Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Tipo de documento
Intervalo de ano de publicação
1.
Mycorrhiza ; 33(5-6): 333-344, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37572110

RESUMO

Arbuscular mycorrhizal fungi (AMF) are obligate plant symbionts of most land plants. In these organisms, thousands of nuclei that are either genetically similar (homokaryotic) or derived from two distinct parents (dikaryotic) co-exist in a large syncytium. Here, we investigated the impact of these two nuclear organizations on the mycorrhizal response of potatoes (Solanum tuberosum) by inoculating four potato cultivars with eight Rhizophagus irregularis strains individually (four homokaryotic and four dikaryotic). By evaluating plant and fungal fitness-related traits four months post inoculation, we found that AMF genetic organization significantly affects the mycorrhizal response of host plants. Specifically, homokaryotic strains lead to higher total, shoot, and tuber biomass and a higher number of tubers, compared to dikaryotic strains. However, fungal fitness-related traits showed no clear differences between homokaryotic and dikaryotic strains. Nucleotype content analysis of single spores confirmed that the nucleotype ratio of AMF heterokaryon spores can shift depending on host identity. Together, these findings continue to highlight significant ecological differences derived from the two distinct genetic organizations in AMF.


Assuntos
Micorrizas , Solanum tuberosum , Micorrizas/genética , Fenótipo , Plantas/microbiologia , Biomassa , Fungos
2.
Mycologia ; 115(5): 602-613, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37561445

RESUMO

Pine barrens ecosystem has acidic, sandy, and nutrient-poor soil and is prone to drought and fire. In the New Jersey Pine Barrens, the predominant pitch pine (Pinus rigida) consists of two ecotypes: the regular pitch pines with heights of 4.6-12 m, and the pygmy pines of low stature (1.2-1.8 m) in the New Jersey Pine Plains. Previous ecological studies suggested that the dwarf pines in the Pine Plains that are embedded within the Pine Barrens were an evolutionary adaptation to frequent fire. Pines are obligate ectomycorrhizal (EcM) mutualists, and their root mycobiota may contribute to stress protection and plant health. However, information on the mycobiota associated with plants in the pine barrens ecosystem is lacking. To have a holistic understanding of the evolution and adaptation in this stressed environment, we used both culture-independent metabarcoding and culture-based method to characterize the mycobiota from soil and root of the two ecotypes and to identify core mycobiota. We found that Agaricomycetes, Leotiomycetes, and Mucoromycotina are predominant fungi in the New Jersey Pine Barrens ecosystem, which is rich in root mutualistic fungi. We observed that the pygmy pine roots had significantly higher density of EcM tips than the regular pine roots. This was corroborated by our metabarcoding analysis, which showed that the pygmy pine trees had higher ratio of ectomycorrhiza-forming fungi than the regular-statured pines. We hypothesize that symbiotrophic EcM fungi associated with pygmy pines are capable of mitigating high fire stress in the Pine Plains.


Assuntos
Micorrizas , Pinus , Micorrizas/genética , Ecossistema , Ecótipo , Pinus/microbiologia , Solo
3.
Mycorrhiza ; 33(5-6): 387-397, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37646822

RESUMO

Arbuscular mycorrhizal fungi (AMF) form symbioses with most terrestrial plants and are known to have a positive effect on plant growth and health. Different methodologies have been developed to assess the AMF-plant symbiosis. The most applied method, which involves staining of roots and microscopic observation of the AMF structures, is tedious and time-consuming and the results are highly dependent on the observer. Using quantitative polymerase chain reaction (qPCR) to quantify AMF root colonization represents a reliable, high-throughput technique that allows the assessment of numerous samples. Quantification with qPCR can be performed through two methods: relative quantification and absolute quantification. In relative quantification, the target gene is normalized with a reference gene. On the other hand, absolute quantification involves the use of a standard curve, for which template DNA is serially diluted. In a previous paper, we validated the primer pair AMG1F and AM1 for a relative quantification approach to assess AMF root colonization in Petunia. Here, we tested the same primers with an absolute quantification approach and compared the results with the traditional microscopy method. We evaluated the qPCR method with three different crops, namely, wheat (cv. Colmetta and Wiwa), tomato, and leek. We observed a strong correlation between microscopy and qPCR for Colmetta (r = 0.90, p < 0.001), Wiwa (r = 0.94, p < 0.001), and tomato (r = 0.93, p < 0.001), but no correlation for leek (r = 0.27, p = 0.268). This highlights the importance of testing the primer pair for each specific crop.


Assuntos
Micorrizas , Solanum lycopersicum , Micorrizas/genética , Triticum , Cebolas , Raízes de Plantas/microbiologia , Fungos/genética
4.
New Phytol ; 239(1): 271-285, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37167003

RESUMO

Coffee is one of the most traded commodities world-wide. As with 70% of land plants, coffee is associated with arbuscular mycorrhizal (AM) fungi, but the molecular bases of this interaction are unknown. We studied the mycorrhizal phenotype of two commercially important Coffea arabica cultivars ('Typica National' and 'Catimor Amarillo'), upon Funnelliformis mosseae colonisation grown under phosphorus limitation, using an integrated functional approach based on multi-omics, physiology and biochemistry. The two cultivars revealed a strong biomass increase upon mycorrhization, even at low level of fungal colonisation, improving photosynthetic efficiency and plant nutrition. The more important iconic markers of AM symbiosis were activated: We detected two gene copies of AM-inducible phosphate (Pt4), ammonium (AM2) and nitrate (NPF4.5) transporters, which were identified as belonging to the C. arabica parental species (C. canephora and C. eugenioides) with both copies being upregulated. Transcriptomics data were confirmed by ions and metabolomics analyses, which highlighted an increased amount of glucose, fructose and flavonoid glycosides. In conclusion, both coffee cultivars revealed a high responsiveness to the AM fungus along their root-shoot axis, showing a clear-cut re-organisation of the major metabolic pathways, which involve nutrient acquisition, carbon fixation, and primary and secondary metabolism.


Assuntos
Coffea , Micorrizas , Micorrizas/genética , Coffea/genética , Café/metabolismo , Fotossíntese , Perfilação da Expressão Gênica
5.
Ecology ; 104(5): e4015, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36882945

RESUMO

Mycorrhizal response is the most common metric for characterizing how much benefit a plant derives from mycorrhizal symbiosis. Traditionally, ecologists have used these metrics to generalize benefit from mycorrhizal symbiosis in plant species, ignoring the potential for plant intraspecific trait variation to alter the outcome of the mutualism. In order for mean trait values to be useful as a functional trait to describe a species, as has been attempted for mycorrhizal response traits, interspecific variation must be much larger than intraspecific variation. While the variation among species has been extensively studied with respect to mycorrhizal response traits, variation within species has rarely been examined. We conducted a systematic review and analyzed how much variation for mycorrhizal growth and nutrient response typically exists within a plant species. We assessed 28 publications that included 60 individual studies testing mycorrhizal response in at least five genotypes of a plant species, and we found that intraspecific trait variation for mycorrhizal response was generally very large and highly variable depending on study design. The difference between the highest and lowest growth response in a study ranged from 10% to 350% across studies, and 36 of the studies included species for which both positive and negative growth responses to mycorrhizae were observed across different genotypes. The intraspecific variation for mycorrhizal growth response in some of these studies was larger than the variation documented among species across the plant kingdom. Phosphorus concentration and content was measured in 17 studies and variation in phosphorus response was similar to variation in growth responses. We also found that plant genotype was just as important for predicting mycorrhizal response as the effects of fungal inoculant identity. Our analysis highlights not only the potential importance of intraspecific trait variation for mycorrhizal response, but also the lack of research that has been done on the scale of this variation in plant species. Including intraspecific variation into research on the interactions between plants and their symbionts can increase our understanding of plant coexistence and ecological stability.


Assuntos
Micorrizas , Micorrizas/genética , Simbiose , Genótipo , Fenótipo , Fósforo , Raízes de Plantas/microbiologia
6.
J Sci Food Agric ; 103(10): 4919-4933, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36942522

RESUMO

BACKGROUND: Panax quinquefolius L. is one of the most important foods and herbs because of its high nutritional value and medicinal potential. In our previous study we found that the ginsenoside content in P. quinquefolius was improved by arbuscular mycorrhizal fungi (AMFs). However, little research has been conducted on the molecular mechanisms in P. quinquefolius roots induced by AMFs colonization. To identify the metabolomic and transcriptomic mechanisms of P. quinquefolius induced by AMFs, non-mycorrhized (control) and mycorrhized (AMF) P. quinquefolius were used as experimental materials for comparative analysis of the transcriptome and metabolome. RESULTS: Compared with the control, 182 metabolites and 545 genes were significantly changed at the metabolic and transcriptional levels in AMFs treatment. The metabolic pattern of AMFs was changed, and the contents of ginsenosides (Rb1, Rg2), threonine, and glutaric acid were significantly increased. There were significant differences in the expression of genes involved in plant hormone signal transduction, glutathione metabolism, and the plant-pathogen interaction pathway. In addition, several transcription factors from the NAC, WRKY, and basic helix-loop-helix families were identified in AMFs versus the control. Furthermore, the combined analysis of 'transcriptomics-metabolomics' analysis showed that 'Plant hormone signal transduction', 'Amino sugar and nucleotide sugar metabolism' and 'Glutathione metabolism' pathways were the important enriched pathways in response to AMFs colonization. CONCLUSION: Overall, these results provide new insights into P. quinquefolius response to AMFs, which improve our understanding of the molecular mechanisms of P. quinquefolius induced by AMFs. © 2023 Society of Chemical Industry.


Assuntos
Ginsenosídeos , Micorrizas , Panax , Humanos , Panax/química , Micorrizas/genética , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma , Ginsenosídeos/farmacologia , Ginsenosídeos/análise , Raízes de Plantas/química , Metabolômica , Glutationa/metabolismo
7.
Microbiol Spectr ; 11(2): e0457822, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36951585

RESUMO

Soil microbial communities play crucial roles in the earth's biogeochemical cycles. Yet, their genomic potential for nutrient cycling in association with tree mycorrhizal type and tree-tree interactions remained unclear, especially in diverse tree communities. Here, we studied the genomic potential of soil fungi and bacteria with arbuscular (AM) and ectomycorrhizal (EcM) conspecific tree species pairs (TSPs) at three tree diversity levels in a subtropical tree diversity experiment (BEF-China). The soil fungi and bacteria of the TSPs' interaction zone were characterized by amplicon sequencing, and their subcommunities were determined using a microbial interkingdom co-occurrence network approach. Their potential genomic functions were predicted with regard to the three major nutrients carbon (C), nitrogen (N), and phosphorus (P) and their combinations. We found the microbial subcommunities that were significantly responding to different soil characteristics. The tree mycorrhizal type significantly influenced the functional composition of these co-occurring subcommunities in monospecific stands and two-tree-species mixtures but not in mixtures with more than three tree species (here multi-tree-species mixtures). Differentiation of subcommunities was driven by differentially abundant taxa producing different sets of nutrient cycling enzymes across the tree diversity levels, predominantly enzymes of the P (n = 11 and 16) cycles, followed by the N (n = 9) and C (n = 9) cycles, in monospecific stands and two-tree-species mixtures, respectively. Fungi of the Agaricomycetes, Sordariomycetes, Eurotiomycetes, and Leotiomycetes and bacteria of the Verrucomicrobia, Acidobacteria, Alphaproteobacteria, and Actinobacteria were the major differential contributors (48% to 62%) to the nutrient cycling functional abundances of soil microbial communities across tree diversity levels. Our study demonstrated the versatility and significance of microbial subcommunities in different soil nutrient cycling processes of forest ecosystems. IMPORTANCE Loss of multifunctional microbial communities can negatively affect ecosystem services, especially forest soil nutrient cycling. Therefore, exploration of the genomic potential of soil microbial communities, particularly their constituting subcommunities and taxa for nutrient cycling, is vital to get an in-depth mechanistic understanding for better management of forest soil ecosystems. This study revealed soil microbes with rich nutrient cycling potential, organized in subcommunities that are functionally resilient and abundant. Such microbial communities mainly found in multi-tree-species mixtures associated with different mycorrhizal partners can foster soil microbiome stability. A stable and functionally rich soil microbiome is involved in the cycling of nutrients, such as carbon, nitrogen, and phosphorus, and their combinations could have positive effects on ecosystem functioning, including increased forest productivity. The new findings could be highly relevant for afforestation and reforestation regimes, notably in the face of growing deforestation and global warming scenarios.


Assuntos
Microbiota , Micorrizas , Micorrizas/genética , Árvores/microbiologia , Solo/química , Microbiologia do Solo , Bactérias/genética , Fósforo , Nitrogênio , Carbono
8.
Environ Microbiol ; 25(4): 867-879, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36588345

RESUMO

Arbuscular mycorrhizal (AM) fungi form a continuum between roots and soil. One end of this continuum is comprised of the highly intimate plant-fungus interface with intracellular organelles for nutrient exchange, while on the other end the fungus interacts with bacteria to compensate for the AM fungus' inability to take up organic nutrients from soil. How both interfaces communicate in this highly complex tripartite mutualism is widely unknown. Here, the effects of phosphate-solubilizing bacteria (PSB) Rahnella aquatilis dwelling at the surface of the extraradical hyphae of Rhizophagus irregularis was analysed based on the expression of genes involved in C-P exchange at the peri-arbuscular space (PAS) in Medicago truncatula. The interaction between AM fungus and PSB resulted in an increase in uptake and transport of Pi along the extraradical hyphae and its transfer from AM fungus to plant. In return, this was remunerated by a transfer of C from plant to AM fungus, improving the C-P exchange at the PAS. These results demonstrated that a microorganism (i.e., a PSB) developing at the hyphosphere interface can affect the C-P exchange at the PAS between plant and AM fungus, suggesting a fine-tuned communication operated between three organisms via two distantly connected interfaces.


Assuntos
Medicago truncatula , Micorrizas , Rahnella , Fósforo/metabolismo , Carbono/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Rahnella/metabolismo , Fosfatos/metabolismo , Micorrizas/genética , Micorrizas/metabolismo , Raízes de Plantas/metabolismo , Bactérias/metabolismo , Solo
9.
Int J Mol Sci ; 23(20)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36293238

RESUMO

In nature, symbiosis with arbuscular mycorrhizal (AM) fungi contributes to sustainable acquisition of phosphorus and other elements in over 80% of plant species; improving interactions with AM symbionts may mitigate some of the environmental problems associated with fertilizer application in grain crops such as rice. Recent developments of high-throughput genome sequencing projects of thousands of rice cultivars and the discovery of the molecular mechanisms underlying AM symbiosis suggest that interactions with AM fungi might have been an overlooked critical trait in rice domestication and breeding. In this review, we discuss genetic variation in the ability of rice to form AM symbioses and how this might have affected rice domestication. Finally, we discuss potential applications of AM symbiosis in rice breeding for more sustainable agriculture.


Assuntos
Micorrizas , Oryza , Oryza/genética , Oryza/microbiologia , Simbiose/genética , Domesticação , Fertilizantes , Melhoramento Vegetal , Micorrizas/genética , Produtos Agrícolas/genética , Produtos Agrícolas/microbiologia , Fósforo , Raízes de Plantas/microbiologia
10.
PeerJ ; 10: e13813, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966927

RESUMO

Olive (Olea europaea L.) is a highly mycotrophic species that has been introduced and cultivated in China for half a century. The arbuscular mycorrhizal fungi (AMF) is extremely valuable as a kind of biofertilizer to promote the health and vigor of olive plants. However, it is still unclear how native AMF impact growth and mineral nutrients, especially phosphorus absorption in the area where olive trees were introduced in China. In the present study, through a pot experiment, the effects of native AMF on the growth, phosphorus uptake and expression levels of four phosphate transporter genes (Pht) of olive plantlets were characterized. We found that (1) typical AMF colonization was observed within the roots of inoculated olive plantlets, and the growth of plantlets was significantly promoted; (2) some indigenous consortia (AMF1 and AMF2) notably promoted the absorption of phosphorus, fertilizers significantly increased the foliar content of nitrogen, and both AMF inoculation and fertilization had no significant effect on the uptake of potassium; and (3) AMF inoculation enhanced the expression of phosphate transporter genes in inoculated olive roots. This work demonstrates the effectiveness of native AMF on the cultivation of robust olive plantlets and highlights the role of AMF in increasing phosphorus uptake. There is great potential in using native AMF consortia as inoculants for the production of healthy and robust olive plantlets.


Assuntos
Micorrizas , Olea , Micorrizas/genética , Fósforo/metabolismo , Raízes de Plantas , China
11.
Braz J Microbiol ; 53(4): 2039-2050, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35907141

RESUMO

Mycorrhizae association is reported to enhance the survivability of the host plant under adverse environmental conditions. The present study aims to explore the mycorrhizal association in the roots of different ecotypes of a threatened medicinal plant, Clerodendrum indicum (L.) O. Kuntze (Verbenaceae), collected from W.B., India, which correlates the degree of root colonization to the nutritional status of the native soil. Ten ecotypes of C. indicum having diverse morphological variations were collected. The mycorrhizae were characterized by both morphological and molecular methods. The nutritional status of the native soils was estimated. The study revealed that all the ecotypes have an association with mycorrhizal forms like hyphae, arbuscules, and vesicles. The molecular analysis showed Glomus intraradices and Rhizophagus irregularis as the associated arbuscular mycorrhizal fungi (AMF). A significant variation in arbuscule and vesicle formation was found growing in the varied nutritional statuses concerning soil parameters. The arbuscule was found negatively correlated with pH, conductivity, and potassium and positively correlated with organic carbon, nitrogen, and phosphorus. The vesicle was found positively correlated with pH, organic carbon, and potassium and negatively correlated with conductivity, nitrogen, and phosphorus. The interaction between conductivity: nitrogen, conductivity: phosphorus, organic-carbon: nitrogen, and pH: conductivity was significant in influencing vesicle formation. However, none of the interactions between parameters was found significant in influencing arbuscule formation. Thus, the study concludes that G. intraradices and R. irregularis are the principle mycorrhizae forming the symbiotic association with the threatened medicinal plant, C. indicum. They form vesicles and arbuscules based on their soil nutritive factors. Therefore, a large-scale propagation through a selective AMF association would help in the conservation of this threatened species from extinction.


Assuntos
Clerodendrum , Micorrizas , Plantas Medicinais , Verbenaceae , Micorrizas/genética , Raízes de Plantas/microbiologia , Fósforo , Solo , Nitrogênio , Carbono , Potássio
12.
J Environ Manage ; 316: 115193, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35550954

RESUMO

To explore the diversity and distribution characteristics of soil arbuscular mycorrhizae fungi (AMF) communities in the soft sandstone area, thirteen arsenic sandstone rock samples were collected from three planting plots (SI, SII and SIII) and one bare control plot (CK), separately. The sampling locations are as follows: the top of the slope (denoted by the number 1), sunny slope (2), shady slope (3) and gully bottom (4). These samples were then tested with an Illumina HiSeq PE250 high-throughput sequencing platform. Experimental results show that the SIII4 sample (from the gully bottom of the SIII plot) has the highest moisture content of 9.1%, while the CK sample in the control plot has lowest moisture content. SI2 has the highest pH of 9.58 and CK has the lowest pH of 8.73. SII1 has the highest available phosphorus (AP) content of 9.61 mg/kg, while SII3 has the lowest AP content of 2.29 mg/kg. Furthermore, SI2 has the highest NH4-N content of 11.24 mg/kg, while SII1 has the lowest NH4-N of 4.09 mg/kg. SII1 has the highest available potassium (AK) content of 48.92 mg/kg and CK has the lowest AK content of 1.82 mg/kg. In the observed-species index reflecting AMF genetic diversity, SI1 differences significantly from SII4 and SIII3 (P < 0.05). In the Shannon index, SI1 is significantly different from SI2, SI3, SI4; SII2 is significantly different from SII3; SI2, SI4, SII1 and SII3 are quite different from CK (P < 0.05). The dominant genera of AMF in these plots include Glomus (17.24%-65.53%), Scutellospora (0.04%-67.38%), Septoglomus (2.83%-43.03%) and Kamienskia (0.64%-46.38%). The dominant genera of AMF vary significantly between sunny slope and shady slope. Positive correlation exists between soil NH4-N and the AM fungal community structure. There are prominent positive correlations exist among genetic diversity index chao1, observed-species, pH and AP (P < 0.05), and obviously negative correlation between observed species and AK (P < 0.05). The research findings on the distribution characteristics of AM fungus community in the arsenic sandstone plot and their relationship with environmental factors can help with arsenic sandstone management in other similar areas.


Assuntos
Arsênio , Glomeromycota , Micobioma , Micorrizas , Fungos/genética , Micorrizas/genética , Fósforo , Solo/química , Microbiologia do Solo
13.
G3 (Bethesda) ; 12(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35100375

RESUMO

Gastrodia elata, an obligate mycoheterotrophic orchid, requires complete carbon and mineral nutrient supplementation from mycorrhizal fungi during its entire life cycle. Although full mycoheterotrophy occurs most often in the Orchidaceae family, no chromosome-level reference genome from this group has been assembled to date. Here, we report a high-quality chromosome-level genome assembly of G. elata, using Illumina and PacBio sequencing methods with Hi-C technique. The assembled genome size was found to be 1045 Mb, with an N50 of 50.6 Mb and 488 scaffolds. A total of 935 complete (64.9%) matches to the 1440 embryophyte Benchmarking Universal Single-Copy Orthologs were identified in this genome assembly. Hi-C scaffolding of the assembled genome resulted in 18 pseudochromosomes, 1008 Mb in size and containing 96.5% of the scaffolds. A total of 18,844 protein-coding sequences (CDSs) were predicted in the G. elata genome, of which 15,619 CDSs (82.89%) were functionally annotated. In addition, 74.92% of the assembled genome was found to be composed of transposable elements. Phylogenetic analysis indicated a significant contraction of genes involved in various biosynthetic processes and cellular components and an expansion of genes for novel metabolic processes and mycorrhizal association. This result suggests an evolutionary adaptation of G. elata to a mycoheterotrophic lifestyle. In summary, the genomic resources generated in this study will provide a valuable reference genome for investigating the molecular mechanisms of G. elata biological functions. Furthermore, the complete G. elata genome will greatly improve our understanding of the genetics of Orchidaceae and its mycoheterotrophic evolution.


Assuntos
Gastrodia , Micorrizas , Cromossomos , Gastrodia/genética , Genoma , Micorrizas/genética , Filogenia
14.
Ecol Lett ; 25(2): 509-520, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34971476

RESUMO

Theory suggests that relatives will cooperate more, and compete less, because of an increased benefit for shared genes. In symbiotic partnerships, hosts may benefit from interacting with highly related symbionts because there is less conflict among the symbionts. This has been difficult to test empirically. We used the arbuscular mycorrhizal symbiosis to study the effects of fungal relatedness on host and fungal benefits, creating fungal networks varying in relatedness between two hosts, both in soil and in-vitro. To determine how fungal relatedness affected overall transfer of nutrients, we fluorescently tagged phosphorus and quantified resource distribution between two root systems. We found that colonization by less-related fungi was associated with increased fungal growth, lower transport of nutrients across the network, and lower plant benefit - likely an outcome of increased fungal competition. More generally, we demonstrate how symbiont relatedness can mediate benefits of symbioses.


Assuntos
Micorrizas , Fungos , Micorrizas/genética , Fósforo , Raízes de Plantas , Plantas , Simbiose
15.
Fungal Genet Biol ; 158: 103639, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34800644

RESUMO

Arbuscular mycorrhizal fungi (AMF) are widespread obligate root symbionts that assist plants in obtaining nutrients and protection against environmental stresses. In the model species Rhizophagus irregularis, heterokaryotic strains (AMF dikaryons) carry thousands of nuclei originating from two parental strains whose frequency varies depending on strains and host identity. Here, using digital droplet PCR, we demonstrate that surrounding abiotic factors (temperature, phosphorus, and pH) also change the nuclear dynamics of such strains in root organ cultures. Furthermore, when spatially separated portions of the AMF mycelium grow under different abiotic conditions, all the produced spores carry highly similar nuclear ratios. Overall, these findings demonstrate that abiotic stressors impact the nuclear organization of a widespread group of multinucleate plant symbionts, and reveal remarkable mechanisms of nuclear ratio harmonization across the mycelium in these prominent symbionts.


Assuntos
Micorrizas , Fungos , Micélio/genética , Micorrizas/genética , Fósforo , Raízes de Plantas
16.
J Sci Food Agric ; 102(6): 2270-2280, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34625964

RESUMO

BACKGROUND: Solanum tuberosum tubers have higher content of phenolic compounds such as hydroxycinnamic acid derivatives (HCAD) and anthocyanins in coloured genotypes. The use of fungicides for crops is common, but there are few studies regarding the interaction of fungicides and arbuscular mycorrhizal fungi (AMF). Here, the AMF-plant interactions and the metabolic responses of three potato genotypes with different tuber colorations (VR808, CB2011-509 and CB2011-104) inoculated with Claroideoglomus claroideum (CC), Claroideoglomus lamellosum (HMC26) or Funneliformis mosseae (HMC7) were studied together with the use of the fungicides MONCUT (M) and ReflectXtra (R). Mycorrhizal traits, phenolic compound profiles and antioxidant activity (AA) were evaluated. RESULTS: Despite only two HCADs being identified, with 5-caffeolquinic acid the most abundant, four anthocyanins were detected only in purple potato genotypes. The anthocyanin and HCAD profiles, as well as AA, showed that the CB2011-104 genotype had better characteristics than the other genotypes, while VR808 and CB509 showed similar responses. The responses were dependent on the specific combinations of genotype, fungicide and the AMF strain, and generally showed better responses when colonized by AMFs. CONCLUSION: The three potato genotypes had differential responses depending on the inoculated AMFs and the fungicide applied before sowing, where the optimal combinations for antioxidant response, mycorrhization degree and performance were HMC26/R for VR808, HMC7/M for CB2011-509 and HMC26/M for CB2011-104. Our results suggest the existence of functional compatibility that can be registered as beneficial effects even at the genotypic level of the host regarding a specific AMF strain. © 2021 Society of Chemical Industry.


Assuntos
Fungicidas Industriais , Micorrizas , Solanum tuberosum , Antocianinas , Antioxidantes/farmacologia , Fungicidas Industriais/farmacologia , Micorrizas/genética
17.
Zhongguo Zhong Yao Za Zhi ; 46(16): 4103-4110, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34467720

RESUMO

In this study, the colonization, diversity and relative abundance of arbuscular mycorrhizal fungi(AMF) in the roots of Panax quinquefolius in different habitats of Shandong province were analyzed by staining-microscopy and high-throughput sequencing. The data were analyzed by bioinformatics tools and statistical software. The results showed that the roots of P. quinquefolius in different habitats were colonized by AMF with different rates and intensities. The AMF in roots of P. quinquefolius belong to three genera, three families, three orders, one class and one phylum. At the level of order, the AMF mainly included Paraglomerales(52.48%), Glomerales(25.60%) and Archaeosporales(3.08%). At the level of family, the AMF were dominated by Paraglomeraceae(52.48%), Glomeraceae(18.94%) and Claroideoglomeraceae(3.05%). At the level of genus, Paraglomus(51.46%), Glomus(20.01%) and Claroideoglomus(3.52%) accounted for a large proportion, of which Paraglomus and Glomus were dominant. Cluster analysis showed that the AMF in roots of P. quinquefolius with close geographical locations could be clustered together. In this study, the diversity and dominant germplasm resources of AMF in roots of P. quinquefolius cultivated in the main producing areas were identified, which provi-ded basic data for revealing the quality formation mechanism of P. quinquefolius medicinal materials from the perspective of environment.


Assuntos
Glomeromycota , Micorrizas , Panax , Fungos , Humanos , Micorrizas/genética , Raízes de Plantas , Microbiologia do Solo
18.
Appl Environ Microbiol ; 87(17): e0034921, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34160265

RESUMO

Arbuscular mycorrhizal fungi (AMF) provide essential nutrients to crops and are critically impacted by fertilization in agricultural ecosystems. Understanding shifts in AMF communities in and around crop roots under different fertilization regimes can provide important lessons for improving agricultural production and sustainability. Here, we compared the responses of AMF communities in the rhizosphere (RS) and root endosphere (ES) of wheat (Triticum aestivum) to different fertilization treatments, nonfertilization (control), mineral fertilization only (NPK), mineral fertilization plus wheat straw (NPKS), and mineral fertilization plus cow manure (NPKM). We employed high-throughput amplicon sequencing and investigated the diversity, community composition, and network structure of AMF communities to assess their responses to fertilization. Our results elucidated that AMF communities in the RS and ES respond differently to fertilization schemes. Long-term NPK application decreased the RS AMF alpha diversity significantly, whereas additional organic amendments (straw or manure) had no effect. In contrast, NPK fertilization increased the ES AMF alpha diversity significantly, while additional organic amendments decreased it significantly. The effect of different fertilization schemes on AMF network complexity in the RS and ES were similar to their effects on alpha diversity. Changes to AMF communities in the RS and ES correlated mainly with the pH and phosphorus level of the rhizosphere soil under long-term inorganic and organic fertilization regimes. We suggest that the AMF community in the roots should be given more consideration when studying the effects of fertilization regimes on AMF in agroecosystems. IMPORTANCE Arbuscular mycorrhizal fungi are an integral component of rhizospheres, bridging the soil and plant systems and are highly sensitive to fertilization. However, surprisingly little is known about how the response differs between the roots and the surrounding soil. Decreasing arbuscular mycorrhizal fungal diversity under fertilization has been reported, implying a potential reduction in the mutualism between plants and arbuscular mycorrhizal fungi. However, we found opposing responses to long-term fertilization managements of arbuscular mycorrhizal fungi in the wheat roots and rhizosphere soil. These results suggested that changes in the arbuscular mycorrhizal fungal community in soils do not reflect those in the roots, highlighting that the root arbuscular mycorrhizal fungal community is pertinent to understand arbuscular mycorrhizal fungi and their crop hosts' responses to anthropogenic influences.


Assuntos
Fertilizantes/análise , Fungos/isolamento & purificação , Micobioma , Micorrizas/isolamento & purificação , Triticum/crescimento & desenvolvimento , Fungos/classificação , Fungos/genética , Esterco/análise , Minerais/análise , Minerais/metabolismo , Micorrizas/classificação , Micorrizas/genética , Fósforo/análise , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Rizosfera , Solo/química , Microbiologia do Solo , Triticum/metabolismo
19.
FEMS Microbiol Ecol ; 97(3)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33512432

RESUMO

Ericaceous plants rely on ericoid mycorrhizal fungi for nutrient acquisition. However, the factors that affect the composition and structure of fungal communities associated with the roots of ericaceous plants remain largely unknown. Here, we use a 4.1-million-year (myr) soil chronosequence in Hawaii to test the hypothesis that changes in nutrient availability with soil age determine the diversity and species composition of fungi associated with ericoid roots. We sampled roots of a native Hawaiian plant, Vaccinium calycinum, and used DNA metabarcoding to quantify changes in fungal diversity and community composition. We also used a fertilization experiment at the youngest and oldest sites to assess the importance of nutrient limitation. We found an increase in diversity and a clear pattern of species turnover across the chronosequence, driven largely by putative ericoid mycorrhizal fungi. Fertilization with nitrogen at the youngest site and phosphorus at the oldest site reduced fungal diversity, suggesting a direct role of nutrient limitation. Our results also reveal the presence of novel fungal species associated with Hawaiian Ericaceae and suggest a greater importance of phosphorus availability for communities of ericoid mycorrhizal fungi than is generally assumed.


Assuntos
Ericaceae , Micorrizas , Fungos/genética , Havaí , Micorrizas/genética , Fósforo , Raízes de Plantas , Solo , Microbiologia do Solo
20.
Zhongguo Zhong Yao Za Zhi ; (24): 4103-4110, 2021.
Artigo em Chinês | WPRIM | ID: wpr-888068

RESUMO

In this study, the colonization, diversity and relative abundance of arbuscular mycorrhizal fungi(AMF) in the roots of Panax quinquefolius in different habitats of Shandong province were analyzed by staining-microscopy and high-throughput sequencing. The data were analyzed by bioinformatics tools and statistical software. The results showed that the roots of P. quinquefolius in different habitats were colonized by AMF with different rates and intensities. The AMF in roots of P. quinquefolius belong to three genera, three families, three orders, one class and one phylum. At the level of order, the AMF mainly included Paraglomerales(52.48%), Glomerales(25.60%) and Archaeosporales(3.08%). At the level of family, the AMF were dominated by Paraglomeraceae(52.48%), Glomeraceae(18.94%) and Claroideoglomeraceae(3.05%). At the level of genus, Paraglomus(51.46%), Glomus(20.01%) and Claroideoglomus(3.52%) accounted for a large proportion, of which Paraglomus and Glomus were dominant. Cluster analysis showed that the AMF in roots of P. quinquefolius with close geographical locations could be clustered together. In this study, the diversity and dominant germplasm resources of AMF in roots of P. quinquefolius cultivated in the main producing areas were identified, which provi-ded basic data for revealing the quality formation mechanism of P. quinquefolius medicinal materials from the perspective of environment.


Assuntos
Humanos , Fungos , Glomeromycota , Micorrizas/genética , Panax , Raízes de Plantas , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA