parasitologia , Absorciometria de Fóton/veterinária , Suplementos Nutricionais/análise , Dieta/veterinária , Densidade Óssea/efeitos dos fármacos , Doenças das Aves Domésticas/parasitologia , Cisteína/farmacologia , Cisteína/administração & dosagem , Cisteína/análogos & derivados , Microtomografia por Raio-X/veterinária , Masculino , Relação Dose-Resposta a Droga , Fêmur/efeitos dos fármacos , Distribuição Aleatória
6.
Poult Sci ; 103(4): 103502, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350387

RESUMO

Broilers are commonly exposed to coccidiosis infections, and the use of dietary strategies to reduce losses in growth performance has practical implications for the poultry industry. Methionine (Met) is typically the first limiting amino acid for broilers and is involved in metabolic and immunological pathways; however, literature is conflicting on how dietary Met requirements are affected by environmental stressors. Our objective was to assess how the Met requirement changes during coccidiosis based on results of growth performance, carcass traits, and health outcomes. Two trials were conducted using 780 male Ross 308 broiler chicks in floor pens randomly assigned to 1 of 12 experimental treatments. All birds received common starter (d 0-10) and finisher (d 24-35, Trial 2 only) diets, and only differed based on their assigned experimental grower diet (d 10-24). Trial 1 experimental grower diets ranged from 2.61 to 6.21 g/kg digestible Met. Trial 2 experimental grower diets were formulated to contain 15% below, at, or 15% above the Met requirement determined in Trial 1. Birds were exposed to a coccidiosis challenge on d 11, with blood and tissue collection (1 bird/pen) on d 18 and carcass processing on d 35 (2 birds/pen) in Trial 2. Data were analyzed using a 1- or 2-way ANOVA. A non-linear regression analysis was conducted in Trial 1 to determine the Met requirement of 4.32 g of digestible Met/kg of diet using BW gain. Coccidiosis infection reduced (P < 0.05) growth performance during the experimental grower and overall study periods in Trial 2. Increasing dietary Met from below requirement to meeting requirement during the grower period improved (P < 0.001) BW gain and feed conversion ratio (FCR), but this effect was only significant between treatments below and above the requirement for the overall study period. There was an interactive effect (P = 0.038) on FCR for the overall study period. These findings provide evidence that the Met requirement is likely increased during coccidiosis based on growth performance outcomes.


Assuntos
Coccidiose , Metionina , Animais , Masculino , Metionina/farmacologia , Galinhas , Suplementos Nutricionais , Dieta/veterinária , Coccidiose/veterinária , Racemetionina , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal
7.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38407272

RESUMO

We hypothesized that restricted maternal nutrition and supplementation of one-carbon metabolites (OCM; methionine, folate, choline, and vitamin B12) would affect placental vascular development during early pregnancy. A total of 43 cows were bred, and 32 heifers successfully became pregnant with female calves, leading to the formation of four treatment groups: CON - OCM (n = 8), CON + OCM (n = 7), RES - OCM (n = 9), and RES + OCM (n = 8). The experimental design was a 2 × 2 factorial, with main factors of dietary intake affecting average daily gain: control (CON; 0.6 kg/d ADG) and restricted (RES; -0.23 kg/d ADG); and OCM supplementation (+OCM) in which the heifers were supplemented with rumen-protected methionine (7.4 g/d) and choline (44.4 g/d) and received weekly injections of 320 mg of folate and 20 mg of vitamin B12, or received no supplementation (-OCM; corn carrier and saline injections). Heifers were individually fed and randomly assigned to treatment at breeding (day 0). Placentomes were collected on day 63 of gestation (0.225 of gestation). Fluorescent staining with CD31 and CD34 combined with image analysis was used to determine the vascularity of the placenta. Images were analyzed for capillary area density (CAD) and capillary number density (CND). Areas evaluated included fetal placental cotyledon (COT), maternal placental caruncle (CAR), whole placentome (CAR + COT), intercotyledonary fetal membranes (ICOT, or chorioallantois), intercaruncular endometrium (ICAR), and endometrial glands (EG). Data were analyzed with the GLM procedure of SAS, with heifer as the experimental unit and significance at P ≤ 0.05 and a tendency at P > 0.05 and P < 0.10. Though no gain × OCM interactions existed (P ≥ 0.10), OCM supplementation increased (P = 0.01) CAD of EG, whereas nutrient restriction tended (P < 0.10) to increase CAD of ICOT and CND of COT. Additionally, there was a gain × OCM interaction (P < 0.05) for CAD within the placentome and ICAR, such that RES reduced and supplementation of RES with OCM restored CAD. These results indicate that maternal rate of gain and OCM supplementation affected placental vascularization (capillary area and number density), which could affect placental function and thus the efficiency of nutrient transfer to the fetus during early gestation.


In cow­calf production, periods of poor forage availability or quality can result in nutrient restriction during pregnancy. Previous studies have shown that even moderate maternal feed restriction during pregnancy, including very early in pregnancy, has profound effects on fetal and placental development, potentially having lasting impacts on calf growth and body composition later in life. One-carbon metabolites (OCM) in the diet are biomolecules required for methylation reactions and participate in the regulation of gene expression. Our objective was to evaluate the effects of nutrient restriction and OCM supplementation (specifically methionine, choline, folate, and vitamin B12) on placental vascular development during early pregnancy. Proper placental vascular development is necessary for healthy pregnancy outcomes, reflected by normal birth weight and healthy offspring. Our results indicated that maternal rate of gain and OCM supplementation affect placental vascularization, which could affect placental function and thereby fetal development throughout gestation. In the context of beef cattle production, our study sheds light on strategies that could enhance placental vascular development during early pregnancy. However, it is essential to recognize the nuances in our data, highlighting the need for further research to fully comprehend these intricate processes.


Assuntos
Complexo Ferro-Dextran , Placenta , Feminino , Gravidez , Animais , Bovinos , Melhoramento Vegetal , Metionina/farmacologia , Racemetionina , Carbono , Colina/farmacologia , Suplementos Nutricionais , Ácido Fólico/farmacologia , Vitamina B 12/farmacologia , Dieta/veterinária
8.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38198718

RESUMO

Primiparous Angus × Simmental dams (n = 22) with an average body weight (BW) of 449 ±â€…32 kg of BW were divided based on two nutritional treatments: control (CTRL) and rumen-protected methionine (RPM). The control group received bermudagrass hay, corn gluten, and soybean hulls pellets supplementation (base diet); whereas the RPM group received the base diet in addition to 0.07% of DM of RPM at a fixed rate during the last trimester of gestation and the first ~80 d of lactation, in which calves (n = 17) were early weaned. Only male calves were included in this study. After weaning, calves born to RPM dams also received RPM from weaning (day 1) to day 100. Blood sampling and skeletal muscle biopsies for subsequent quantitative polymerase chain reaction (PCR) analysis were conducted on days 1, 25, 50, and 100 on calves. Quantitative PCR data were analyzed using GLIMMIX, and blood metabolites concentrations, BW, and body condition score (BCS) were analyzed using the MIXED procedure of SAS. There was no difference in maternal BW and BCS between treatments. Glucose and blood metabolites that served as biomarkers for liver health (e.g., aspartate transaminase, albumin, alkaline phosphatase, and alanine transaminase) were in the normal levels for all calves (P > 0.40). Calves in the RPM group had a greater expression of adipogenic genes (e.g., PPARG, LPL, and CEBPD) at day 100 compared with CTRL (P < 0.01). In addition, DNA methylation (DNMT1) and oxidative stress-related genes (SOD2 and NOS3) in the RPM group were upregulated at day 100 compared with CTRL (P < 0.01). These results may suggest that calves born to primiparous dams exposed to RPM supplementation are more prone to develop greater adipose tissue than CTRL calves. Furthermore, RPM supplementation may improve methylation processes, as shown by the upregulation of DNMT1. The results shown in our study aim at expanding the knowledge on fetal programming and early-life growth and development of beef cattle under supplementation with RPM.


Plane of nutrition plays a critical role in fetal and postnatal growth in beef cattle offspring. Methionine, a limiting amino acid in ruminants, is also involved in DNA methylation due to its role as S-adenosyl methionine precursor. A complete randomized design experiment was conducted to assess the fetal programming effect of rumen-protected methionine (RPM) supplementation on beef cattle. Calves born to primiparous beef heifers, that individually received RPM during the last trimester of gestation and lactation, had a greater expression of genes related to adipose tissue development, oxidative stress, and DNA methylation compared with those born to dams that did not receive rumen-protected supplementation. No difference in animal performance or blood parameters that serve as biomarkers for liver health status was detected. Our results suggest that maternal supplementation with RPM during the last trimester of gestation and lactation, and supplementation to the offspring after early weaning, could potentially increase adipose tissue development on male calves.


Assuntos
Suplementos Nutricionais , Metionina , Feminino , Animais , Bovinos , Masculino , Metionina/farmacologia , Metionina/metabolismo , Suplementos Nutricionais/análise , Rúmen/metabolismo , Dieta/veterinária , Racemetionina/metabolismo , Músculo Esquelético/metabolismo , Desenvolvimento Fetal , Expressão Gênica , Ração Animal/análise
9.
Poult Sci ; 103(3): 103382, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176373

RESUMO

Deficiencies or excesses of dietary amino acids, and especially of methionine (Met), in laying hens can lead to abnormal protein anabolism and oxidative stress, which affect methylation and cause cellular dysfunction. This study investigated the effects of dietary methionine (Met) levels on growth performance, metabolism, immune response, antioxidant capacity, and the subsequent development of laying hens. A total of 384 healthy 1-day-old Hyline Grey chicks of similar body weight were randomly allocated to be fed diets containing 0.31%, 0.38%, 0.43% (control group), or 0.54% Met for 6 wk, with 6 replicates of 16 chicks in each. The growth performance of the chicks was then followed until 20 wk old. The results showed dietary supplementation with 0.43% or 0.54% Met significantly increased their mean daily body weight gain, final weight, and Met intake. However, the feed:gain (F/G) decreased linearly with increasing Met supplementation, from 0.31 to 0.54% Met. Met supplementation increased the serum albumin, IgM, and total glutathione concentrations of 14-day-old chicks. In contrast, the serum alkaline phosphatase activity and hydroxyl radical concentration tended to decrease with increasing Met supplementation. In addition, the highest serum concentrations of IL-10, T-SOD, and GSH-PX were in the 0.54% Met-fed group. At 42 d of age, the serum ALB, IL-10, T-SOD, GSH-PX, T-AOC, and T-GSH were correlated with dietary Met levels. Finally, Met supplementation reduced the serum concentrations of ALP, IL-1ß, IgA, IgG, hydrogen peroxide, and hydroxyl radicals. Thus, the inclusion of 0.43% or 0.54% Met in the diet helps chicks achieve superior performance during the brooding period and subsequently. In conclusion, Met doses of 0.43 to 0.54% could enhance the growth performance, protein utilization efficiency, antioxidant capacity, and immune responses of layer chicks, and to promote more desirable subsequent development during the brooding period.


Assuntos
Antioxidantes , Metionina , Animais , Feminino , Metionina/farmacologia , Interleucina-10 , Galinhas , Racemetionina , Glutationa , Radical Hidroxila , Imunidade , Suplementos Nutricionais , Peso Corporal , Superóxido Dismutase
10.
Vet Q ; 44(1): 1-7, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38295836

RESUMO

In poultry nutrition, zinc supplementation is typically achieved through the addition of zinc oxide or zinc sulfate to the feed. The alternative approach of organic sources utilizes an organic ligand to bind zinc (Zn), resulting in higher bioavailability. Thus, a study was conducted to assess and compare the impact of a methionine-complexed Zn versus an inorganic Zn on growth, blood biochemical profile, gut histomorphology, and fecal excretion of Zn in broilers. The experimental design included two treatments: the addition of a zinc amino acid complex or zinc oxide to the basal diet. The zinc amino acid complex was supplemented at a dose equivalent to the inorganic zinc (Zn-80), while the organic zinc was provided at levels of 20, 40, and 80 mg/kg to a total of 400 broilers. There were five treatments in total, and each treatment was replicated four times. Broilers supplemented with an organic form of Zn at the level of 80 mg/kg had significantly (p < 0.05) higher body weight gain and lower feed conversion ratio (F/G). Significantly (p < 0.05) higher Zn excretion was recorded in broilers supplemented with inorganic Zn supplementation. Significantly (p < 0.05) higher villus length and width, their ratio, and lower (p < 0.05) crypt depth were observed in birds supplemented with 80 mg/kg organic Zn. From the results of the present study, it was concluded that Zn from an organic source at the rate of 80 mg/kg was superior in terms of growth performance, intestinal histomorphology and less excretion of Zn to the environment in broilers.


Assuntos
Óxido de Zinco , Zinco , Animais , Zinco/farmacologia , Zinco/química , Zinco/metabolismo , Galinhas/metabolismo , Óxido de Zinco/metabolismo , Suplementos Nutricionais , Dieta/veterinária , Metionina/metabolismo , Metionina/farmacologia , Ração Animal/análise
11.
Front Immunol ; 14: 1264228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881437

RESUMO

The interest in dietary amino acids (AAs) as potential immunomodulators has been growing the recent years, since specific AAs are known to regulate key metabolic pathways of the immune response or increase the synthesis of some immune-related proteins. Methionine, tryptophan and lysine are among the ten essential AAs for fish, meaning that they cannot be produced endogenously and must be provided through the diet. To date, although dietary supplementation of fish with some of these AAs has been shown to have positive effects on some innate immune parameters and disease resistance, the effects that these AAs provoke on cells of the adaptive immune system remained unexplored. Hence, in the current study, we have investigated the effects of these three AAs on the functionality of rainbow trout (Oncorhynchus mykiss) IgM+ B cells. For this, splenic leukocytes were isolated from untreated adult rainbow trout and incubated in culture media additionally supplemented with different doses of methionine, tryptophan or lysine in the presence or absence of the model antigen TNP-LPS (2,4,6-trinitrophenyl hapten conjugated to lipopolysaccharide). The survival, IgM secreting capacity and proliferation of IgM+ B cells was then studied. In the case of methionine, the phagocytic capacity of IgM+ B cells was also determined. Our results demonstrate that methionine supplementation significantly increases the proliferative effects provoked by TNP-LPS and also up-regulates the number of cells secreting IgM, whereas tryptophan or lysine have either minor or even negative effects on rainbow trout IgM+ B cells. This increase in the number of IgM-secreting cells in response to methionine surplus was further verified in a feeding experiment, in which the beneficial effects of methionine on the specific response to anal immunization were also confirmed. The results presented demonstrate the beneficial effects of dietary supplementation with methionine on the adaptive immune responses of fish.


Assuntos
Metionina , Oncorhynchus mykiss , Animais , Metionina/farmacologia , Lipopolissacarídeos/metabolismo , Lisina/metabolismo , Triptofano/metabolismo , Suplementos Nutricionais , Racemetionina/metabolismo , Imunoglobulina M/metabolismo
12.
Animal ; 17(11): 100986, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37820406

RESUMO

Methionine is indispensable for growth and meat formation in pigs. However, it is still unclear that increasing dietary sulphur-containing amino acid (SAA) levels using different methionine sources affects the growth performance and meat quality of barrows and gilts. To investigate this, 144 pigs (half barrows and half gilts) were fed the control (100% SAA, CON), DL-Methionine (125% SAA, DL-Met)-supplemented, or OH-Methionine (125% SAA, OH-Met)-supplemented diets during the 11-110 kg period. The results showed that plasma methionine levels varied among treatments during the experimental phase, with increased plasma methionine levels observed following increased SAA consumption during the 25-45 kg period. In contrast, pigs fed the DL-Met diet had lower plasma methionine levels than those fed the CON diet (95-110 kg). Additionally, gilts fed the DL-Met or OH-Met diets showed decreased drip loss in longissimus lumborum muscle (LM) compared to CON-fed gilts. OH-Met-fed gilts had higher pH45min values than those fed the CON or DL-Met diets, whereas OH-Met-fed barrows had higher L45min values than those fed the CON or DL-Met diets. Moreover, increased consumption of SAA, regardless of the methionine source, tended to decrease the shear force of the LM in pigs. In conclusion, this study indicates that increasing dietary levels of SAA (+25%) appeared to improve the meat quality of gilts by decreasing drip loss and increasing meat tenderness.


Assuntos
Suplementos Nutricionais , Metionina , Suínos , Animais , Feminino , Metionina/farmacologia , Dieta/veterinária , Carne , Sus scrofa , Racemetionina/farmacologia , Ração Animal/análise , Composição Corporal
13.
Fish Physiol Biochem ; 49(5): 829-851, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37507548

RESUMO

Giant grouper (Epinephelus lanceolatus) is an economically important yet under-researched species, still reliant on 'trash fish' or generic aquafeeds. The transition toward sustainable formulations is contingent on establishing requirements of target species for limiting nutrients, among which the sulfur amino acids (methionine and cysteine) commonly limit fish growth. Further, there remains significant conjecture around the role of the sulfonic acid taurine in marine aquafeed formulation and its relationship to sulfur amino acids. To develop a species-specific feed formulation for giant grouper, dietary methionine was modulated in a dose-response experiment to achieve five graded levels from 9.5 to 21.5 g/kg, including an additional diet with methionine at 18.6 g/kg supplemented with 8 g/kg taurine. The mean (±SD) cysteine level of the diets was 4.5 ± 0.3 g/kg. Each diet was randomly allocated to triplicate tanks of 14 fish (83.9 ± 8.4 g). The best-fit regression for growth showed that the optimal dietary methionine content was 15.8 g/kg and the total sulfur amino acid content was 20.3 g/kg. Inadequate dietary methionine content triggered physiological responses, including hepatic hyperplasia and hypoplasia at 9.5 and 21.5 g/kg, respectively, and high aspartate transaminase levels at 18.9 g/kg. Moreover, inadequate dietary methionine contents resulted in higher densities of mixed goblet cell mucin and reduced absorptive surface area of posterior intestinal villi. Our results suggest that adequate levels of methionine, but not taurine, improved posterior intestinal conditions and liver homeostasis. These findings may aid in formulating aquafeeds to optimize gastrointestinal and liver functions in juvenile giant grouper.


Assuntos
Aminoácidos Sulfúricos , Bass , Animais , Bass/fisiologia , Cisteína/farmacologia , Taurina , Metionina/farmacologia , Dieta/veterinária , Necessidades Nutricionais
14.
Arch Razi Inst ; 78(1): 345-352, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37312731

RESUMO

The poultry industry is one of the pillars of food security in the world, as it is relied upon to provide meat and eggs to meet the increasing food demands. Therefore, this study was designed to investigate the effect of L-carnitine and methionine supplementation to the standard diets of broiler chickens in productive performance of broiler (Ross 308). One Hundred- fifty broiler chicks unsexed (Ross 308) with an initial weight with 43 g, were obtained from Al-Habbaniya hatchery (commercial hatchery). All the animals were within an average weight of 40 g (one-day old chicks). The experimental groups were as follows: the animals in T1 group received basal diet without any addition, the animals in T1 group received basal diet supplemented with lead acetate 400 mg/kg feed , the animals in T3 group received diet supplemented with carnitine 300 mg + lead acetate 400 mg, the animals in T4 group received basal diet supplemented with methionine 100 mg + lead acetate 400 mg, the animals in T5 group received basal diet supplemented with methionine 100 mg + carnitine 300 mg + lead acetate 400 mg. Body weight gain and feed consumption were weekly recorded. Feed conversion ratio was also calculated. Results showed that Birds in (T5) fed diets with (carnitine + methionine) observed highest live body weights comparison with T3 (carnitine + lead acetate) and T4 (adding methionine+ lead acetate). Data of results showed no significant differences were recorded in body weight gain. Also, Results obtained increase with feed consumption for treatment T5, while birds in T1 and T4 recorded lowest means in feed consumed. However, birds in T4 and T5 observed best feed conversion ratio as compare with T1, T2 and T3. Therefore, it can conclude that addition carnitine and methionine enhanced broiler productive performance.


Assuntos
Galinhas , Metionina , Animais , Metionina/farmacologia , Carnitina/farmacologia , Racemetionina , Dieta/veterinária , Suplementos Nutricionais
15.
Anim Sci J ; 94(1): e13835, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37144633

RESUMO

The purpose of this study was to examine the effects of rumen-protected methionine (RPM) supplementation on the reproductive and productive performance of primiparous dairy cows fed two levels of protein. The Presynch-Ovsynch protocol was used to synchronize 36 lactating Holstein cows that were assigned randomly to one of six dietary treatments: (1) 14% CP and without RPM diet (14CP-0RPM; n = 6), (2) 14% CP and 15 g/head/day RPM (14CP-15RPM; n = 6), (3) 14% CP and 25 g/head/day RPM (14CP-25RPM; n = 6), (4) 16% CP and without RPM diet (16CP-0RPM; n = 6), (5) 16% CP and 15 g/head/day RPM (16CP-15RPM; n = 6), and (6) 16% CP and 25 g/head/day RPM (16CP-25RPM; n = 6). Independent of CP levels, feeding RPM had reduced the calving interval (P < 0.01). Feeding RPM increased (P < 0.01) overall plasma progesterone (P4). Feeding 16CP-15RPM increased (P < 0.01) overall plasma P4. Feeding 16% CP increased (P < 0.01) 4% fat corrected milk, energy corrected milk, milk fat and protein yield, and milk casein. Moreover, feeding the 25RPM has increased (P < 0.01) 4% fat corrected milk, energy corrected milk, milk fat, and protein yield. Compared with other treatments, feeding 16CP-25RPM or 16CP-15RPM enhanced (P < 0.01) milk yield and milk fat yield. In conclusion, feeding 16% CP with RPM boosted the productivity and reduced the calving interval in primiparous lactating dairy cows.


Assuntos
Lactação , Metionina , Animais , Bovinos , Feminino , Dieta/veterinária , Suplementos Nutricionais , Metionina/farmacologia , Metionina/metabolismo , Leite/metabolismo , Racemetionina/metabolismo , Racemetionina/farmacologia , Rúmen/metabolismo
16.
Poult Sci ; 102(4): 102557, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36863121

RESUMO

Coccidia vaccination is a common practice in the poultry industry. However, research is lacking regarding the optimal nutritional support for coccidia vaccinated broilers. In this study, broilers were vaccinated with coccidia oocyst at hatch and were fed with a common starter diet from 1 to 10 d. On d 11, the broilers were randomly assigned to groups in a 4 × 2 factorial arrangement. Briefly, the broilers were fed one of four diets containing 0.6, 0.8, 0.9, and 1.0% of standardized ileal digestible methionine plus cysteine (SID M+C), respectively, from 11 to 21 d. On d 14, the broilers from each diet group were orally gavaged with either PBS (Mock challenge) or Eimeria oocysts. Compared to PBS-gavaged broilers and regardless of dietary SID M+C levels, the Eimeria-gavaged broilers had 1) decreased gain-to-feed ratio (15-21 d, P = 0.002; 11-21 d, P = 0.011); 2) increased fecal oocysts (P < 0.001); 3) increased plasma anti-Eimeria IgY (P = 0.033); and 4) increased intestinal luminal interleukin-10 (IL-10; duodenum, P = 0.039; jejunum, P = 0.018) and gamma interferon (IFN-γ; duodenum, P < 0.001; jejunum, P = 0.017). Regardless of Eimeria gavage, broilers fed 0.6% SID M+C had decreased (P<0.001) body weight gain (15-21 and 11-21 d) and gain-to-feed ratio (11-14, 15-21, and 11-21 d) when compared to those fed ≥ 0.8% SID M+C. Eimeria challenge increased (P < 0.001) duodenum lesions when the broilers were fed with 0.6, 0.8, and 1.0% SID M+C, and increased (P = 0.014) mid-intestine lesions when the broilers were fed with 0.6 and 1.0% SID M+C. An interaction between the two experimental factors was detected on plasma anti-Eimeria IgY titers (P = 0.022), as coccidiosis challenge increased plasma anti-Eimeria IgY titers only when the broilers were fed with 0.9% SID M+C. In summary, the dietary SID M+C requirement for grower (11-21 d) broilers vaccinated with coccidiosis was ranged from 0.8 to 1.0% for optimal growth performance and intestinal immunity, regardless of coccidiosis challenge.


Assuntos
Coccidiose , Eimeria , Doenças das Aves Domésticas , Animais , Aminoácidos/farmacologia , Galinhas , Suplementos Nutricionais , Dieta/veterinária , Coccidiose/prevenção & controle , Coccidiose/veterinária , Intestinos , Metionina/farmacologia , Cisteína/farmacologia , Racemetionina/farmacologia , Ração Animal/análise
17.
Poult Sci ; 102(5): 102586, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36966644

RESUMO

The study was conducted to investigate the effects of 2 isoforms of methionine on growth performance and intestinal health induced by methionine (Met) deficiency and Eimeria infection in broilers. A total of 720 one-day old male chicks (Cobb500) were randomly allocated to 10 groups in a 2 × 5 factorial arrangement (6 reps/group, 12 birds/cage) with diets and Eimeria challenge as the main factors. Hundred percent DL-Met, 100% L-Met, 80% DL-Met, and 80% L-Met diets were formulated to meet approximately 100 or 80% of the total sulfur amino acid (TSAA) requirement with DL-Met or L-Met as Met supplementation sources. The 60% TSAA basal diet (60% Met) was formulated without Met supplementation. At d14, the challenge groups were gavaged with mixed Eimeria spp. Growth performance was recorded on d7, 14, 20 (6-day postinfection [DPI]), and 26 (12 DPI). The gut permeability was measured on 5 and 11 DPI. Antioxidant status and gene expression of immune cytokines and tight junction proteins were measured on 6 and 12 DPI. Data were analyzed by 1-way and 2-way ANOVA before and after the challenge, respectively. Orthogonal polynomial contrasts were used for post hoc comparison. Overall, the Eimeria challenge and 60% Met diet significantly reduced growth performance, antioxidant status, and mRNA expression of tight junction genes and immune cytokines. For other Met treatments, the L-Met groups had significantly higher BWG and lower FCR than the DL-Met group from d 1 to 20. The L-Met groups had less gut permeability than the DL-Met groups on 5 DPI. Compared to the 80% Met groups, the 100% Met groups reduced gut permeability. At 6 DPI, the 80% Met groups showed higher ZO1 expression than the 100% Met groups. The challenge groups had higher Muc2 expression and GSH/GSSG compared to the nonchallenge groups, and SOD activity was lower in the L-Met groups compared to the DL-Met groups at 6 DPI. The 100% Met groups had higher GPx activity than the 80% Met groups at 12 DPI. In conclusion, during coccidiosis, the 100% Met groups had better gut integrity and antioxidant status. Met supplementation in the form of L-Met improved growth performance in the starter phase and gut permeability in the challenge phase.


Assuntos
Coccidiose , Eimeria , Doenças das Aves Domésticas , Animais , Masculino , Metionina/farmacologia , Metionina/química , Eimeria/fisiologia , Galinhas/fisiologia , Antioxidantes , Suplementos Nutricionais , Racemetionina , Dieta/veterinária , Coccidiose/veterinária , Imunidade , Ração Animal/análise
18.
Anim Biotechnol ; 34(8): 3609-3616, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36866847

RESUMO

A 60-day feeding trial was conducted to study the hematology, liver, and intestinal histoarchitecture of Labeo rohita fed with a combination of exogenous enzymes, essential amino acids, and essential fatty acids to DORB (De-oiled rice bran) based diets. Three treatments viz., T1 [DORB + phytase and xylanase (0.01% each)], T2 [DORB + phytase (0.01%) + xylanase (0.01%) + L-lysine(1.4%) + L-methionine (0.4%) + EPA and DHA (0.5%)] and T3 [DORB + phytase (0.01%), xylanase and cellulase (0.075%) + L-lysine (1.4%) +L-methionine (0.4%) + EPA and DHA (0.5%)] were used in the present study. Serum total protein, albumin content and A/G ratio varied significantly (p < 0.05) among groups. Globulin content did not vary significantly among groups (p ≥ 0.05). The Hb content, RBC and MCV count varied significantly (p < 0.05) whereas MCH, MCHC content, WBC and lymphocyte count did not vary significantly among groups (p > 0.05). The liver and intestine examination revealed no visible alteration and showed normal histo-architecture. Based on the finding it is concluded that DORB supplemented with exogenous enzymes, essential amino acids and essential fatty acids with phytase (0.01%), xylanase and cellulase (0.075%), L-lysine (1.4%), DL-methionine (0.4%) and EPA and DHA (0.5%) improves the health of L. rohita.


Assuntos
6-Fitase , Celulases , Cyprinidae , Hematologia , Oryza , Animais , Oryza/metabolismo , Aminoácidos Essenciais , Lisina , 6-Fitase/metabolismo , Ração Animal/análise , Dieta/veterinária , Ácidos Graxos Essenciais , Fígado/metabolismo , Intestinos , Metionina/farmacologia
19.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36734330

RESUMO

This study investigated the hypothesis that methionine supplementation of Japanese quail (Coturnix coturnix japonica) hens can reduce the effects of oxidative stress and improve the performance of the offspring exposed to heat stress during growth. For that, the quail hens were fed with three diets related to the methionine supplementation: methionine-deficient diet (Md); diet supplemented with the recommended methionine level (Met1); and diet supplemented with methionine above the recommended level (Met2). Their chicks were identified, weighed, and housed according to the maternal diet group from 1 to 14 d of age. On 15 d of age, chicks were weighed and divided into two groups: thermoneutral ambient (constant temperature of 23 °C) and intermittent heat stress ambient (daily exposure to 34 °C for 6 h). Methionine-supplemented (Met1 and Met2) hens had higher egg production, better feed conversion ratio, higher hatchability of total and fertile eggs, and offspring with higher body weight. Supplemented (Met1 and Met2) hens showed greater expression of glutathione synthase (GSS) and methionine sulfoxide reductase A (MSRA) genes, greater total antioxidant capacity, and lower lipid peroxidation in the liver. The offspring of hens fed the Met2 diet had lower death rate (1 to 14 d), higher weight on 15 d of age, weight gain, and better feed conversion ratio from 1 to 14 d of age. Among chicks reared under heat stress, the progeny of methionine-supplemented hens had higher weight on 35 d, weight gain, expression of GSS, MSRA, and thermal shock protein 70 (HSP70) genes, and total antioxidant capacity in the liver, as well as lower heterophil/lymphocyte ratio. Positive correlations between expression of glutathione peroxidase 7 (GPX7) and MSRA genes in hens and offspring were observed. Our results show that maternal methionine supplementation contributes to offspring development and performance in early stages and that, under conditions of heat stress during growth, chicks from methionine-supplemented hens respond better to hot environmental conditions than chicks from nonsupplemented hens. Supplementation of quail hens diets with methionine promoted activation of different metabolic pathways in offspring subjected to stress conditions.


The deficiency of nutrients such as methionine in the diet of birds is affecting fertility rate, egg production, egg weight, and progeny weight. In addition, the maternal environment influences gene expression through epigenetic mechanisms, where the conditions experienced by the parental generation during embryonic development can produce effects on the progeny. This study investigates how methionine supplementation in the diet of quail hens can reduce the effects of oxidative stress and improve the performance of progeny subjected to heat stress during growth. For that, the quail hens were fed with diets containing three different levels of methionine; and their chicks were created (15 on 35 d of age) into thermoneutral and/or intermittent heat stress ambient. It was observed that methionine supplementation in the quail hens had a positive effect on mortality during the initial phase and greater weight gain in the progeny growth phase. In addition, genetic inheritance was observed through the positive correlation between the expression of genes (maternal and progeny) related to oxidative stress. The results show that methionine supplementation in the maternal diet contributes to the development and performance of the progeny when subjected to heat stress during the growth phase.


Assuntos
Antioxidantes , Coturnix , Animais , Feminino , Antioxidantes/metabolismo , Coturnix/fisiologia , Dieta/veterinária , Suplementos Nutricionais , Resposta ao Choque Térmico , Metionina/farmacologia , Metionina/metabolismo , Óvulo , Codorniz , Racemetionina/metabolismo , Aumento de Peso
20.
Arch Anim Nutr ; 77(1): 17-41, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36790082

RESUMO

The effects of dietary zinc on the immune function of equines have not been evaluated in detail so far. In the present study, eight healthy adult ponies and two healthy adult horses were fed a diet supplemented with either zinc chloride hydroxide or zinc methionine in six feeding periods of four weeks each (according to maintenance zinc requirement, 120 mg zinc/kg dry matter, and 240 mg zinc/kg dry matter, for both dietary zinc supplements, respectively). All animals received the six diets, with increasing amounts of zinc chloride hydroxide in the feeding periods 1-3, and with increasing amounts of zinc methionine in the feeding periods 4-6. At the end of each feeding period, blood samples were collected for a blood profile and the measurement of selected immune variables. Increasing dietary zinc chloride hydroxide doses increased the glutathione concentrations in the erythrocyte concentrate and the glutathione peroxidase activity in the erythrocyte lysate, decreased the numbers of total leukocytes and granulocytes in the blood, and also decreased the interleukin-2 concentrations in the plasma of the animals. The dietary supplementation of increasing doses of zinc methionine enhanced the mitogen-stimulated proliferative activity of peripheral blood mononuclear cells, and decreased the glutathione concentrations in the erythrocyte concentrate and the glutathione peroxidase activity in the plasma of the animals. The percentage of blood monocytes with oxidative burst after in vitro stimulation with E. coli decreased with increasing dietary zinc concentrations, independently of the zinc compound used. The blood profile demonstrated effects of the zinc supplements on the red blood cells and the bilirubin metabolism of the horses and ponies, which require further investigation. Overall, high doses of dietary zinc modulate the equine immune system, for the most part also depending on the zinc compound used.


Assuntos
Dieta , Escherichia coli , Cavalos , Animais , Dieta/veterinária , Leucócitos Mononucleares , Ração Animal/análise , Suplementos Nutricionais , Metionina/farmacologia , Zinco , Compostos de Zinco , Antioxidantes/metabolismo , Hidróxidos , Glutationa , Glutationa Peroxidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA