Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 223: 116197, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583810

RESUMO

Brusatol (Bru), a main extract from traditional Chinese medicine Brucea javanica, has been reported to exist antitumor effect in many tumors including melanoma. However, the underlying mechanism in its anti-melanoma effect still need further exploration. Here, we reported that the protein expression of KLF4 in melanoma cells were significantly downregulated in response to brusatol treatment. Overexpression of KLF4 suppressed brusatol-induced melanoma cell apoptosis; while knockdown of KLF4 enhanced antitumor effects of brusatol on melanoma cells not only in vitro but also in vivo. Further studies on the mechanism revealed that KLF4 bound to the promoter of NCK2 directly and facilitated NCK2 transcription, which suppressed the antitumor effect of brusatol on melanoma. Furthermore, our findings showed that miR-150-3p was dramatically upregulated under brusatol treatment which resulted in the downregulation of KLF4. Our results suggested that the miR-150-3p/KLF4/NCK2 axis might play an important role in the antitumour effects of brusatol in melanoma.


Assuntos
Melanoma , MicroRNAs , Quassinas , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Quassinas/farmacologia , Apoptose , MicroRNAs/genética , MicroRNAs/farmacologia , Proteínas Oncogênicas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
Neurosci Lett ; 824: 137691, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38373630

RESUMO

Enhancing axonal regeneration is one of the most important processes in treating nerve injuries. Both magnetic and electrical stimulation have the effect of promoting nerve axon regeneration. But few study has investigated the effects of trans-spinal magnetic stimulation (TsMS) combined with electroacupuncture (EA) on nerve regeneration in rats with sciatic nerve injury. In this study, we compared the improvement of neurological function in rats with sciatic nerve crush injuries after 4 weeks of different interventions (EA, TsMS, or TsMS combined with EA). We further explored the morphological and molecular biological alterations following sciatic nerve injury by HE, Masson, RT-PCR, western blotting, immunofluorescence staining and small RNA transcriptome sequencing. The results showed that TsMS combined with EA treatment significantly promoted axonal regeneration, increased the survival rate of neurons, and suppressed denervation atrophy of the gastrocnemius muscle. Subsequent experiments suggested that the combination treatment may play an active role by mediating the miR-539-5p/Sema3A/PlexinA1 signaling axis.


Assuntos
Eletroacupuntura , MicroRNAs , Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Ratos , Animais , Ratos Sprague-Dawley , Semaforina-3A/farmacologia , Axônios , Regeneração Nervosa/fisiologia , Nervo Isquiático/lesões , Neuropatia Ciática/terapia , Traumatismos dos Nervos Periféricos/terapia , MicroRNAs/genética , MicroRNAs/farmacologia
3.
Nanotechnology ; 35(13)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38096580

RESUMO

Nanoencapsulation, employing safe materials, holds substantial promise for enhancing bioactive compounds' delivery, stability, and bioactivity. In this study, we present an innovative and safe methodology for augmenting the incorporation of the anticancer agent, curcumin, thereby inducing apoptosis by downregulating miR20a and miR21 expression. Our established methodology introduces three pivotal elements that, to our knowledge, have not undergone formal validation: (1) Novel formulation: We introduce a unique formula for curcumin incorporation. (2) Biocompatibility and biodegradability: our formulation exclusively consists of biocompatible and biodegradable constituents, ensuring the absence of detrimental residues or undesirable reactions under varying conditions. (3) Low-temperature incorporation: Curcumin is incorporated into the formulation at temperatures approximating 50 °C. The formulation comprises lecithin (LE), chitosan (CH), an eco-friendly emulsifying agent, and olive oil as the solvent for curcumin. Nanoscale conversion is achieved through ultrasonication and probe sonication (20 kHz). Transmission electron microscopy (TEM) reveals spherical nanoparticles with diameters ranging from 29.33 nm and negative zeta potentials within the -28 to -34 mV range. Molecular studies involve the design of primers for miR20a and miR21. Our findings showcase a remarkable encapsulation efficiency of 91.1% for curcumin, as determined through a linear equation. The curcumin-loaded nanoformulation demonstrates potent anticancer activity, effectively activating the apoptosis pathway in cancer cells at the minimum inhibitory concentration. These results underscore the potential of our nanoformulation as a compelling, cancer-selective treatment strategy, preserving the integrity of normal cells, and thus, warranting further exploration in the field of cancer therapy.


Assuntos
Quitosana , Curcumina , Neoplasias Esofágicas , MicroRNAs , Nanopartículas , Humanos , Curcumina/química , Quitosana/química , Lecitinas , Sobrevivência Celular , Nanopartículas/química , MicroRNAs/genética , MicroRNAs/farmacologia , Portadores de Fármacos/química
4.
Am J Nephrol ; 55(1): 86-105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37734331

RESUMO

INTRODUCTION: Di(2-ethylhexyl) phthalate (DEHP) is a common plasticizer. Studies have revealed that DEHP exposure can cause kidney damage. Green tea is among the most popular beverages in China. Green tea polyphenols (GTPs) have been proven to have therapeutic effects on organ damage induced by heavy metal exposure. However, few studies have reported on GTP-relieving DEHP-induced kidney damage. METHODS: C57BL/6J male mice aged 6-8 weeks were treated with distilled water (control group), 1,500 mg/kg/d DEHP + corn oil (model group), 1,500 mg/kg/d DEHP + corn oil + 70 mg/kg GTP (treatment group), corn oil (oil group), and 70 mg/kg GTP (GTP group) by gavage for 8 weeks, respectively. The renal function of mice and renal tissue histopathology of each group were evaluated. The renal tissues of mice in the model, treatment, and control groups were analyzed using high-throughput sequencing. We calculated the differentially expressed microRNAs (miRNAs) and messenger RNAs (mRNAs) using the limma R package, the CIBERSORT algorithm was used to predict immune infiltration, the starBase database was used to screen the miRNA-mRNA regulatory axis, and immunohistochemical analyses were performed to verify protein expression. RESULTS: GTP alleviated the deterioration of renal function, renal inflammation and fibrosis, and mitochondrial and endoplasmic reticulum lesions induced by DEHP in mice. Differential immune infiltrations of plasma, dendritic, T, and B cells were noted between the model and treatment groups. We found that three differentially expressed miRNAs (mmu-miR-383-5p, mmu-miR-152-3p, and mmu-miR-144-3p), three differentially expressed mRNAs (Ddit4, Dusp1, and Snx18), and three differentially expressed proteins (Ddit4, Dusp1, and Snx18) played crucial roles in the miRNA-mRNA-protein regulatory axes when GTPs mitigate DEHP-induced kidney damage in mice. CONCLUSION: GTP can alleviate DEHP-induced kidney damage and regulate immune cell infiltration. We screened four important miRNA-mRNA-protein regulatory axes of GTP, mitigating DEHP-induced kidney damage in mice.


Assuntos
Dietilexilftalato , MicroRNAs , Ácidos Ftálicos , Animais , Camundongos , Masculino , Dietilexilftalato/toxicidade , Óleo de Milho/farmacologia , Camundongos Endogâmicos C57BL , Antioxidantes , Rim , MicroRNAs/genética , MicroRNAs/farmacologia , RNA Mensageiro , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Guanosina Trifosfato/farmacologia
5.
Clin Anat ; 37(1): 2-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37191314

RESUMO

Colon cancer is a great threat to human health. Curcumin, as a traditional Chinese medicine extract with anti-tumor and anti-inflammatory effects, can affect the development of diverse human diseases including cancer. The aim of this research was to probe the mechanism by which curcumin regulates colon cancer progression. Colon cancer cells were processed with graded concentrations of curcumin. The proliferation and apoptosis of the treated cells were determined by MTT, colony formation assay and flow cytometry. Expression of signaling pathway-related proteins and programmed death-ligand 1 (PD-L1) was measured by western blotting. The effect of curcumin on tumor cell growth was verified through T cell-mediated killing and ELISA assays. The relationship between target gene expression and the survival rate of colon cancer patients was analyzed by a survival curve. Curcumin treatment restrained proliferation and accelerated apoptosis of colon cancer cells. It elevated miR-206 expression, which in turn affected colon cancer cell function. miR-206 enhanced colon cancer cell apoptosis and inhibited PD-L1 expression; thus, curcumin enhanced the killing effect of T cells on tumor cells by suppressing PD-L1 through inhibiting the JAK/STAT3 pathway. Patients with high expression of miR-206 had better survival rates than those with low expression. Curcumin can regulate miR-206 expression and inhibit the malignant behavior of colon cancer cells and enhance T cell killing through the JAK/STAT3 pathway.


Assuntos
Neoplasias do Colo , Curcumina , MicroRNAs , Humanos , Curcumina/farmacologia , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , MicroRNAs/farmacologia , Linfócitos T/metabolismo , Linfócitos T/patologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Apoptose
6.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139125

RESUMO

Alzheimer's disease (AD) is currently the most common neurodegenerative disease. Glycogen synthase kinase 3ß (GSK-3ß) is a pivotal factor in AD pathogenesis. Recent research has demonstrated that plant miRNAs exert cross-kingdom regulation on the target genes in animals. Gastrodia elata (G. elata) is a valuable traditional Chinese medicine that has significant pharmacological activity against diseases of the central nervous system (CNS). Our previous studies have indicated that G. elata-specific miRNA plays a cross-kingdom regulatory role for the NF-κB signaling pathway in mice. In this study, further bioinformatics analysis suggested that Gas-miR36-5p targets GSK-3ß. Through western blot, RT-qPCR, and assessments of T-AOC, SOD, and MDA levels, Gas-miR36-5p demonstrated its neuroprotective effects in an AD cell model. Furthermore, Gas-miR36-5p was detected in the murine brain tissues. The results of the Morris water maze test and western blot analysis provided positive evidence for reversing the learning deficits and hyperphosphorylation of Tau in AD mice, elucidating significant neuroprotective effects in an AD model following G. elata RNA administration. Our research emphasizes Gas-miR36-5p as a novel G. elata-specific miRNA with neuroprotective properties in Alzheimer's disease by targeting GSK-3ß. Consequently, our findings provide valuable insights into the cross-kingdom regulatory mechanisms underlying G. elata-specific miRNA, presenting a novel perspective for the treatment of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Doenças dos Animais , Gastrodia , MicroRNAs , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Gastrodia/genética , Glicogênio Sintase Quinase 3 beta/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , MicroRNAs/metabolismo , MicroRNAs/farmacologia , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fosforilação , Proteínas tau/metabolismo
7.
Int J Nanomedicine ; 18: 6469-6486, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026537

RESUMO

Background: The respiratory system is intensely damaged by acute lung injury (ALI). The anti-inflammatory effects of tetramethylpyrazine (TMP) against ALI have been confirmed, but it exhibits a short half-life. miR-194-5p could directly target Rac1, but the internalization rate of miRNA cells was low. Purpose: To explore the potential of the soft mesoporous organic silica nanoplatform (NPs) as carriers for delivery of TMP and miR-194-5p through the tail vein. Methods: NPs@TMP and NPs@PEI@miR-194-5p were added to the HUVEC cell-lines, in vitro, to observe the cell uptake and cytotoxic effects. In vivo experiments were conducted by injecting fluorescently labeled NPs through the tail vein and tracking distribution. Therapeutic and toxic side-effects were analyzed systemically. Results: In vitro study exhibited that NPs have no toxic effect on HUVECs within the experimental parameters and have excellent cellular uptake. The IVIS Spectrum Imaging System shows that NPs accumulate mainly in the lungs. NPs@TMP treatment can improved oxidative stress and inflammation levels in ALI mice and inhibited the TLR4/NLRP3/caspase 1 pathway. NPs@PEI@miR-194-5p can inhibit the Rac1/ZO-1/occludin pathway and improved endothelial cell permeability in ALI mice. The co-treatment of NPs@TMP and NPs@PEI@miR-194-5p can significantly improved the survival rates of the mice, reduced pulmonary capillary permeability and improved pathological injury in ALI mice. Innovation: This study combined traditional Chinese medicine, bioinformatics, cellular molecular biology and nanobiomedicine to study the pathogenesis and treatment of ALI. The rate of cellular internalization was improved by changing the shape and hardness of nanoparticles. NPs@TMP and NPs@PEI@miR-194-5p combined application can significantly improve the survival condition and pathological injury of mice. Conclusion: NPs loaded with TMP and miR-194-5p showed a greater therapeutic effect in ALI mice.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Compostos de Organossilício , Pirazinas , Animais , Humanos , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana/metabolismo , Lipopolissacarídeos , Pulmão/patologia , MicroRNAs/farmacologia , Compostos de Organossilício/farmacologia , Pirazinas/farmacologia
8.
Phytother Res ; 37(5): 1997-2011, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36631292

RESUMO

Cisplatin (DDP) resistance is a bottleneck in the treatment of head and neck cancer (HNC), leading to poor prognosis. Fisetin, a dietary flavonoid, has low toxicity and high antitumor activity with unclear mechanisms. We intended to predict the targets of fisetin for reversing DDP-resistance and further verify their expressions and roles. A network pharmacology approach was applied to explore the target genes. The hub genes were screened out and subjected to molecular docking and experimental verification (in vivo and in vitro). Thirty-two genes common to fisetin and DDP-resistance were screened, including three hub genes, namely HSP90AA1, PPIA, and PTPRS. Molecular docking suggested that fisetin and the candidate proteins could bind tightly. HSP90AA1 was identified as the key gene. Administration of fisetin increased the sensitivity of chemoresistant cells (Cal27/DDP and FaDu/DDP) to DDP, accompanied by the downregulation of HSP90AA1 and IL-17. HSP90AA1 silencing increases the sensitivity of DDP-resistant cells to DDP, which was mediated by IL-17. In summary, fisetin might inhibit the chemoresistance of HNC cells to DDP by targeting the HSP90AA1/IL-17 pathway. Several hub genes might be the targets of fisetin for reversing DDP-resistance in HNC cells and might also serve as prognostic factors and therapeutic targets for HNC.


Assuntos
Antineoplásicos , Carcinoma , Neoplasias de Cabeça e Pescoço , MicroRNAs , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Interleucina-17 , Simulação de Acoplamento Molecular , Resistencia a Medicamentos Antineoplásicos , Carcinoma/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Flavonóis , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , MicroRNAs/farmacologia , Proteínas de Choque Térmico HSP90/farmacologia
9.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232844

RESUMO

Mesenchymal stem cell (MSC)-derived exosomes have emerged as an attractive cell-free tool in tissue engineering and regenerative medicine. The current study aimed to examine the anti-inflammatory, pro-angiogenic, and wound-repair effects of both exosomes and selenium-stimulated exosomes, and check whether the latter had superior wound healing capacity over others. The cellular and molecular network of exosomes, as a paracrine signal, was extensively studied by performing miRNA arrays to explore the key mediators of exosomes in wound healing. Selenium is known to play a critical role in enhancing the proliferation, multi-potency, and anti-inflammatory effects of MSCs. Selenium-stimulated exosomes showed significant effects in inhibiting inflammation and improving pro-angiogenesis in human umbilical vein endothelial cells. Cell growth and the migration of human dermal fibroblasts and wound regeneration were more enhanced in the selenium-stimulated exosome group than in the selenium and exosome groups, thereby further promoting the wound healing in vivo. Taken together, selenium was found to augment the therapeutic effects of adipose MSC-derived exosomes in tissue regeneration. We concluded that selenium may be considered a vital agent for wound healing in stem cell-based cell-free therapies.


Assuntos
Exossomos , MicroRNAs , Selênio , Movimento Celular , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação , MicroRNAs/farmacologia , Selênio/farmacologia , Cicatrização
10.
J Food Biochem ; 46(12): e14407, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36219718

RESUMO

The pathogenesis of gastric cancer is a multistage process that involves glucose metabolism, inflammation, oxidative damage, angiogenesis, autophagy, and apoptosis. Moreover, microRNA-340 (miR340) also plays a vital role in tumorigenesis and the biology of gastric cancer as an epigenetic factor. It seems that the use of ketogenic diets (KDs) and plant extracts that have antitumor, anti-inflammatory, and antioxidant properties can be good treatment options to cure gastric cancer. The aim of this study was to investigate the role of miR-340 on pathways involved in the pathogenesis of gastric cancer and the improving effects of the KD, Oldenlandia diffusa extract (ODE), and curcumin in the animal model of gastric cancer. One hundred and ten male Wistar rats were divided into control and treatment groups. The expression of miR-340 along with genes involved in inflammation, oxidative damage, angiogenesis, and apoptosis were assessed. The results showed that the KD and different doses of curcumin and ODE in a dose-dependent behavior could induce apoptosis and the expression of the Akt/mTORC1 pathway and inhibit inflammation, oxidative damage, and angiogenesis in the gastric tissue of rats with cancer. In addition, there was no significant difference between cancer groups receiving ODE and curcumin. These results also showed that consumption of KD could significantly increase the efficacy of ODE and curcumin which may be due to increasing miR-340 expression. The results of this study suggested well that the KD along with conventional therapies in traditional medicine can be a useful solution for the prevention and treatment of gastric cancer. PRACTICAL APPLICATIONS: Gastric cancer is the third leading cause of cancer death, and genetic and epigenetic factors, including miR-340, are involved in its pathogenesis. However, the use of ketogenic diets (KDs) and plant products such as curcumin and Oldenlandia diffusa extract (ODE) can play an effective role in inhibiting tumorigenesis in some cancers. Our results showed that the KD and different doses of curcumin and ODE could induce apoptosis and the expression of the Akt/mTORC1 pathway and inhibit inflammation, oxidative damage, and angiogenesis in the gastric tissue. Moreover, the KD could significantly increase the efficacy of ODE and curcumin which may be due to an increase in miR-340 expression. These findings provide novel perceptions about the mechanisms of the KD, curcumin, and ODE to cure gastric cancer. It suggested that the KD as adjunctive therapy along with conventional therapies in traditional medicine could be considered a useful solution to prevent and treat gastric cancer.


Assuntos
Curcumina , Dieta Cetogênica , MicroRNAs , Oldenlandia , Neoplasias Gástricas , Animais , Ratos , Curcumina/farmacologia , Extratos Vegetais/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Proteínas Proto-Oncogênicas c-akt , Ratos Wistar , Apoptose , Estresse Oxidativo , MicroRNAs/genética , MicroRNAs/farmacologia , Inflamação , Carcinogênese , Autofagia
11.
Chem Biol Interact ; 366: 110112, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36029803

RESUMO

Abuse of anabolic-androgenic steroids (AAS) is associated with neurological and cognitive problems in athletes. The Purpose of this study was to investigate the simultaneous effect of resistance training (RT) and spirulina supplementation (Sp) on the function of the antioxidant system with emphasis on mir125b, mir146a and cognitive function in Stanazolol (S)-induced neurotoxicity in rats. This experimental animal model study was performed with a post-test design with a control group. 45 male Sprague-Dawley rats were divided into six groups of 9 animals including (Althobaiti et al., 2022) [1]: sham (Sh/normal saline intake) (Havnes et al., 2019) [2], 25 mg/kg/wk of stanazolol (S) (Albano et al., 2021) [3], S + 100 mg/kg of Sp + (S + Sp) (Bjørnebekk et al., 2021) [4], RT (six weeks with an intensity of 50-100% of body weight) + S (S + RT) (Kanayama et al., 2013) [5] S + Sp + RT. Levels of superoxide dismutase (SOD), glutathione peroxidase (GPx), total antioxidant capacity (TAC), malondialdehyde (MDA), percentage of healthy cells in the C1 and C3 regions of hippocampus, miR125b, miR146a, step-through latency (STL), time spent in dark compartment (TDC), repeated entry in dark compartment (RDC) and percentage of alternation (PA%) were measured in the post-test. Results showed that the Sp, RT and SP + RT increased levels of SOD, GPx and percentage of healthy cells in C1 region, decreased MDA, mir125b, mir146a in hippocampal tissue and decreased TDC levels in S-exposed rats (P ≤ 0.05). Sp + RT decreased RDC and increased SOD levels; on the other hand, RT decreased RDC levels in S-exposed rats (P ≤ 0.05). Levels of TAC in the Sp groups were significantly higher than the S group (P ≤ 0.05). Also, the effect of Sp + RT in reducing miR125b, miR146a, and STL levels was much higher than the effect of Sp and RT alone (P ≤ 0.05). It seems that applying resistance training and spirulina supplementation both separately and interactively is effective in improving the antioxidant system as well as memory and learning in cognitive impairment caused by stanazolol. However, more studies on microRNAs are needed.


Assuntos
MicroRNAs , Síndromes Neurotóxicas , Treinamento Resistido , Spirulina , Animais , Antioxidantes/metabolismo , Cognição , Glutationa Peroxidase/metabolismo , Humanos , Masculino , Malondialdeído , MicroRNAs/genética , MicroRNAs/farmacologia , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Solução Salina/farmacologia , Spirulina/metabolismo , Estanozolol/farmacologia , Superóxido Dismutase/metabolismo
12.
J Food Biochem ; 46(10): e14340, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35866931

RESUMO

Ginsenoside Rb1 (Rb1) is a major active compound in Panax ginseng and has shown considerable anti-inflammation effects. Osteoarthritis (OA) is one of the major degenerative disorders affecting the knee. MiR-21-5p is a potential therapeutic target for OA treatment. This study explored the anti-OA effects of Rb1 by focusing on its interaction with the miR-21-5p/FGF18 axis. OA was induced in rats using monoiodoacetate (MIA) and managed with Rb1. Then, changes in the histological structure and miR-21-5p-mediated signaling pathway were measured in joint tissues. The role of miR-21-5p/FGF18 in the anti-OA effects of Rb1 was confirmed by inducing its levels in rats and chondrocytes. Rb1 improved the histological structure and suppressed the production of cytokines in joint tissues. At the molecular level, Rb1 down-regulated miR-12-5p levels and up-regulated FGF18 levels. In chondrocytes, Rb1 increased cell viability, suppressed inflammation, down-regulated miR-21-5p levels, and up-regulated FGF18 levels. The restored level of miR-21-5p compromised the anti-OA effects of Rb1. In a nutshell, our study reported that the anti-OA effects of Rb1 relied on the inhibited expression of miR-21-5p. PRACTICAL APPLICATIONS: Ginsenoside Rb1 (Rb1) is a major active compound in Panax ginseng and has shown considerable anti-osteoarthritis (OA) effects. The current study not only relates the anti-OA function of ginsenoside Rb1 with microRNA but also provides valuable information for exploring novel targets for the development the anti-OA strategies.


Assuntos
MicroRNAs , Osteoartrite , Panax , Animais , Citocinas , Fatores de Crescimento de Fibroblastos/metabolismo , Ginsenosídeos , Inflamação/tratamento farmacológico , Inflamação/genética , MicroRNAs/genética , MicroRNAs/metabolismo , MicroRNAs/farmacologia , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Panax/metabolismo , Ratos
13.
Int J Mol Sci ; 23(11)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35682971

RESUMO

Colorectal cancer (CRC) is one of most common cancers worldwide, with high rates of mortality. Epidemiological findings demonstrate that coffee consumption reduces the risk of developing CRC by ~13%. In general, in vivo and in vitro findings demonstrate the antiproliferative, antioxidant and proapoptotic effects of brewed coffee or major bioavailable coffee compounds. Thus, it was assessed whether caffeine (CAF) and/or chlorogenic acid (CGA) attenuates the early-stage of chemically induced mouse colon carcinogenesis. Male Swiss mice were submitted to a 1,2-dimethylhydrazine/deoxycholic acid (DMH/DCA)-induced colon carcinogenesis model. These animals received CAF (50 mg/kg), CGA (25 mg/kg) or CAF+CGA (50 + 25 mg/kg) intragastrically for five times/week for ten weeks. CAF+CGA had the most pronounced effects on decreasing epithelial cell proliferation (Ki-67) and increasing apoptosis (cleaved caspase-3) in colonic crypts. This treatment also decreased the levels of proinflammatory cytokines IL-6, IL-17 and TNF-α, and downregulated the oncomiR miR-21a-5p in the colon. Accordingly, the analysis of miR-21a-5p targets demonstrated the genes involved in the negative regulation of proliferation and inflammation, and the positive regulation of apoptosis. Ultimately, CAF+CGA attenuated preneoplastic aberrant crypt foci (ACF) development. Our findings suggest that a combination of coffee compounds reduces early-stage colon carcinogenesis by the modulation of miR-21a-5p expression, highlighting the importance of coffee intake to prevent CRC.


Assuntos
Neoplasias do Colo , MicroRNAs , 1,2-Dimetilidrazina , Animais , Cafeína/farmacologia , Carcinogênese , Ácido Clorogênico/farmacologia , Ácido Clorogênico/uso terapêutico , Café , Colo/metabolismo , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/farmacologia
14.
J Food Biochem ; 46(8): e14195, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35460089

RESUMO

Exercise training and medicinal herb supplementation may improve microRNAs (miRNAs) expression associated with obesity. This study aimed to assess the effects of 10 weeks of aerobic training (AT) and dill extract (DE) on miR-33 and miR-223 expression of liver in high-fat diet (HFD)-induced obese rats. Forty male Wistar rats were fed a defined high-fat (n = 32) and standard (n = 8, nonobese control [NC]) diet. After obesity induction, obese rats were randomly allocated to four groups: AT, DE, AT + DE, and obese control (OC). Rats were euthanized and plasma and liver tissue samples were collected after the intervention. The liver expression of miR-33 was lower in the AT, DE, AT + DE, and NC groups compared with the OC group. Also, the liver miR-223 expression was higher in the AT, DE, AT + DE, and NC groups compared with the OC group. Moreover, the liver expression of miR-223 in the AT + DE group was higher compared with the AT and DE groups. The AT, DE, AT + DE, and NC groups had lower liver TC compared with the OC group. Also, the plasma level of apolipoprotein B (Apo B) was significantly lower, and liver HDL-C was significantly higher in the AT + DE and NC groups compared with the OC group. These findings show that long-term AT combined with the intake of DE may improve the plasma levels of Apo B, and TC and HDL-C levels in the liver, which is probably due to AT and DE positive effects on miR-33 and miR-223 in the liver of obese rats. PRACTICAL APPLICATIONS: Aerobic training reduces overweight and obesity health problems, however, the duration and intensity of the exercise training distinguish between individuals. We used an integrated approach combining pharmacological and non-pharmacological as a medical strategy to prevent HFD-induced metabolic injury in obese rats. The present results discovered that a combination of AT + DE intervention improves the miR-33 and miR-223 in the liver of obese rats.


Assuntos
Anethum graveolens , MicroRNAs , Animais , Apolipoproteínas B/metabolismo , Apolipoproteínas B/farmacologia , Dieta Hiperlipídica/efeitos adversos , Fígado , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , MicroRNAs/farmacologia , Obesidade/genética , Obesidade/metabolismo , Ratos , Ratos Wistar , Fatores de Risco
15.
Biomed Pharmacother ; 149: 112835, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35325850

RESUMO

Breast cancer remains a leading cause of female mortality worldwide. Therefore, novel complementary treatments have been sought. Recently, there has been a growing interest in investigating the possible complementary effects of polyphenolic compounds against various malignancies. In the present study, using MCF-7 and MDA-MB-231 human breast adenocarcinoma cells, the anticancer efficacy of a polyphenolic mixture (PFM) was investigated. PFM is composed of curcumin, resveratrol, epigallocatechin gallate, and quercetin. PFM treatment led to a dose-dependent inhibition of cell proliferation, with IC50 values of 25.9 ± 3 µg/ml and 29.4 ± 0.9 µg/ml for MCF-7 and MDA-MB-231 cells, respectively. In addition, PFM induced apoptosis in MDA-MB-231 cells and cell cycle arrest at the S phase in MCF-7 cells. Using RT-qPCR, PFM treatment was observed to result in significant downregulation of the oncogenic miR-155 (P < 0.05), as well as significant downregulation of the rate-limiting glycolytic enzyme, hexokinase 2 (HK2) (P < 0.05), while upregulating the expression of the zinc finger E-box binding homeobox 2 gene (P < 0.01). PFM was also found to exert an anti-migration effect in breast cancer cells using the wound healing assay, as well as significantly (P < 0.05) increasing the median survival of Ehrlich ascites carcinoma (EAC) tumor-bearing mice. These results suggest that PFM possesses potential antitumor effects against breast cancer. A possible mechanism of action could be due to PFM's effect in modulating the expression of the glycolytic enzyme HK2 through suppression of miR-155 in MCF-7 cells. Combining polyphenolic compounds that interact with one another could result in synergistic effects that potentially target various tumour hallmarks.


Assuntos
Neoplasias da Mama , Carcinoma de Ehrlich , MicroRNAs , Animais , Antioxidantes/farmacologia , Apoptose , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Células MCF-7 , Camundongos , MicroRNAs/genética , MicroRNAs/farmacologia
16.
Complement Ther Med ; 66: 102819, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35240291

RESUMO

OBJECTIVE: The objective was to determine the effects of resveratrol supplementation on glucose homeostasis, oxidative stress, inflammation and microRNAs expression in patients with diabetes mellitus type 2 on oral hypoglycemic drugs. METHOD: This was a randomized, double blinded placebo-controlled parallel group trial. The diabetic patients (n = 110) were randomly assigned either to resveratrol (n = 55) and placebo (55) groups after informed consent and given once daily resveratrol 200 mg and cellulose capsules respectively for 24 weeks. Fasting glucose, insulin, HbA1c, lipid profile, TNF- α, IL-6, hs-CRP, MDA & circulatory microRNAs were measured at start and end of 24- week intervention. RESULTS: Out of 110 patients recruited, 94 patients completed the study comprising of 45 in resveratrol and 46 in placebo group. The resveratrol supplementation after 24 weeks was resulted in significant reduction [mean difference (95%CI)] of plasma glucose[- 0.50(-0.94 to -0.06)], insulin[- 1.31(-2.24 to -0.38)], homeostatic model assessment of insulin resistance[- 0.83(-1.37 to -0.29)], malondialdehyde[- 0.36(-0.61 to -0.11)], high sensitive-C-reactive protein[- 0.35(-0.70 to -0.01)], tumor necrosis factor-alpha[- 1.25(-1.90 to -0.61)] and interleukin-6[- 1.99(-3.29 to -0.69)]. More than two-fold down regulation in miRNA-34a, miRNA-375, miRNA-21, miRNA-192 and up regulation in miRNA-126 and miRNA-132 expression was noted in patients receiving resveratrol as compared to placebo. No side effects were reported during the trial. CONCLUSION: Resveratrol supplementation contributes in improvement of glycemic control by reducing insulin resistance. It has significant beneficial impact on chronic inflammation, oxidative stress and associated microRNA expression in diabetic patients. Thus, supplementation of resveratrol along with oral hypoglycemic agents may be useful in the reduction of diabetic associated complications.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , MicroRNAs , Biomarcadores/metabolismo , Glicemia , Diabetes Mellitus Tipo 2/metabolismo , Suplementos Nutricionais , Método Duplo-Cego , Glucose/uso terapêutico , Hemostasia , Humanos , Inflamação/tratamento farmacológico , MicroRNAs/metabolismo , MicroRNAs/farmacologia , MicroRNAs/uso terapêutico , Estresse Oxidativo , Resveratrol/farmacologia , Resveratrol/uso terapêutico
17.
Daru ; 29(2): 267-278, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34405380

RESUMO

BACKGROUND: MicroRNA (miR)-34a, as a master tumor suppressor in colorectal cancer (CRC), could regulate multiple genes participating in tumor proliferation, invasion, immune evasion, and inflammation-induced progression. Exosomes, as novel nano-carriers, were found to be capable of shuttling crucial mediators to various cells. Since the conventional CRC therapeutics currently are a matter of debate, implication of microRNAs in malignancy remedies have been addressed illustrating promising outlooks. OBJECTIVES: In this study, we aimed to investigate the delivery of miR-34a to CRC cell line CT-26 by encapsulating into tumor-derived exosomes (TEXs), in order to evaluate the anti-proliferative and progressive effects of the novel nano-carrier complex under in vitro condition. METHODS: Exosomes were purified from the starved CT-26 cells and then enriched by miR-34a using the calcium chloride (Cacl2) modified solution. Following the detection of miR-34a expression in the enriched TEXs, the viability of CT-26 cells treated by multiplicity concentrations of either TEXs or TEX-miR-34a was examined. Moreover, the apoptosis rate of the cells was evaluated, and the migration of CT-26 cells subjected to both TEX-miR-34a and TEX was also measured. Thereafter, the expressions of miR-34a target genes, as IL-6R, STAT3, PD-L1, and VEGF-A, which play roles in tumor progression, were determined in the treated CT-26 cells. RESULTS: The viability of CT-26 cells was harnessed following the treatment with TEX-miR-34a and the apoptosis levels of the cells were also observed to be enhanced dose-dependently. TEX-miR-34a was able to diminish the migration rate of the TEX-miR-34a treated cells and the expressions of IL-6R, STAT3, PD-L1, and VEGF-A were significantly restricted. Moreover, TEXs alone increased the apoptosis rate of tumor cells and repressed the proliferation and migration of these cells which were boosted by enrichment of TEXs with miR-34a. CONCLUSION: Exosomes isolated from the starved CT-26 cells were found to have a potential to deliver miR-34a into tumor cells properly with high functionality maintenance for miR-34a in case of regulating genes related to tumor progression and TEXs which showed no positive effect favoring cancer cells, presumably act as a favorable adjuvant in the CRC therapy.


Assuntos
Cloreto de Cálcio/química , Neoplasias Colorretais/genética , Exossomos/genética , MicroRNAs/genética , Animais , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/terapia , Progressão da Doença , Exossomos/transplante , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos , MicroRNAs/farmacologia , Receptores de Interleucina-6/genética , Fator de Transcrição STAT3/genética , Fator A de Crescimento do Endotélio Vascular/genética
18.
Phytother Res ; 35(3): 1176-1186, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33000538

RESUMO

Plant-derived bioactive compounds, often called phytochemicals, are active substances extracted from different plants. These bioactive compounds can release therapeutic potential abilities via reducing antitumor drugs side effects or directly killing cancer cells, and others also can adjust cancer initiation and progression via regulating microRNAs (miRNAs) expression, and miRNA can regulate protein-coding expression by restraining translation or degrading target mRNA. A mass of research showed that plant-derived bioactive compounds including tanshinones, astragaloside IV, berberine, ginsenosides and matrine can inhibit tumor growth and metastasis by rescuing aberrant miRNAs expression, which has influence on tumor progression, microenvironment and drug resistance in multifarious cancers. This review aims to provide a novel understanding of plant-derived bioactive compounds targeting miRNAs and shed light on their future clinical applications.


Assuntos
Abietanos/uso terapêutico , MicroRNAs/uso terapêutico , Neoplasias/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico , Plantas/química , Abietanos/farmacologia , Humanos , MicroRNAs/farmacologia , Estrutura Molecular , Compostos Fitoquímicos/farmacologia
19.
Theranostics ; 10(17): 7787-7811, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32685020

RESUMO

Objective: Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are essential for vascular remodeling. Natural compounds with diterpene chinone or phenolic acid structure from Salvia miltiorrhiza, an eminent medicinal herb widely used to treat cardiovascular diseases in China, can effectively attenuate vascular remodeling induced by vascular injury. However, it remains unknown whether Salvia miltiorrhiza-derived miRNAs can protect VSMCs from injury by environmental stimuli. Here, we explored the role and underlying mechanisms of Salvia miltiorrhiza-derived Sal-miR-1 and 3 in the regulation of VSMC migration and monocyte adhesion to VSMCs induced by thrombin. Methods: A mouse model for intimal hyperplasia was established by the ligation of carotid artery and the injured carotid arteries were in situ-transfected with Sal-miR-1 and 3 using F-127 pluronic gel. The vascular protective effects of Sal-miR-1 and 3 were assessed via analysis of intimal hyperplasia with pathological morphology. VSMC migration and adhesion were analyzed by the wound healing, transwell membrane assays, and time-lapse imaging experiment. Using loss- and gain-of-function approaches, Sal-miR-1 and 3 regulation of OTUD7B/KLF4/NMHC IIA axis was investigated by using luciferase assay, co-immunoprecipitation, chromatin immunoprecipitation, western blotting, etc. Results:Salvia miltiorrhiza-derived Sal-miR-1 and 3 can enter the mouse body after intragastric administration, and significantly suppress intimal hyperplasia induced by carotid artery ligation. In cultured VSMCs, these two miRNAs inhibit thrombin-induced the migration of VSMCs and monocyte adhesion to VSMCs. Mechanistically, Sal-miR-1 and 3 abrogate OTUD7B upregulation by thrombin via binding to the different sites of the OTUD7B 3'UTR. Most importantly, OTUD7B downregulation by Sal-miR-1 and 3 attenuates KLF4 protein levels via decreasing its deubiquitylation, whereas decreased KLF4 relieves its repression of transcription of NMHC IIA gene and thus increases NMHC IIA expression levels. Further, increased NMHC IIA represses VSMC migration and monocyte adhesion to VSMCs via maintaining the contractile phenotype of VSMCs. Conclusions: Our studies not only found the novel bioactive components from Salvia miltiorrhiza but also clarified the molecular mechanism underlying Sal-miR-1 and 3 inhibition of VSMC migration and monocyte adhesion to VSMCs. These results add important knowledge to the pharmacological actions and bioactive components of Salvia miltiorrhiza. Sal-miR-1 and 3-regulated OTUD7B/KLF4/NMHC IIA axis may represent a therapeutic target for vascular remodeling.


Assuntos
MicroRNAs/farmacologia , RNA de Plantas/farmacologia , Salvia miltiorrhiza/genética , Túnica Íntima/patologia , Remodelação Vascular/efeitos dos fármacos , Animais , Artérias Carótidas/citologia , Artérias Carótidas/patologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo , Endopeptidases/metabolismo , Humanos , Hiperplasia/tratamento farmacológico , Hiperplasia/patologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos , MicroRNAs/uso terapêutico , Monócitos/efeitos dos fármacos , Monócitos/fisiologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Cadeias Pesadas de Miosina/metabolismo , RNA de Plantas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Túnica Íntima/efeitos dos fármacos
20.
J Nanobiotechnology ; 18(1): 86, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513194

RESUMO

Hepatic stellate cells (HSCs) were activated and secreted excessive amounts of extracellular matrix (ECM) proteins during pathogenetic progress of liver fibrosis. Germacrone (GMO) and miR-29b can play an important role in inhibiting growth of HSCs and production of type I collagen. GMO and miR-29b were co-encapsulated into nanoparticles (NPs) based on poly(ethylene glycol)-block-poly(lactide-co-glycolide) (PEG-PLGA). Then, NPs were modified with cyclic RGD peptides (cRGDfK). cRGDfK is an effective ligand to bind integrin αvß3 and increase the targeting ability for fibrotic liver. GMO- and miR-29b-loaded NPs exhibited great cytotoxicity to activated HSCs and significantly inhibited production of type I collagen. Liver fibrosis model of mice was induced by administration of carbon tetrachloride. Great targeting ability was achieved in liver fibrotic mice treated with cRGD-modified NPs. Significant ant-fibrotic effects have been presented based on hematoxylin and eosin (H&E), Masson and Sirius Red staining results of liver tissues collected from mice treated with drug-loaded NPs. All these results indicate GMO- and miR-29b-loaded cRGD-modified NPs have the potential for clinical use to treat liver fibrosis.


Assuntos
Cirrose Hepática/metabolismo , MicroRNAs , Nanopartículas , Peptídeos Cíclicos , Sesquiterpenos de Germacrano , Animais , Tetracloreto de Carbono/efeitos adversos , Células Cultivadas , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Fígado/efeitos dos fármacos , Cirrose Hepática/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/química , MicroRNAs/farmacocinética , MicroRNAs/farmacologia , Nanopartículas/química , Nanopartículas/metabolismo , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacocinética , Sesquiterpenos de Germacrano/química , Sesquiterpenos de Germacrano/farmacocinética , Sesquiterpenos de Germacrano/farmacologia , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA