Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 876: 162781, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36906011

RESUMO

Arbuscular mycorrhizal fungi were recovered from soil samples from the naturally radioactive soil at the long-abandoned South Terras uranium mine in Cornwall, UK. Species of Rhizophagus, Claroideoglomus, Paraglomus, Septoglomus, and Ambispora were recovered, and pot cultures from all except Ambispora were established. Cultures were identified to species level using morphological observation and rRNA gene sequencing combined with phylogenetic analysis. These cultures were used in pot experiments designed with a compartmentalised system to assess the contribution of fungal hyphae to the accumulation of essential elements, such as copper and zinc, and non-essential elements, such as lead, arsenic, thorium, and uranium into root and shoot tissues of Plantago lanceolata. The results indicated that none of the treatments had any positive or negative impact on shoot and root biomass. However, Rhizophagus irregularis treatments showed higher accumulation of copper and zinc in shoots, while R. irregularis and Septoglomus constrictum enhanced arsenic accumulation in roots. Moreover, R. irregularis increased uranium concentration in roots and shoots of the P. lanceolata plant. This study provides useful insight into fungal-plant interactions that determine metal and radionuclide transfer from soil into the biosphere at contaminated sites such as mine workings.


Assuntos
Arsênio , Glomeromycota , Micorrizas , Poluentes do Solo , Urânio , Micorrizas/química , Urânio/análise , Raízes de Plantas/microbiologia , Cobre/análise , Arsênio/análise , Solo , Filogenia , Poluentes do Solo/análise , Plantas , Zinco/análise
2.
Sci Total Environ ; 871: 162075, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758701

RESUMO

Nutrient resorption is an important mechanism for nutrient conservation and can maintain ecosystem stoichiometry. Here, we examined the global-scale variation of nitrogen resorption efficiency (NRE) and phosphorus resorption efficiency (PRE) by analyzing observations from 218 published papers. We used Pagel's λ to test the phylogenetic limitation on NRE and PRE and applied the random forest model to assess biotic and abiotic drivers, which included climate, soil, species characteristics, and topographical factors, and predicted the global NRE and PRE distributions. We found that NRE and PRE had oppositing trends among climatic zones, plant functional groups, and foliar nitrogen (N) to phosphorus (P) ratios. Nutrient resorption was higher in ectomycorrhizal trees than in arbuscular mycorrhizal trees. Moreover, foliar NRE and PRE were not linked to phylogeny. On average, the random forest overall explained 38 % (21 %-55 %) variation in NRE and 36 % (16 %-55 %) variation in PRE. Both NRE and PRE varied greatly with climate and soil organic carbon (SOC). The spatial variation of NRE and PRE was coupled to N-limitation and P-limitation, respectively. Our evaluation of the factors that influenced NRE and PRE and their global distributions, and our novel approach for evaluating plant utilization of nutrients, advances our understanding of the relative stability of ecosystem randomness in forest ecosystems and the global forest nutrient cycle.


Assuntos
Micorrizas , Nitrogênio , Nitrogênio/análise , Ecossistema , Fósforo , Carbono , Filogenia , Solo , Folhas de Planta/química , Micorrizas/química , Plantas
3.
Ecotoxicol Environ Saf ; 247: 114217, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306613

RESUMO

Excessively high concentrations of selenium (Se) in soil are toxic to crop plants, and inoculation with arbuscular mycorrhizal fungi (AMF) can reverse Se stress in maize (Zea mays L.). To investigate the underlying mechanisms, maize seedlings were treated with sodium selenate (5 mg Se[VI] kg-1) and/or AMF (Funneliformis mosseae and Claroideoglomus etunicatum). Dual RNA sequencing in mycorrhiza and 16 S ribosomal DNA sequencing in soil were performed. The results showed that Se(VI) application alone decreased plant dry weight, but increased plant Se concentration, total Se content (mainly selenocysteine), and root superoxide content. Inoculation with either F. mosseae or C. etunicatum increased plant dry weight, decreased Se accumulation and selenocysteine proportion, enhanced root peroxidase activity, and alleviated oxidative stress in Se(VI)-treated plants. Inoculation also downregulated the expression of genes encoding Se transporters, assimilation enzymes, and cysteine-rich receptor-like kinases in Se(VI)-stressed plants, similar to plant-pathogen interaction and glutathione metabolism related genes. Conversely, genes encoding selenium-binding proteins and those related to phenylpropanoid biosynthesis were upregulated in inoculated plants under Se(VI) stress. Compared with Se(VI)-free plants, Se tolerance index, symbiotic feedback percentage on plant dry weight, and root colonization rate were all increased in inoculated plants under Se(VI) stress, corresponding to upregulated expression of 'key genes' in symbiosis. AMF inoculation increased bacterial diversity, decreased the relative abundances of selenobacteria related to plant Se absorption (e.g., Proteobacteria and Firmicutes), and improved bacterial network complexity in Se(VI)-stressed soils. We suggest that stress-mediated enhancement of mycorrhizal symbiosis contributed to plant Se(VI) tolerance, whereas AMF-mediated reshaping of soil bacterial community structure prevented excessive Se accumulation in maize.


Assuntos
Microbiota , Micorrizas , Selênio , Micorrizas/química , Zea mays/metabolismo , Solo/química , Ácido Selênico/metabolismo , DNA Ribossômico , RNA/metabolismo , Selenocisteína/metabolismo , Raízes de Plantas/metabolismo , Microbiota/genética , Plantas , Selênio/metabolismo , Análise de Sequência de DNA
4.
Biometals ; 35(6): 1243-1253, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36098857

RESUMO

Heavy metals stress is of great concern as it contaminates the environment affecting human health and the growth and quality of different plants including the medicinal ones. The use of soil microbes is among the most efficient methods for treating heavy-metal polluted soils. The objective was to investigate the effects of arbuscular mycorrhizal (AM) fungi (Glomus mosseae) on the nutrient uptake (N, P, K, Fe, and Mn,) and Cd removal of different plants including rosemary (Salvia rosmarinus), amaranth (Amaranthus sp.), and ornamental cabbage (Brassica oleracea) in a Cd-polluted soil. The experiment was a three-way factorial on the basis of a randomized complete block design with three replicates. The experimental soil was sprayed with Cd (0, 10, 25, 50, 75 and 100 mg kg-1), and after 2 months it was inoculated with 100 g of mycorrhizal inoculums, and was planted in 4-kg pots. Plant growth (root and aerial part) and nutrient uptake as well as Cd removal from the contaminated soil were significantly affected by the experimental treatments. AM fungi significantly increased plant P uptake (35%) compared with N (24%), K (4%), Fe (24%) and Mn (13%). According to the results, rosemary was the most effective plant for the bioremediation of the soil. There were significant differences between plant roots and aerial part in terms of plant nutrient uptake and phytoremediation potential. Although increasing Cd concentration decreased plant growth and nutrient uptake, mycorrhizal fungi was able to alleviate the stress by significantly increasing plant growth, nutrient uptake and phytoremediation potential.


Assuntos
Metais Pesados , Micorrizas , Poluentes do Solo , Humanos , Micorrizas/química , Cádmio , Biodegradação Ambiental , Raízes de Plantas , Solo , Nutrientes
5.
Mycorrhiza ; 32(1): 33-43, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34981189

RESUMO

Enriched surface ozone (O3) can impose harmful effects on plants. Conversely, arbuscular mycorrhizal (AM) symbiosis can enhance plant tolerance to various environmental stresses and facilitate plant growth. The interaction of AM fungi and O3 on plant performance, however, seldom has been investigated. In this study, alfalfa (Medicago sativa L.) was used as a test plant to study the effects of O3 and AM symbiosis on plant physiology and growth under two O3 levels (ambient air and elevated O3 with 60 nmol·mol-1 O3 enrichment) and three AM inoculation treatments (inoculation with exogenous or indigenous AM fungi and non-inoculation control). The results showed that elevated O3 decreased plant net photosynthetic rate and biomass, and increased malondialdehyde concentration, while AM inoculation (with both exogenous and indigenous AM fungi) could promote plant nutrient acquisition and growth irrespective of O3 levels. The positive effects of AM symbiosis on plant nutrient acquisition and antioxidant enzyme (superoxide dismutase and peroxidase) activities were most likely offset by increased stomatal conductance and O3 intake. As a result, AM inoculation and O3 generally showed no significant interactions on plant performance: although elevated O3 did not diminish the beneficial effects of AM symbiosis on alfalfa plants, AM symbiosis also did not alleviate the harmful effects of O3 on plants.


Assuntos
Micorrizas , Ozônio , Medicago sativa , Micorrizas/química , Ozônio/análise , Ozônio/farmacologia , Fósforo , Raízes de Plantas/química , Solo , Simbiose
6.
Sci Total Environ ; 807(Pt 1): 150857, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34626638

RESUMO

Nutrient loss from terrestrial ecosystems via leaching and gaseous emissions is increasingly threatening global environmental and human health. Although arbuscular mycorrhizal fungi (AMF) have been shown to regulate soil N and P losses, a comprehensive quantitative overview of their influences on the losses of these soil nutrients across global scales is currently lacking. This study used a meta-analysis of 322 observations from 36 studies to assess the effect of AMF inoculum on 11 variables related to the loss of soil N and P. We found that the presence of AMF significantly reduced soil N and P losses, with the most pronounced reduction occurring in soil NO3--N (-32%), followed by total P (-21%), available P (-16%) and N2O (-10%). However, the mitigation effects of AMF on soil N and P loss were dependent on the identity of AMF inoculum, plant type and soil biotic and abiotic factors. Generally, the mitigation effects of AMF increased with increasing AMF root colonization rate, microbial diversity of inoculants, soil organic carbon (SOC) content and experimental duration as well as with decreasing soil sand contents and soil N and P availability. Overall, this meta-analysis highlights the importance of AMF inoculation in mitigating N and P nutrient loss and environmental pollution for terrestrial ecosystem sustainability.


Assuntos
Micorrizas , Carbono , Ecossistema , Fungos , Humanos , Micorrizas/química , Nitrogênio/análise , Fósforo , Raízes de Plantas/química , Solo , Microbiologia do Solo
7.
Environ Pollut ; 294: 118652, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890743

RESUMO

Arbuscular mycorrhizal fungi (AMF) are easily influenced by increasing atmospheric CO2 concentration and heavy metals including cadmium (Cd), which can regulate antioxidant enzyme in host plants. Although the effect of AMF under individual conditions such as elevated CO2 (ECO2) and Cd on antioxidant enzyme in host plants has been reported widely, the effect of AMF under ECO2 + Cd receives little attention. In this study, a pot experiment was conducted to study the effect of AMF community in roots on superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities in leaves of 135-d Robinia pseudoacacia L. seedlings under ECO2 + Cd. The activities of SOD and CAT increased and POD activity and the richness and diversity of AMF community decreased under ECO2 + Cd relative to Cd alone. The richness and diversity of AMF were negatively related to Cd content in roots and leaves. The richness and OTUs of AMF community positively and AMF gene abundance negatively affected POD activity under the combined treatments. Superoxide dismutase and POD activities were negatively and positively related to Archaeospora and Scutellospora, respectively, under ECO2 + Cd. Cadmium in roots and leaves was negatively and significantly related to Glomus, Scutellospora, and Claroideoglomus abundance under ECO2 + Cd. Overall, AMF diversity and Archaeospora and Scutellospora in roots significantly influenced SOD, POD, and CAT activities. The response of AM symbiosis to ECO2 might regulate antioxidant capacity in host plants upon Cd exposure. Glomus, Scutellospora, and Claroideoglomus might be applied to phytoremediation of Cd-contaminated soils.


Assuntos
Micorrizas , Robinia , Poluentes do Solo , Antioxidantes , Biodegradação Ambiental , Cádmio/análise , Cádmio/toxicidade , Dióxido de Carbono , Micorrizas/química , Folhas de Planta/química , Raízes de Plantas/química , Plântula/química , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
8.
Sci Total Environ ; 815: 151977, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838906

RESUMO

Achieving sustainable agricultural development requires the efficient use of nutrient resources for crop production. Recovering nutrients from animal manures may play a key role in achieving this. Animal manures typically have low nutrient concentrations, and in ratios that are often not ideal for balanced crop nutrition. Here, combinations of organic and inorganic phosphorus (P) were formulated as granular products (organomineral fertilisers) with granule size suitable for transport and spreading. The fertilisers were produced by granulating powdered chicken litter with MAP and urea powders making the following formulations: 0:4, 1:3, 2:2, 3:1, 4:0. The kinetics of NH4+-N and P release from the fertilisers, and the effects on tomato growth and nutrition, as well as arbuscular mycorrhizal formation in roots following fertiliser application, were determined. Cumulative NH4+-N release ceased within 12 h, and was lower in the formulations with higher proportions of chicken litter. The cumulative P released reached approximately 80% of total P in all formulations, and the time to obtain maximum P dissolution was 19 days in the formulation that contained only chicken litter. The organomineral fertilisers increased tomato shoot growth by 15-28% compared to the chicken litter only, MAP only and MAP/urea formulations. Reasonable levels of mycorrhizal colonisation of tomato roots was achieved with the organomineral fertilisers. The results demonstrated that optimum plant growth does not depend solely on immediately available P, and that timing of nutrient supply to match plant demand is important. The combination of chicken litter with MAP sustained nutrient supply and improved plant growth. Taken together, organomineral fertiliser formulations are potential alternatives to inorganic P fertilisers that can improve crop growth and nutrition, while provide a sustainable use for animal production wastes.


Assuntos
Micorrizas , Solanum lycopersicum , Agricultura , Animais , Fertilizantes/análise , Micorrizas/química , Fósforo , Raízes de Plantas/química , Solo
9.
Bull Environ Contam Toxicol ; 107(6): 1155-1160, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34236456

RESUMO

Agricultural arsenic (As, CAS. No. 7440-38-2) over the issue of pollution has been related to people's livelihood, security and moderate use of As contaminated soil is an important aspect of contaminated soil remediation. In this potted plant experiment, synergistic effects of arbuscular mycorrhizal fungi (AMF) Funneliformis mosseae and iron (Fe, CAS. No. 7439-89-6) oxides on plant growth and phosphorus (P, CAS. No. 7723-14-0), As and Fe uptake by maize (Zea mays L.) were studied on simulating medium As-polluted soils in greenhouse. Different amounts (0, 5, 10, 20, 40 g kg- 1) of iron tailings (IT) were added. The results showed that IT20 and IT40 addition significantly increased mycorrhizal infection rate, plant biomass, root length and P, Fe uptake under FM treatment; IT40 addition decreased As concentration in roots. In addition, FM inoculation increased biomass, root length and P uptake by shoots, but decreased Fe and As concentration in shoots. Therefore, the combined FM inoculation and IT40 addition promoted maize growth and decreased As concentration in shoots by decreasing As absorption efficiency, increasing P and Fe uptake and P/As ratio.


Assuntos
Arsênio , Micorrizas , Poluentes do Solo , Arsênio/toxicidade , Biodegradação Ambiental , Fungos , Ferro , Micorrizas/química , Fósforo , Raízes de Plantas/química , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Zea mays
10.
Sci Total Environ ; 768: 144453, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33434802

RESUMO

As symbionts capable of reciprocal rewards, arbuscular mycorrhizal fungi (AMF) can alleviate heavy metal toxicity to host plants and are easily influenced by elevated CO2 (ECO2). Although the individual effects of ECO2 and cadmium (Cd) on AMF have been widely reported, the response of AMF to ECO2 + Cd receives little attention. We evaluated the combined effects of ECO2 and Cd on AMF in the rhizosphere soil and roots of Robinia pseudoacacia L. seedlings. Under ECO2 + Cd relative to Cd, AMF gene copies and richness in rhizosphere soils increased (p < 0.05) and the diversity reduced (p < 0.05) at 4.5 mg Cd kg-1 dry soil; whereas root AMF abundance at 4.5 mg Cd kg-1 dry soil and the diversity and richness reduced (p < 0.05). Elevated CO2 caused obvious differences in the dominant genera abundance between rhizosphere soils and roots upon Cd exposure. Responses of C, water-soluble organic nitrogen (WSON), pH, and diethylene triamine penta-acetic acid (DTPA)-Cd in rhizosphere soils and root N to ECO2 shaped dominant genera in Cd-polluted rhizosphere soils. Levels of DTPA-Cd, WSON, C and pH in rhizosphere soils and C/N ratio, N, and Cd in roots to ECO2 affected (p < 0.05) dominant genera in roots under Cd exposure. AMF richness and diversity were lower in roots than in rhizosphere soils. Elevated CO2 altered AMF communities in rhizosphere soils and roots of R. pseudoacacia seedlings exposed to Cd. AMF associated with R. pseudoacacia may be useful/interesting to be used for improving the phytoremediation of Cd under ECO2.


Assuntos
Micorrizas , Robinia , Poluentes do Solo , Cádmio/análise , Cádmio/toxicidade , Dióxido de Carbono , Micorrizas/química , Raízes de Plantas/química , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
11.
Environ Sci Pollut Res Int ; 28(3): 3019-3034, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32895795

RESUMO

The current study was conducted to determine the combined performance of soil micro- and macro-organisms to stimulate the growth and lead (Pb) uptake of Bermuda grass (Cynodon dactylon (L.) Persi.) in a soil polluted with Pb-mining activities. Plants were inoculated with a mixture of arbuscular mycorrhizal (AM) fungal species, plant growth-promoting rhizobacteria (PGPR) species, and epigeic earthworms (Eisenia fetida) either alone or in combination. Results demonstrated antagonistic interactions between AM fungi and PGPR or between AM fungi and earthworms on the growth of mycorrhizal plants by increasing the availability of both phosphorus (P) and Pb in the soil solution and the subsequent reduction of mycorrhizal root colonization following inoculation of PGPR or earthworms. Plant biomass was negatively correlated with soil-available Pb, but positively with the percentage of root colonization by AM fungi. Additionally, mycorrhizal root colonization was negatively correlated with soil-available P and Pb concentrations. The triple inoculation of AM fungi with PGPR and epigeic earthworms as a bioaugmentation tool could result in a synergistic interaction effect on plant Pb bioaccumulation and uptake, enhancing the efficiency of phytoremediation and eco-restoration of Pb-polluted sites. In conclusion, the use of Bermuda grass in association with functionally dissimilar soil organisms demonstrated a high effectiveness for Pb in situ phytoremediation, specifically Pb phytostabilization, to reduce Pb mobilization in the environment.


Assuntos
Micorrizas , Oligoquetos , Poluentes do Solo , Animais , Biodegradação Ambiental , Cynodon , Chumbo , Micorrizas/química , Raízes de Plantas/química , Solo , Poluentes do Solo/análise
12.
Sci Total Environ ; 759: 143571, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33248777

RESUMO

The purpose of this work was to study the factors affecting the absorption of U by plants growing on the spoil tip of an abandoned mine in western Spain. The plant species were selected based on how palatable they were to livestock and were sampled for four consecutive years during which, we also recorded rainfall data. The factors related to the plants studied were the leaf size and the percentage and characteristics of the arbuscular mycorrhizae (AM) fungi present in their roots. Our results showed a correlation between the annual rainfall and the U concentration in the plants. The percentage of mycorrhization and AM vesicles is a predominant factor in the uptake of U by plants. Spergularia rubra (L.) J.Presl & C.Presl, which is resistant to mycorrhization, contained higher U concentrations relative to the plants that grew with AM mycorrhization. The absorption curves of the different plants studied indicated that these plants were tolerant to 238U from 875 Bq kg-1 (70 mg kg-1), with a hormesis effect below that concentration. The annual U removal was 0.068%, suggesting that AM are responsible for limiting the incorporation of U into the food chain, favouring its retention in the soil and preventing its dispersion.


Assuntos
Micorrizas , Urânio , Micorrizas/química , Raízes de Plantas/química , Plantas , Solo , Espanha , Urânio/análise
13.
Ecotoxicology ; 30(1): 118-129, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33141388

RESUMO

Environmental risks of silver (Ag) nanoparticles (NPs) have aroused considerable concern, however, their ecotoxicity in soil-plant systems has yet not been well elaborated, particularly in agroecosystems with various fertility levels and soil biota. The aims of the present study were to determine AgNPs impacts on maize as influenced by mycorrhizal inoculation and P fertilization. A greenhouse pot experiment was conducted determine the effects of mycorrhizal inoculation with Rhizophagus intraradices and P fertilization (0, 20, and 50 P mg/kg soil, as Ca(H2PO4)2) on plant growth, Ag accumulation and physiological responses of maize exposed to AgNPs (1 mg/kg), or an equivalent Ag+. Overall, AgNPs and Ag+ did not significantly affect plant biomass and acquisition of mineral nutrients, activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), chlorophyll contents and photosystem (PS) II photochemical efficiency. In most cases, AgNPs and Ag+ caused similar Ag accumulation in plant tissues. P fertilization significantly increased Ag bioavailability and plant Ag accumulation, but only promoted the growth and P uptake of nonmycorrhizal plants. AM inoculation produced positive impacts on plant biomass, nutritional and physiological responses, but slightly affected extractable Ag in soil and Ag accumulation in plants. Mycorrhizal responses in plant growth and P uptake were more pronounced in the treatments without P but with Ag. By and large, AgNPs exhibited similar phytoavailability, phytoaccumulation and low phytotoxicity compared to Ag+, but higher fungitoxicity (i.e., lower root colonization). In conclusion, both AM inoculation and P fertilization can improve plant performance in the soil exposed to Ag, but P increases environmental risk of Ag. Our results indicate a beneficial role of arbuscular mycorrhizal fungi but a dual role of P in soil-plant systems exposed to AgNPs or Ag+.


Assuntos
Fertilizantes , Nanopartículas Metálicas , Micorrizas , Fósforo , Prata/toxicidade , Poluentes do Solo , Zea mays/fisiologia , Biomassa , Fungos , Nanopartículas Metálicas/toxicidade , Micorrizas/química , Raízes de Plantas/química , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Zea mays/efeitos dos fármacos
14.
Sci Total Environ ; 748: 141166, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32798860

RESUMO

Selenium (Se) deficiency is a public health concern that is mainly caused by inadequate intake of Se from staple crops. The purpose of this study is to investigate the effects of inoculation with different arbuscular mycorrhizal fungus (AMF) strains, including Funneliformis mosseae (Fm) and Glomus versiforme (Gv), and fertilization with selenite or selenate on the accumulation and speciation of Se in rice. The results showed that using both AMF inoculation and Se fertilization could promote organic Se accumulation in rice grain than using only Se fertilization. Moreover, grain of rice inoculated with Fm and grown in soil fertilized with selenate had the highest accumulation of Se, of which selenomethionine was the dominant Se species. The AMF inoculation also led to high content of available Se and high relative abundance of Firmicutes in soil. The high concentration of available Se in soil suggests that the AMF inoculation may modify the microbial community, which then causes the Se uptake of rice to increase, in turn causing the amount of organic Se accumulated in rice to increase. Based on these results, using AMF inoculation combined with Se fertilization can be a promising strategy for Se biofortification in rice.


Assuntos
Microbiota , Micorrizas , Oryza , Selênio , Fertilizantes/análise , Micorrizas/química
15.
Environ Sci Pollut Res Int ; 27(35): 44440-44451, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32770333

RESUMO

Due to the increase of cadmium (Cd)-contaminated land area worldwide, effective measures should be taken to minimize the Cd bioavailability in crops. A study was performed to explore the effectiveness of biochar pyrolyzed from rice straw at 400 °C alone or combined with AM fungi (Funneliformis mosseae) on the corn growth and Cd uptake in corn in Cd-contaminated soil with different levels of phosphorus supplies. The results showed that biochar significantly reduced 66% and 38% of Cd uptake in shoot and root respectively (P < 0.001) attributed to the increase of soil pH and dissolved organic matter. In contrast, AM fungi inoculation of corn plants had little effect on Cd bioavailability due to the AM was suppressed by the highly contaminated acid soil (31.76 mg/kg), and had neither synergistic effect with biochar on decreasing the Cd bioavailability with high or low phosphorus supplies. This study demonstrated that biochar application could be a promising method to immobilize Cd in the contaminated soil to ensure the safety of agro-product while high Cd-contaminated soil would suppress the growth of mycorrhizae, so this remains an open question to be further studied.


Assuntos
Micorrizas , Poluentes do Solo , Disponibilidade Biológica , Cádmio/análise , Carvão Vegetal , Micorrizas/química , Fósforo , Raízes de Plantas/química , Solo , Poluentes do Solo/análise
16.
Microb Ecol ; 69(3): 652-67, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25339308

RESUMO

Food security (a pressing issue for all nations) faces a threat due to population growth, land availability for growing crops, a changing climate (leading to increases in both abiotic and biotic stresses), heightened consumer awareness of the risks related to the use of agrichemicals, and also the reliance on depleting fossil fuel reserves for their production. Legislative changes in Europe mean that fewer agrichemicals will be available in the future for the control of crop pests and pathogens. The need for the implementation of a more sustainable agricultural system globally, incorporating an integrated approach to disease management, has never been more urgent. To that end, the Valorizing Andean Microbial Diversity (VALORAM) project (http://valoram.ucc.ie), funded under FP7, examined the role of microbial communities in crop production and protection to improve the sustainability, food security, environmental protection, and productivity for rural Andean farmers. During this work, microbial volatile organic compounds (mVOCs) of 27 rhizobacterial isolates were identified using gas chromatography/mass spectrometry (GC/MS), and their antifungal activity against Rhizoctonia solani was determined in vitro and compared to the activity of a selection of pure volatile compounds. Five of these isolates, Pseudomonas palleroniana R43631, Bacillus sp. R47065, R47131, Paenibacillus sp. B3a R49541, and Bacillus simplex M3-4 R49538 trialled in the field in their respective countries of origin, i.e., Bolivia, Peru, and Ecuador, showed significant increase in the yield of potato. The strategy followed in the VALORAM project may offer a template for the future isolation and determination of putative biocontrol and plant growth-promoting agents, useful as part of a low-input integrated pest management system.


Assuntos
Bactérias/química , Micorrizas/química , Microbiologia do Solo , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/microbiologia , Compostos Orgânicos Voláteis/farmacologia , Bactérias/isolamento & purificação , Bolívia , Equador , Fungicidas Industriais/isolamento & purificação , Fungicidas Industriais/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Peru , Raízes de Plantas/química , Raízes de Plantas/microbiologia , Rhizoctonia/efeitos dos fármacos , Solanum tuberosum/química , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/isolamento & purificação
17.
J Hazard Mater ; 280: 79-88, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25136765

RESUMO

Interactions of macrofungi with U, Th, Pb and Ag were investigated in the former ore mining district of Príbram, Czech Republic. Samples of saprotrophic (34 samples, 24 species) and ectomycorrhizal (38 samples, 26 species) macrofungi were collected from a U-polluted Norway spruce plantation and tailings and analyzed for metal content. In contrast to Ag, which was highly accumulated in fruit-bodies, concentrations of U generally did not exceed 3mg/kg which indicates a very low uptake rate and efficient exclusion of U from macrofungi. In ectomycorrhizal tips (mostly determined to species level by DNA sequencing), U contents were practically identical with those of the non-mycorrhizal fine spruce roots. These findings suggest a very limited role of macrofungi in uptake and biotransformation of U in polluted forest soils. Furthermore, accumulation of U, Th, Pb and Ag in macrofungal fruit-bodies apparently does not depend on total content and chemical fractionation of these metals in soils (tested by the BCR sequential extraction in this study).


Assuntos
Micorrizas/metabolismo , Poluentes do Solo/análise , Urânio/análise , República Tcheca , Ecossistema , Micorrizas/química , Solo/química
18.
Electrophoresis ; 35(11): 1535-46, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25025092

RESUMO

Fresh fruits and vegetables are largely investigated for their content in vitamins, mineral nutrients, dietary fibers, and plant secondary metabolites, collectively called phytochemicals, which play a beneficial role in human health. Quantity and quality of phytochemicals may be detected by using different analytical techniques, providing accurate quantification and identification of single molecules, along with their molecular structures, and allowing metabolome analyses of plant-based foods. Phytochemicals concentration and profiles are affected by biotic and abiotic factors linked to plant genotype, crop management, harvest season, soil quality, available nutrients, light, and water. Soil health and biological fertility play a key role in the production of safe plant foods, as a result of the action of beneficial soil microorganisms, in particular of the root symbionts arbuscular mycorrhizal fungi. They improve plant nutrition and health and induce changes in secondary metabolism leading to enhanced biosynthesis of health-promoting phytochemicals, such as polyphenols, carotenoids, flavonoids, phytoestrogens, and to a higher activity of antioxidant enzymes. In this review we discuss reports on health-promoting phytochemicals and analytical methods used for their identification and quantification in plants, and on arbuscular mycorrhizal fungi impact on fruits and vegetables nutritional and nutraceutical value.


Assuntos
Suplementos Nutricionais/análise , Micorrizas , Compostos Fitoquímicos/análise , Fenômenos Fisiológicos Vegetais , Plantas/microbiologia , Simbiose , Animais , Cromatografia Líquida de Alta Pressão/métodos , Frutas/química , Frutas/metabolismo , Humanos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Micorrizas/química , Micorrizas/fisiologia , Micorrizas/ultraestrutura , Compostos Fitoquímicos/metabolismo , Plantas/química , Verduras/química , Verduras/metabolismo
19.
Br J Nutr ; 107(2): 242-51, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21733294

RESUMO

Tomato fruit has assumed the status of 'functional food' due to the association between its consumption and a reduced likelihood of certain types of cancers and CVD. The nutraceutical value of tomatoes can be affected by the cultivation conditions, e.g. the phytochemical content of the fruits may increase with the establishment of beneficial mycorrhizal symbioses in the plants. A multidisciplinary study was carried out to gain knowledge on the antioxidant, oestrogenic/anti-oestrogenic and genotoxic activity of tomato fruits produced by mycorrhizal plants. The present results showed that the symbiosis positively affected the growth and mineral nutrient content of tomato plants and enhanced the nutritional and nutraceutical value of tomato fruits through modifications of plant secondary metabolism, which led to increased levels of lycopene in fruits obtained from mycorrhizal plants, compared with controls. Moreover, such changes did not result in the production of mutagenic compounds, since tomato extracts induced no in vitro genotoxic effects. Fruit extracts, both hydrophilic and the lipophilic fractions, originating from mycorrhizal plants strongly inhibited 17-ß-oestradiol-human oestrogen receptor binding, showing significantly higher anti-oestrogenic power compared with controls. The present study shows that beneficial plant symbionts, such as mycorrhizal fungi, can lead to the production of safe and high-quality food, which is an important societal issue strongly demanded by both consumers and producers.


Assuntos
Frutas/química , Frutas/microbiologia , Alimento Funcional/análise , Alimento Funcional/microbiologia , Micorrizas/fisiologia , Solanum lycopersicum/química , Solanum lycopersicum/microbiologia , Antioxidantes/análise , Suplementos Nutricionais/efeitos adversos , Suplementos Nutricionais/análise , Antagonistas de Estrogênios/análise , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Frutas/efeitos adversos , Frutas/crescimento & desenvolvimento , Alimento Funcional/efeitos adversos , Humanos , Concentração de Íons de Hidrogênio , Solanum lycopersicum/efeitos adversos , Solanum lycopersicum/crescimento & desenvolvimento , Masculino , Minerais/análise , Mutagênicos/análise , Mutagênicos/farmacologia , Micorrizas/química , Valor Nutritivo , Fitoestrógenos/análise , Fitoestrógenos/farmacologia , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Controle de Qualidade , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Elementos de Resposta/efeitos dos fármacos , Simbiose
20.
Fungal Biol ; 115(7): 643-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21724170

RESUMO

We investigated element accumulation in vesicles of the arbuscular mycorrhizal (AM) fungus Glomus intraradices, extracted from the roots of inoculated leek plants. The elemental composition (elements heavier than Mg) was quantified using particle-induced X-ray emission (PIXE), in combination with scanning transmission ion microscopy (STIM). In vesicles, P was the most abundant of the elements analysed, followed by Ca, S, Si and K. We analysed 12 vesicles from two root systems and found that the variation between vesicles was particularly high for P and Si. The P content related positively to Si, Zn and K, while its relation to Cl fitted to a negative power function. Vesicle transects showed that P and K were present in central parts, while Ca was present mainly near the vesicle surfaces. The results showed that P is an important part (0.5% of the dry weight) of the vesicle content and that the distribution of some elements, within mycelia, may be strongly correlated.


Assuntos
Vesículas Citoplasmáticas/química , Glomeromycota/química , Micorrizas/química , Espectrometria por Raios X/métodos , Elementos Químicos , Glomeromycota/isolamento & purificação , Micorrizas/isolamento & purificação , Cebolas/microbiologia , Raízes de Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA