Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 283: 114734, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34648900

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Previous studies have shown that the active fraction of Rhodiola tangutica (Maxim.) S.H. Fu (ACRT) dilates pulmonary arteries and thwarts pulmonary artery remodelling. The dilatation effect of ACRT on pulmonary artery vascular rings could be reduced by potassium (K+) channel blockers. However the exact mechanisms of ACRT on ion channels are still unclear. AIM OF THE STUDY: This study aimed to investigate whether the effect of ACRT on K+ channels inhibits cell proliferation after pulmonary artery smooth muscle cells (PASMCs) are exposed to hypoxia. MATERIALS AND METHODS: The whole-cell patch-clamp method was used to clarify the effect of ACRT on the K+ current (IK) of rat PASMCs exposed to hypoxia. The mRNA and protein expression levels were detected using real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting, respectively. The intracellular calcium (Ca2+) concentration ([Ca2+]i) values in rat PASMCs were detected by laser scanning confocal microscopy. The cell cycle and cell proliferation were assessed using flow cytometry analysis and CCK-8 and EdU assays. RESULTS: ACRT pretreatment alleviated the inhibition of IK induced by hypoxia in rat PASMCs. Compared with hypoxia, ACRT upregulated voltage-dependent K+ channel (Kv) 1.5 and big-conductance calcium-activated K+ channel (BKCa) mRNA and protein expression and downregulated voltage-dependent Ca2+ channel (Cav) 1.2 mRNA and protein expression. ACRT decreased [Ca2+]i, inhibited the promotion of cyclin D1 and proliferating cell nuclear antigen (PCNA) expression, and prevented the proliferation of rat PASMCs exposed to hypoxia. CONCLUSION: In conclusion, the present study demonstrated that ACRT plays a key role in restoring ion channel function and then inhibiting the proliferation of PASMCs under hypoxia, ACRT has preventive and therapeutic potential in hypoxic pulmonary hypertension.


Assuntos
Músculo Liso Vascular/efeitos dos fármacos , Extratos Vegetais/farmacologia , Artéria Pulmonar/efeitos dos fármacos , Rhodiola/química , Animais , Cálcio/metabolismo , Hipóxia Celular , Proliferação de Células/efeitos dos fármacos , Hipertensão Pulmonar/tratamento farmacológico , Masculino , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Técnicas de Patch-Clamp , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Artéria Pulmonar/citologia , Ratos , Ratos Sprague-Dawley
2.
Oxid Med Cell Longev ; 2021: 4576071, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422208

RESUMO

Pulmonary hypertension (PH) is a severe and progressive cardiovascular disease. Its pathological mechanism is complex, and the common pathological feature is pulmonary vascular remodeling. The efficacy of existing therapeutic agents is limited. Traditional Chinese medicine (TCM) has its unique advantages in the prevention and treatment of complex diseases. In this study, the approaches of network pharmacology combined with biological verification are employed to explore the role of Buyang huanwu decoction (BYHWD) in the treatment of PH. The active ingredients in BYHWD were first screened based on the ADME properties of the compounds. In turn, the mean of data mining was utilized to analyze the potential targets of BYHWD for the treatment of PH. On this basis, a series of interaction networks were constructed for searching the core targets. The genes including AKT1, MMP9, NOS3/eNOS, and EGFR were found to be possible key targets in BYHWD. The results of enrichment analysis showed that the targets of BYHWD focused on smooth muscle cell proliferation, migration, and apoptosis, which are classic biological processes involved in pulmonary vascular remodeling and are closely related to the PI3K-Akt-eNOS pathway. The methods of biological experiments were adopted to verify the above results. The present study elucidated the mechanism of BYHWD in the treatment of PH and provided new ideas for the clinical use of TCM in the treatment of PH.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Farmacologia em Rede/métodos , Artéria Pulmonar/efeitos dos fármacos , Remodelação Vascular/efeitos dos fármacos , Animais , Apoptose , Movimento Celular , Proliferação de Células , Masculino , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Mapas de Interação de Proteínas , Artéria Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
3.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805714

RESUMO

Trifluoperazine (TFP), an antipsychotic drug approved by the Food and Drug Administration, has been show to exhibit anti-cancer effects. Pulmonary arterial hypertension (PAH) is a devastating disease characterized by a progressive obliteration of small pulmonary arteries (PAs) due to exaggerated proliferation and resistance to apoptosis of PA smooth muscle cells (PASMCs). However, the therapeutic potential of TFP for correcting the cancer-like phenotype of PAH-PASMCs and improving PAH in animal models remains unknown. PASMCs isolated from PAH patients were exposed to different concentrations of TFP before assessments of cell proliferation and apoptosis. The in vivo therapeutic potential of TFP was tested in two preclinical models with established PAH, namely the monocrotaline and sugen/hypoxia-induced rat models. Assessments of hemodynamics by right heart catheterization and histopathology were conducted. TFP showed strong anti-survival and anti-proliferative effects on cultured PAH-PASMCs. Exposure to TFP was associated with downregulation of AKT activity and nuclear translocation of forkhead box protein O3 (FOXO3). In both preclinical models, TFP significantly lowered the right ventricular systolic pressure and total pulmonary resistance and improved cardiac function. Consistently, TFP reduced the medial wall thickness of distal PAs. Overall, our data indicate that TFP could have beneficial effects in PAH and support the view that seeking new uses for old drugs may represent a fruitful approach.


Assuntos
Fármacos Cardiovasculares/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipertensão Pulmonar/tratamento farmacológico , Hipóxia/prevenção & controle , Miócitos de Músculo Liso/efeitos dos fármacos , Trifluoperazina/farmacologia , Animais , Antipsicóticos/farmacologia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Feminino , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Hemodinâmica/efeitos dos fármacos , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Hipóxia/induzido quimicamente , Hipóxia/genética , Hipóxia/fisiopatologia , Indóis/administração & dosagem , Monocrotalina/administração & dosagem , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Artéria Pulmonar/citologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Pirróis/administração & dosagem , Ratos , Ratos Sprague-Dawley , Survivina/genética , Survivina/metabolismo
4.
Biomed Mater ; 16(2): 025016, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33599213

RESUMO

The aim of our research was to study the behaviour of adipose tissue-derived stem cells (ADSCs) and vascular smooth muscle cells (VSMCs) on variously modified poly(L-lactide) (PLLA) foils, namely on pristine PLLA, plasma-treated PLLA, PLLA grafted with polyethylene glycol (PEG), PLLA grafted with dextran (Dex), and the tissue culture polystyrene (PS) control. On these materials, the ADSCs were biochemically differentiated towards VSMCs by a medium supplemented with TGFß1, BMP4 and ascorbic acid (i.e. differentiation medium). ADSCs cultured in a non-differentiation medium were used as a negative control. Mature VSMCs cultured in both types of medium were used as a positive control. The impact of the variously modified PLLA foils and/or differences in the composition of the medium were studied with reference to cell adhesion, growth and differentiation. We observed similar adhesion and growth of ADSCs on all PLLA samples when they were cultured in the non-differentiation medium. The differentiation medium supported the expression of specific early, mid-term and/or late markers of differentiation (i.e. type I collagen, αSMA, calponin, smoothelin, and smooth muscle myosin heavy chain) in ADSCs on all tested samples. Moreover, ADSCs cultured in the differentiation medium revealed significant differences in cell growth among the samples that were similar to the differences observed in the cultures of VSMCs. The round morphology of the VSMCs indicated worse adhesion to pristine PLLA, and this sample was also characterized by the lowest cell proliferation. Culturing VSMCs in the differentiation medium inhibited their metabolic activity and reduced the cell numbers. Both cell types formed the most stable monolayer on plasma-treated PLLA and on the PS control. The behaviour of ADSCs and VSMCs on the tested PLLA foils differed according to the specific cell type and culture conditions. The suitable biocompatibility of both cell types on the tested PLLA foils seems to be favourable for vascular tissue engineering purposes.


Assuntos
Tecido Adiposo/metabolismo , Miócitos de Músculo Liso/citologia , Poliésteres/química , Poliestirenos/química , Células-Tronco/citologia , Engenharia Tecidual/métodos , Animais , Aorta/metabolismo , Materiais Biocompatíveis , Biopolímeros/química , Adesão Celular , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Teste de Materiais , Microscopia de Força Atômica , Músculo Liso Vascular/citologia , Oxazinas/química , Polímeros/química , Polissacarídeos/química , Propriedades de Superfície , Suínos , Xantenos/química
5.
Chin J Nat Med ; 19(1): 36-45, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33516450

RESUMO

Atherosclerosis (AS) is a chronic inflammatory disease, the main causes of which include abnormal lipid metabolism, endothelial injury, physical and chemical injury, hemodynamic injury, genetic factors and so on. These causes can lead to inflammatory injury of blood vessels and local dysfunction. Bunao-Fuyuan decoction (BNFY) is a traditional Chinese medicine compound that can treat cardiovascular and cerebrovascular diseases, but its effect on AS is still unknown. The aim of this study was to investigate the effect and mechanism of BNFY in proliferation and migration of vascular smooth muscle cells (VSMCs) on AS. At first, the expression of α-SMA protein in ox-LDL-induced VSMCs, which was detected by immunofluorescence staining and western blot. CCK-8 technique and cloning technique were used to detect the cell proliferation of ox-LDL-induced VSMCs after adding BNFY. Meanwhile, the expression of proliferating protein Ki67 was detected by immunofluorescence staining. Western blot was also used to detect the expression of proliferation-related proteins CDK2, CyclinE1 and P27. Flow cytometry was used to detect the effect of BNFY on cell cycle. The effects of BNFY on proliferation and migration of cells were detected by cell scratch test and Transwell. Western blot was used to detect the expression of adhesion factors ICAM1, VCAM1, muc1, VE-cadherin and RHOA/ROCK-related proteins in cells. We found that the expression of AS marker α-SMA protein increased significantly and cells shriveled and a few floated on the medium after induction of ox-LDL on VSCMs. The proliferation rate of ox-LDL VSMCs decreased significantly after adding different doses of BNFY, and BNFY can inhibit cell cycle. Meanwhile, we also found that cell invasion and migration rate were significantly inhibited and related cell adhesion factors ICAM1, VCAM1, muc1 and VE-cadherin were inhibited too by BNFY. Finally, we found that BNFY inhibited the expression of RHOA, ROCK1, ROCK2, p-MLC proteins in the RHOA/ROCK signaling pathway. Therefore, we can summarize that BNFY may inhibit the proliferation and migration of atherosclerotic vascular smooth muscle cells by inhibiting the activity of RHOA/ROCK signaling pathway.


Assuntos
Aterosclerose , Medicamentos de Ervas Chinesas/farmacologia , Músculo Liso Vascular , Miócitos de Músculo Liso/citologia , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Movimento Celular , Proliferação de Células , Células Cultivadas , Humanos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos
6.
Endocrinology ; 162(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33247714

RESUMO

In this study, we investigated steroidogenic gene mRNA expression in human vaginas and verified the ability of human vagina smooth muscle cells (hvSMCs) to synthesize androgens from upstream precursor dehydroepiandrosterone (DHEA). As a readout for androgen receptor (AR) activation, we evaluated the mRNA expression of various androgen-dependent markers. hvSMCs were isolated from vagina tissues of women undergoing surgery for benign gynecological diseases. In these cells, we evaluated mRNA expression of several steroidogenic enzymes and sex steroid receptors using real time reverse transcription-polymerase chain reaction. Androgen production was quantified with liquid chromatography tandem-mass spectrometry (LC-MS/MS). In vaginal tissues, AR mRNA was significantly less expressed than estrogen receptor α, whereas in hvSMCs, its mRNA expression was higher than progestin and both estrogen receptors. In hvSMCs and in vaginal tissue, when compared to ovaries, the mRNA expression of proandrogenic steroidogenic enzymes (HSD3ß1/ß2, HSD17ß3/ß5), along with 5α-reductase isoforms and sulfotransferase, resulted as being more abundant. In addition, enzymes involved in androgen inactivation were less expressed than in the ovaries. The LC-MS/MS analysis revealed that, in hvSMCs, short-term DHEA supplementation increased Δ4-androstenedione levels in spent medium, while increasing testosterone and DHT secretion after longer incubation. Finally, androgenic signaling activation was evaluated through AR-dependent marker mRNA expression, after DHEA and T stimulation. This study confirmed that the human vagina is an androgen-target organ with the ability to synthesize androgens, thus providing support for the use of androgens for local symptoms of genitourinary syndrome in menopause.


Assuntos
Androgênios/metabolismo , Menopausa/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptores de Esteroides/metabolismo , Vagina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Desidroepiandrosterona , Feminino , Expressão Gênica , Humanos , Pessoa de Meia-Idade , Miócitos de Músculo Liso/citologia , Cultura Primária de Células , Testosterona , Vagina/citologia
7.
Nat Protoc ; 16(1): 472-496, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33299155

RESUMO

Mural cells (smooth muscle cells and pericytes) are integral components of brain blood vessels that play important roles in vascular formation, blood-brain barrier maintenance, and regulation of regional cerebral blood flow (rCBF). These cells are implicated in conditions ranging from developmental vascular disorders to age-related neurodegenerative diseases. Here we present complementary tools for cell labeling with transgenic mice and organic dyes that allow high-resolution intravital imaging of the different mural cell subtypes. We also provide detailed methodologies for imaging of spontaneous and neural activity-evoked calcium transients in mural cells. In addition, we describe strategies for single- and two-photon optogenetics that allow manipulation of the activity of individual and small clusters of mural cells. Together with measurements of diameter and flow in individual brain microvessels, calcium imaging and optogenetics allow the investigation of pericyte and smooth muscle cell physiology and their role in regulating rCBF. We also demonstrate the utility of these tools to investigate mural cells in the context of Alzheimer's disease and cerebral ischemia mouse models. Thus, these methods can be used to reveal the functional and structural heterogeneity of mural cells in vivo, and allow detailed cellular studies of the normal function and pathophysiology of mural cells in a variety of disease models. The implementation of this protocol can take from several hours to days depending on the intended applications.


Assuntos
Encéfalo/irrigação sanguínea , Miócitos de Músculo Liso/citologia , Optogenética/métodos , Pericitos/citologia , Animais , Circulação Sanguínea , Feminino , Masculino , Camundongos Transgênicos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/ultraestrutura , Imagem Óptica/métodos , Pericitos/metabolismo , Pericitos/ultraestrutura
8.
Food Funct ; 11(10): 8602-8611, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33084700

RESUMO

Nelumbo nucifera leaf water extract (NLE) attenuates high-fat diet (HFD)-induced rabbit atherosclerosis, but its mechanism of action and the relevant compounds remain unclear. Modulating the proliferation and migration of vascular smooth muscle cells (VSMCs) may be an enforceable strategy for atherosclerosis prevention. Therefore, we investigated the potential mechanisms of N. nucifera leaf polyphenol extract (NLPE) and its active ingredient gallic acid (GA) in VSMC proliferation and migration. A7r5 rat aortic VSMCs were provoked using 50 ng mL-1 tumor necrosis factor (TNF)-α; the NLPE or GA reduced the TNF-α-induced migration by inhibiting the transforming protein RhoA/cell division cycle protein 42 pathway. The NLPE or GA suppressed the TNF-α-induced VSMC proliferation by inhibiting the Ras pathway and increasing the expression of phosphatase and tensin homolog (PTEN), kinase suppressor of Ras 2, and inducible nitric oxide synthase. The NLPE or GA increased PTEN expression by downregulating microRNA (miR)-21 expression and reduced Ras and RhoA expression by upregulating miR-143 and miR-145 expression. The NLPE and GA use potentially prevents atherosclerosis by inhibiting the VSMC migration and proliferation. The mechanisms involve the regulation of the miRNA in PTEN, the Ras/extracellular-signal-regulated kinase pathway, and Rho family proteins.


Assuntos
Ácido Gálico/farmacologia , MicroRNAs/genética , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Nelumbo/química , Extratos Vegetais/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Folhas de Planta , Polifenóis , Ratos , Transdução de Sinais , Proteínas ras/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
9.
FASEB J ; 34(9): 12991-13004, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32777143

RESUMO

Preterm infants can develop airway hyperreactivity and impaired bronchodilation following supplemental O2 (hyperoxia) in early life, making it important to understand mechanisms of hyperoxia effects. Endogenous hydrogen sulfide (H2 S) has anti-inflammatory and vasodilatory effects with oxidative stress. There is little understanding of H2 S signaling in developing airways. We hypothesized that the endogenous H2 S system is detrimentally influenced by O2 and conversely H2 S signaling pathways can be leveraged to attenuate deleterious effects of O2 . Using human fetal airway smooth muscle (fASM) cells, we investigated baseline expression of endogenous H2 S machinery, and effects of exogenous H2 S donors NaHS and GYY4137 in the context of moderate hyperoxia, with intracellular calcium regulation as a readout of contractility. Biochemical pathways for endogenous H2 S generation and catabolism are present in fASM, and are differentially sensitive to O2 toward overall reduction in H2 S levels. H2 S donors have downstream effects of reducing [Ca2+ ]i responses to bronchoconstrictor agonist via blunted plasma membrane Ca2+ influx: effects blocked by O2 . However, such detrimental O2 effects are targetable by exogenous H2 S donors such as NaHS and GYY4137. These data provide novel information regarding the potential for H2 S to act as a bronchodilator in developing airways in the context of oxygen exposure.


Assuntos
Cálcio/metabolismo , Sulfeto de Hidrogênio/metabolismo , Músculo Liso/embriologia , Miócitos de Músculo Liso/metabolismo , Oxigênio/metabolismo , Feto , Humanos , Hiperóxia/metabolismo , Recém-Nascido , Recém-Nascido Prematuro/metabolismo , Miócitos de Músculo Liso/citologia , Sistema Respiratório/embriologia
10.
Mitochondrion ; 52: 8-19, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32045716

RESUMO

Mitochondrial dysfunction occurring in response to cellular perturbations can include altered mitochondrial motility and bioenergetic function having intracellular heterogeneity. Exogenous mitochondrial directed therapy may correct these dysfunctions. Using in vitro approaches, we find that cell perturbations induced by rapid decompression from hyperbaric conditions with specific gas exposures has differential effects on mitochondrial motility, inner membrane potential, cellular respiration, reactive oxygen species production, impaired maintenance of cell shape and altered intracellular distribution of bioenergetic capacity in perinuclear and cell peripheral domains. Addition of a first-generation cell-permeable succinate prodrug to support mitochondrial function has positive overall effects in blunting the resultant bioenergy responses. Our results with this model of perturbed cell function induced by rapid decompression indicate that alterations in bioenergetic state are partitioned within the cell, as directly assessed by a combination of mitochondrial respiration and dynamics measurements. Reductions in the observed level of dysfunction produced can be achieved with application of the cell-permeable succinate prodrug.


Assuntos
Descompressão/efeitos adversos , Mitocôndrias Musculares/fisiologia , Miócitos de Músculo Liso/citologia , Ácido Succínico/farmacologia , Respiração Celular/efeitos dos fármacos , Células Cultivadas , Metabolismo Energético , Humanos , Oxigenoterapia Hiperbárica , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Musculares/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Nitrogênio/efeitos adversos , Oxigênio/efeitos adversos , Cultura Primária de Células , Pró-Fármacos , Espécies Reativas de Oxigênio/metabolismo
11.
Molecules ; 25(4)2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32079290

RESUMO

Ostericum citriodorum is a plant with a native range in China used in herbal medicine for treating angina pectoris. In this study, we investigated the vasodilatory effects of isodillapiolglycol (IDG), which is one of the main ingredients isolated from O. citriodorum ethyl acetate extract, in Sprague-Dawley rat aortic rings, and measured intracellular Ca2+ ([Ca2+]in) using a molecular fluo-3/AM probe. The results show that IDG dose-dependently relaxed endothelium-intact or -denuded aortic rings pre-contracted with noradrenaline (NE) or potassium chloride (KCl), and inhibited CaCl2-induced contraction in high K+ depolarized aortic rings. Tetraethyl ammonium chloride (a Ca2+-activated K+ channel blocker) or verapamil (an L-type Ca2+ channel blocker) significantly reduced the relaxation of IDG in aortic rings pre-contracted with NE. In vascular smooth muscle cells, IDG inhibited the increase in [Ca2+]in stimulated by KCl in Krebs solution; likewise, IDG also attenuated the increase in [Ca2+]in induced by NE or subsequent supplementation of CaCl2. These findings demonstrate that IDG relaxes aortic rings in an endothelium-independent manner by reducing [Ca2+]in, likely through inhibition of the receptor-gated Ca2+ channel and the voltage-dependent Ca2+ channel, and through opening of the Ca2+-activated K+ channel.


Assuntos
Apiaceae/química , Endotélio Vascular/fisiologia , Glicóis/química , Glicóis/isolamento & purificação , Vasodilatação/efeitos dos fármacos , Animais , Aorta/fisiologia , Cálcio/metabolismo , Cloreto de Cálcio/farmacologia , Linhagem Celular , Endotélio Vascular/efeitos dos fármacos , Masculino , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Extratos Vegetais/farmacologia , Cloreto de Potássio/farmacologia , Espectroscopia de Prótons por Ressonância Magnética , Ratos Sprague-Dawley , Tetraetilamônio/farmacologia , Vasoconstrição/efeitos dos fármacos , Verapamil/farmacologia
12.
Macromol Biosci ; 19(11): e1900292, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31517437

RESUMO

Selective adhesion and directional migration of endothelial cells (ECs) on biomaterials is critical to realize the rapid endothelialization. In this study, a Cys-Ala-Gly (CAG) peptide density gradient is generated on homogeneous cell-resisting poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) brushes by immersing the brushes in a complementary gradient solution of CAG and competitive mercapto-terminated methoxyl poly(ethylene glycol). The adhesion and spreading of smooth muscle cells (SMCs) is impaired effectively on the gradient surface. About six folds of adherent ECs over SMCs are achieved at the position (10 mm) of highest CAG density on the gradient surface in a co-culture condition. Due to the gradient cues, ECs migrate fastest with the best directionality of 86.7% at the middle of the gradient, leading to the maximum net displacement as well.


Assuntos
Adesão Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Células Endoteliais/efeitos dos fármacos , Oligopeptídeos/farmacologia , Alanina/química , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Cisteína/química , Relação Dose-Resposta a Droga , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Glicina/química , Humanos , Teste de Materiais , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Oligopeptídeos/química , Polímeros/química , Polímeros/farmacologia
13.
Chem Biol Interact ; 311: 108749, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31325423

RESUMO

PURPOSE: Excessive proliferation, migration and anti-apoptosis of pulmonary artery smooth muscle cells (PASMCs) are the basis for the development of pulmonary vascular remodeling, and it is the driving force for pulmonary arterial hypertension (PAH). 18ß-glycyrrhetinic acid (18ß-GA) is the main active substance extracted from Chinese herbal medicine licorice, with outstanding anti-inflammatory, anti-oxidation and anti-proliferative effects. Our team found in previous studies that 18ß-GA has protective effects on monocrotaline-induced PAH in rats. However, the anti-angiogenic effect of 18ß-GA on PAH remains unclear. Therefore, in order to further investigate whether the beneficial effects of 18ß-GA on PAH are related to its antiproliferative effect, we conducted experiments in vivo and in vitro. METHODS AND RESULTS: In vivo, 18ß-GA relieved mean pulmonary arterial pressure, right ventricular systolic pressure, and right ventricular hypertrophy index, improving pulmonary remodeling. In vitro, 18ß-GA significantly inhibited PDGF-BB-induced proliferation and DNA synthesis of HPASMCs, blocking the progression of G0/G1 to S phase of the cell cycle. Furthermore, after treatment with 18ß-GA, the expression of Rho A, ROCK1, ROCK2 was decreased and ROCK activity was inhibited in HPASMC. In addition, 18ß-GA also attenuated PDGF-induced changes in p27kip1, Bax and Bcl-2. CONCLUSIONS: In summary, these results indicate that 18ß-GA regulates the activity of RhoA-ROCK signaling pathway, inhibits the proliferation of HPASMCs, and has potential value in the treatment of PAH.


Assuntos
Ácido Glicirretínico/análogos & derivados , Hipertensão Pulmonar/patologia , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Glicirretínico/farmacologia , Ácido Glicirretínico/uso terapêutico , Hemodinâmica/efeitos dos fármacos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Masculino , Monocrotalina/toxicidade , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Substâncias Protetoras/uso terapêutico , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Remodelação Vascular/efeitos dos fármacos , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
14.
J Sci Food Agric ; 99(9): 4397-4406, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30861122

RESUMO

BACKGROUND: Compounds of the inner shell of chestnut (Castanea crenata) have diverse biological activities, including anti-cancer and anti-oxidant activities. Here we explored the effects of an extract of chestnut inner shells and of its bioactive component scoparone on vascular smooth muscle cell migration and vessel damage. RESULTS: The ethanol extract of chestnut inner shells, containing 11 major compounds, inhibited platelet-derived growth factor (PDGF)-BB-induced migration of rat aortic smooth muscle cells (RASMCs). Among these compounds, scoparone (6,7-dimethoxycoumarin) suppressed RASMC migration and wound healing in response to PDGF-BB but did not affect RASMC proliferation. In RASMCs, scoparone inhibited the PDGF-BB-induced rat aortic sprout outgrowth and attenuated the PDGF-BB-mediated increase in phosphorylation of mitogen-activated protein kinases (MAPKs), p38 MAPK and extracellular signal-regulated kinase 1/2. The in vivo administration of scoparone resulted in the attenuation of neointima formation in balloon-injured carotid arteries of rats. CONCLUSION: These findings demonstrate that scoparone, found in chestnut inner shells, may inhibit cell migration through suppression of the phosphorylation of MAPKs in PDGF-BB-treated RASMCs, probably contributing to the reduction of neointimal hyperplasia induced after vascular injury. Therefore, scoparone and chestnut inner shell may be a potential agent or functional food, respectively, for the prevention of vascular disorders such as vascular restenosis or atherosclerosis. © 2019 Society of Chemical Industry.


Assuntos
Becaplermina/metabolismo , Cumarínicos/administração & dosagem , Fagaceae/química , Hiperplasia/tratamento farmacológico , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Neointima/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cumarínicos/química , Humanos , Hiperplasia/fisiopatologia , Masculino , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Neointima/fisiopatologia , Nozes/química , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley
15.
Phytomedicine ; 50: 99-108, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30466997

RESUMO

BACKGROUND: Xenophyllum poposum is an endemic species of the Andes Cordillera, popularly known as Popusa. Popusa is widely used by mountain communities as a folk medicine to treat altitude sickness and hypertension. PURPOSE: The aim of this study is to evaluate the hypotensive effects and vascular reactivity of Popusa extracts and its pure isolated compounds. METHODS: Hydroalcoholic extract of Xenophyllum poposum (HAE X. poposum; 40 mg/kg dose) were administered to rats by gavage and mean arterial pressures were recorded. Organ bath studies were conducted in endothelium-intact and denuded rings, and the vascular reactivity of the HAE X. poposum extract and its isolated compounds were compared and analysed. Cytosolic Ca2+ was measured in vascular smooth muscle cell line A7r5 using Fura2-AM. RESULTS: HAE X. poposum significantly reduced the mean arterial blood pressure and heart rate in normotensive rats chronically treated with the extract, as well as mice acutely treated with the extract. A negative chronotropic effect was observed in the isolated rat heart. HAE X. poposum induced endothelial vasodilation mediated by nitric oxide (NO), reduced the contractile response to PE, and decreased PE-induced intracellular Ca2+ influx in vascular smooth muscle cells. Pure compounds isolated from HAE X. poposum such as 4­hydroxy­3-(3-methyl-2-butenyl) acetophenone, 5-acetyl-6­hydroxy­2-isopropenyl-2, and 3-dihydrobenzofurane (dihydroeuparin) also triggered endothelium-dependent vasodilation. CONCLUSION: HAE X. poposum decreases blood pressure, heart rate and vascular response. The vasodilation properties of HAE X. poposum extract and its isolated compounds may act through the endothelial nitric oxide synthase, as well as calcium channel blocker mechanisms. The results of the present study provide the first qualitative analysis that supports the use of X. poposum in traditional folk medicine for the treatment of altitude sickness and hypertension.


Assuntos
Asteraceae/química , Hipotensão/tratamento farmacológico , Extratos Vegetais/farmacologia , Vasodilatadores/farmacologia , Animais , Pressão Sanguínea , Cálcio/metabolismo , Chile , Frequência Cardíaca , Masculino , Camundongos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Óxido Nítrico/metabolismo , Componentes Aéreos da Planta/química , Ratos , Ratos Sprague-Dawley , Vasodilatação
16.
Zhongguo Zhong Yao Za Zhi ; 43(10): 2147-2152, 2018 May.
Artigo em Chinês | MEDLINE | ID: mdl-29933685

RESUMO

Alisol A 24-acetate, a triterpenoid extracted from Alisma orientale, has shown anti-atherosclerotic actions and many studies have proved that oxidized low density lipoprotein (Ox-LDL) could promote proliferation of aorta smooth muscle cells (VSMCs) which are closely related to atherosclerosis (AS). The purpose of this study was to evaluate the effect of alisol A 24-acetate on the proliferation of VSMCs isolated from the thoracic aorta of rats induced by ox-LDL. VSMCs were induced by ox-LDL(50 mg·L⁻¹) to establish the proliferation model and intervened by alisol A 24-acetate (5, 10, 20 mg·L⁻¹) for 12, 24 and 48 h. Then the proliferation of VSMCs was detected by MTT assay; protein expression levels of VSMCs PCNA, cyclinD1, cyclinE, p21, p27 and VSMCs PCNA, p21and p27 mRNA expression levels were detected by Western blot and Real-time polymerase chain reaction (RT-PCR) respectively. The results showed that ox-LDL could induce the proliferation of VSMCs (P<0.05), increase the protein expression levels of PCNA, cyclinD1 and cyclinE in the VSMCs (P<0.05) and inhibit the protein and mRNA expression levels of p21 and p27 (P<0.05). As compared with the model group, alisol A 24-acetate inhibited the proliferation of VSMCs in rats induced by ox-LDL and inhibited the protein expression of VSMCs PCNA, cyclinD1, cyclinE and enhanced the protein and mRNA p21 and p27 expression levels (P<0.05). The effect was more obvious with the increase of concentration of alisol A 24-acetate. These data indicate that alisol A 24-acetate can inhibit the proliferation of VSMCs induced by ox-LDL and the mechanism may be associated with inhibiting expression of cyclin protein, including cyclinD1, cyclinE, p21, p27 and so on.


Assuntos
Proliferação de Células/efeitos dos fármacos , Colestenonas/farmacologia , Miócitos de Músculo Liso/efeitos dos fármacos , Animais , Aorta/citologia , Células Cultivadas , Lipoproteínas LDL , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Ratos
17.
Int J Mol Med ; 42(1): 31-40, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29693116

RESUMO

The phenotypic modulation of vascular smooth muscle cells (VSMCs) serves an important role in atherosclerosis­induced vascular alterations, including vascular remodeling. However, the precise mechanisms underlying VSMC phenotypic modulation remain to be elucidated. Our previous study demonstrated that Liuwei Dihuang formula (LWDHF) could improve menopausal atherosclerosis by upregulating the expression of estrogen receptors (ERs). The present study examined the role of ERs in the effects of LWDHF on VSMC phenotypic modulation. VSMC proliferation and cell cycle progression were examined by MTT assay and flow cytometry, respectively. The expression levels of α­smooth muscle actin, osteopontin and ERs were determined using reverse transcription­quantitative polymerase chain reaction (RT­qPCR) and western blot analysis. Cell ultrastructure was observed under an electron microscope. F­actin polymerization was detected by fluorescein isothiocyanate­phalloidin staining using fluorescence microscopy. A modified Boyden chamber assay was employed to assess VSMCs migration. Small interfering (si)RNA technology was used to examine the role of ERα in the effects of LWDHF on phenotypic modulation. The results indicated that LWDHF (3­12 µg/ml) inhibited proliferation and induced a cell cycle arrest in VSMCs treated with angiotensin II (Ang II; 100 nM) in a concentration­dependent manner. In addition, Ang II­stimulated migration of VSMCs and reorganization of actin were markedly inhibited by treatment with 12 µg/ml LWDHF. Results of RT­qPCR and western blotting demonstrated that LWDHF markedly stimulated transcription and expression of ERα and ERß, and inhibited VSMC synthetic phenotype. Furthermore, LWDHF­induced inhibition of phenotypic switching was partially suppressed by tamoxifen, and transfection with ERα siRNA markedly abolished the effects of LWDHF on VSMC phenotypic switching. In conclusion, these results revealed that ERα served an important role in LWDHF­induced regulation of the VSMC phenotype, including proliferation and migration.


Assuntos
Movimento Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Receptores de Estrogênio/metabolismo , Actinas/metabolismo , Angiotensina II , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Masculino , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/ultraestrutura , Fenótipo , Ratos Sprague-Dawley
18.
J Agric Food Chem ; 66(15): 3860-3869, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29606008

RESUMO

Atherosclerosis is characterized by the buildup of plaque inside arteries. Our recent studies demonstrated that polyphenolic natural products can reduce oxidative stress, inflammation, angiogenesis, hyperlipidemia, and hyperglycemia. A previous study also showed that mulberry water extract (MWE) can inhibit atherosclerosis and contains considerable amounts of polyphenols. Therefore, in the present study, we investigated whether mulberry polyphenol extract (MPE) containing high levels of polyphenolic compounds could affect vascular smooth muscle cell (VSMC; A7r5 cell) motility. We found that MPE inhibited expression of FAK, Src, PI3K, Akt, c-Raf, and suppressed FAK/Src/PI3K interaction. Further investigations showed that MPE reduced expression of small GTPases (RhoA, Cdc42, and Rac1) to affect F-actin cytoskeleton rearrangement, down-regulated expression of MMP2 and vascular endothelial growth factor (VEGF) mRNA through NFκB signaling, and thereby inhibited A7r5 cell migration. Taken together, these findings highlight MPE inhibited migration in VSMC through FAK/Src/PI3K signaling pathway.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Morus/química , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Quinases da Família src/metabolismo , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/genética , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Fosfatidilinositol 3-Quinases/genética , Extratos Vegetais/isolamento & purificação , Polifenóis/isolamento & purificação , Ratos , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/genética
19.
Hum Cell ; 31(3): 242-250, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29687375

RESUMO

Cerebrovascular smooth muscle cell proliferation and migration contribute to hyperplasia in case of cerebrovascular remodeling and stroke. In the present study, we investigated the effects of acetylshikonin, the main ingredient of a Chinese traditional medicine Zicao, on human brain vascular smooth muscle cell (HBVSMCs) proliferation and migration induced by angiotensin II (AngII), and the underlying mechanisms. We found that acetylshikonin treatment significantly inhibited AngII-induced HBVSMCs proliferation and cell cycle transition from G1 to S phase. Wound-healing assay and Transwell assay showed that AngII-induced cell migration and invasion were markedly attenuated by acetylshikonin. In addition, AngII challenge significantly induced Wnt/ß-catenin signaling activation, as evidenced by increased ß-catenin phosphorylation and nuclear translocation and GSK-3ß phosphorylation. However, acetylshikonin treatment inhibited the activation of Wnt/ß-catenin signaling. Consequently, western blotting analysis revealed that acetylshikonin effectively reduced the expression of downstream target genes in AngII-treated cells, including c-myc, survivin and cyclin D1, which contributed to the inhibitory effect of acetylshikonin on HBVSMCs proliferation. Further, stimulation with recombinant Wnt3a dramatically reversed acetylshikonin-mediated inhibition of proliferation and cell cycle transition in HBVSMCs. Our study demonstrates that acetylshikonin prevents AngII-induced cerebrovascular smooth muscle cells proliferation and migration through inhibition of Wnt/ß-catenin pathway, indicating that acetylshikonin may present a potential option for the treatment of cerebrovascular remodeling.


Assuntos
Angiotensina II/efeitos adversos , Antraquinonas/farmacologia , Encéfalo/citologia , Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Medicamentos de Ervas Chinesas/farmacologia , Miócitos de Músculo Liso/citologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Antraquinonas/uso terapêutico , Células Cultivadas , Transtornos Cerebrovasculares/tratamento farmacológico , Depressão Química , Medicamentos de Ervas Chinesas/uso terapêutico , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Hiperplasia , Miócitos de Músculo Liso/patologia , Fosforilação/efeitos dos fármacos , Fitoterapia , Acidente Vascular Cerebral/patologia , Remodelação Vascular
20.
Biomed Pharmacother ; 102: 1-8, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29547743

RESUMO

Airway smooth muscle (ASM) is a prominent effecter in maintaining bronchial muscle contraction and responsible for airway hyper-responsiveness (AHR); the phenotype change and over-proliferation of airway smooth muscle cells (ASMCs) play key roles in the pathogenesis of asthma. The aim of this study was to investigate the anti-proliferation effects of Cortex Dictamni aqueous extract (CDAE) and ethanol extract (CDE) on ASMCs and the possible underline mechanisms. Cell proliferation rates were determined by MTT assay; matrix metalloproteinases-2 (MMP-2) activity was examined by gelatin zymography; cell proliferation and migration were appraised by in-vitro cell-gap closure assessment; protein expressions of p38, Bcl-2 and FAK of ASMCs were evaluated by western blotting and Ca2+ influx of cells was measured by confocal laser microscope. Our data demonstrated that the proliferation, migration and MMP-2 expressions of ASMCs were inhibited by CDAE or CDE; the protein expressions of p38, Bcl-2 and FAK in ASMCs were substantially reduced by CDAE and CDE detected by western blotting or immunocytochemistry; also the increased calcium influx has been observed instantaneously after ASMCs were stimulated by CDAE or CDE. These findings suggested that Cortex Dictamni extracts might have inhibitory effects on ASMCs over-proliferation which could be one of the underline mechanisms for the therapy of asthma.


Assuntos
Proliferação de Células/efeitos dos fármacos , Dictamnus/química , Miócitos de Músculo Liso/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Asma/tratamento farmacológico , Asma/fisiopatologia , Western Blotting , Cálcio/metabolismo , Movimento Celular/efeitos dos fármacos , Feminino , Quinase 1 de Adesão Focal/metabolismo , Microscopia Confocal , Músculo Liso/citologia , Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA