Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 191: 92-99, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34536471

RESUMO

Polyhydroxybutyrate (PHB) production by the cyanobacterium cf. Anabaena sp. was here studied by varying the medium composition and the carbon source used to induce mixotrophic growth conditions. The highest PHB productivity (0.06 gPHB gbiomass-1 d-1) was observed when cultivating cf. Anabaena sp. in phosphorus-free medium and in the presence of sodium acetate (5.0 g L-1 concentration), after an incubation period of 7 days. A content of 40% of PHB on biomass, a dry weight of 0.1 g L-1, and a photosynthetic efficiency equal to the control were obtained. The cyanobacterium was then grown on a larger scale (10 L) to evaluate the characteristics of the produced PHB in relation to the main composition of the biomass (the content of proteins, polysaccharides, and lipids): after an incubation period of 7 days, a content of 6% of lipids (52% of which as unsaturated fatty acids with 18 carbon atoms), 12% of polysaccharides, 28% of proteins, and 46% of PHB was reached. The extracted PHB had a molecular weight of 3 MDa and a PDI of 1.7. These promising results demonstrated that cf. Anabaena sp. can be included among the Cyanobacteria species able to produce polyhydroxyalkanoates (PHAs) either in photoautotrophic or mixotrophic conditions, especially when it is grown under phosphorus-free conditions.


Assuntos
Anabaena/metabolismo , Hidroxibutiratos/metabolismo , Microbiologia Industrial/métodos , Poliésteres/metabolismo , Anabaena/crescimento & desenvolvimento , Biomassa , Fósforo/metabolismo
2.
BMC Biotechnol ; 21(1): 33, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947396

RESUMO

BACKGROUND: Amylases produced by fungi during solid-state fermentation are the most widely used commercial enzymes to meet the ever-increasing demands of the global enzyme market. The use of low-cost substrates to curtail the production cost and reuse solid wastes are seen as viable options for the commercial production of many enzymes. Applications of α-amylases in food, feed, and industrial sectors have increased over the years. Additionally, the demand for processed and ready-to-eat food has increased because of the rapid growth of food-processing industries in developing economies. These factors significantly contribute to the global enzyme market. It is estimated that by the end of 2024, the global α-amylase market would reach USD 320.1 million (Grand View Research Inc., 2016). We produced α-amylase using Aspergillus oryzae and low-cost substrates obtained from edible oil cake, such as groundnut oil cake (GOC), coconut oil cake (COC), sesame oil cake (SOC) by solid-state fermentation. We cultivated the fungus using these nutrient-rich substrates to produce the enzyme. The enzyme was extracted, partially purified, and tested for pH and temperature stability. The effect of pH, incubation period and temperature on α-amylase production using A. oryzae was optimized. Box-Behnken design (BBD) of response surface methodology (RSM) was used to optimize and determine the effects of all process parameters on α-amylase production. The overall cost economics of α-amylase production using a pilot-scale fermenter was also studied. RESULTS: The substrate optimization for α-amylase production by the Box-Behnken design of RSM showed GOC as the most suitable substrate for A. oryzae, as evident from its maximum α-amylase production of 9868.12 U/gds. Further optimization of process parameters showed that the initial moisture content of 64%, pH of 4.5, incubation period of 108 h, and temperature of 32.5 °C are optimum conditions for α-amylase production. The production increased by 11.4% (10,994.74 U/gds) by up-scaling and using optimized conditions in a pilot-scale fermenter. The partially purified α-amylase exhibited maximum stability at a pH of 6.0 and a temperature of 55 °C. The overall cost economic studies showed that the partially purified α-amylase could be produced at the rate of Rs. 622/L. CONCLUSIONS: The process parameters for enhanced α-amylase secretion were analyzed using 3D contour plots by RSM, which showed that contour lines were more oriented toward incubation temperature and pH, having a significant effect (p < 0.05) on the α-amylase activity. The optimized parameters were subsequently employed in a 600 L-pilot-scale fermenter for the α-amylase production. The substrates were rich in nutrients, and supplementation of nutrients was not required. Thus, we have suggested an economically viable process of α-amylase production using a pilot-scale fermenter.


Assuntos
Aspergillus oryzae/metabolismo , Meios de Cultura/metabolismo , Proteínas Fúngicas/biossíntese , Óleos de Plantas/metabolismo , alfa-Amilases/biossíntese , Aspergillus oryzae/genética , Aspergillus oryzae/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Meios de Cultura/química , Estabilidade Enzimática , Fermentação , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Microbiologia Industrial/instrumentação , Microbiologia Industrial/métodos , Temperatura , Resíduos/análise , alfa-Amilases/química , alfa-Amilases/genética
3.
Genes (Basel) ; 12(4)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806162

RESUMO

In the actual mining scenario, copper bioleaching, mainly raw mined material known as run-of-mine (ROM) copper bioleaching, is the best alternative for the treatment of marginal resources that are not currently considered part of the profitable reserves because of the cost associated with leading technologies in copper extraction. It is foreseen that bioleaching will play a complementary role in either concentration-as it does in Minera Escondida Ltd. (MEL)-or chloride main leaching plants. In that way, it will be possible to maximize mines with installed solvent-extraction and electrowinning capacities that have not been operative since the depletion of their oxide ores. One of the main obstacles for widening bioleaching technology applications is the lack of knowledge about the key events and the attributes of the technology's critical events at the industrial level and mainly in ROM copper bioleaching industrial operations. It is relevant to assess the bed environment where the bacteria-mineral interaction occurs to learn about the limiting factors determining the leaching rate. Thus, due to inability to accurately determine in-situ key variables, their indirect assessment was evaluated by quantifying microbial metabolic-associated responses. Several candidate marker genes were selected to represent the predominant components of the microbial community inhabiting the industrial heap and the metabolisms involved in microbial responses to changes in the heap environment that affect the process performance. The microbial community's predominant components were Acidithiobacillus ferrooxidans, At. thiooxidans, Leptospirillum ferriphilum, and Sulfobacillus sp. Oxygen reduction, CO2 and N2 fixation/uptake, iron and sulfur oxidation, and response to osmotic stress were the metabolisms selected regarding research results previously reported in the system. After that, qPCR primers for each candidate gene were designed and validated. The expression profile of the selected genes vs. environmental key variables in pure cultures, column-leaching tests, and the industrial bioleaching heap was defined. We presented the results obtained from the industrial validation of the marker genes selected for assessing CO2 and N2 availability, osmotic stress response, as well as ferrous iron and sulfur oxidation activity in the bioleaching heap process of MEL. We demonstrated that molecular markers are useful for assessing limiting factors like nutrients and air supply, and the impact of the quality of recycled solutions. We also learned about the attributes of variables like CO2, ammonium, and sulfate levels that affect the industrial ROM-scale operation.


Assuntos
Acidithiobacillus/metabolismo , Ácidos/metabolismo , Bactérias/metabolismo , Biomarcadores/metabolismo , Cobre/metabolismo , Microbiologia Industrial/métodos , Laboratórios/normas , Acidithiobacillus/crescimento & desenvolvimento , Acidithiobacillus/isolamento & purificação , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Biodiversidade , Cobre/isolamento & purificação
4.
PLoS One ; 16(4): e0249089, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33826653

RESUMO

The increasing demand for water, food and energy poses challenges for the world´s sustainability. Tropical palm oil is currently the major source of vegetable oil worldwide with a production that exceeds 55 million tons per year, while generating over 200 million tons of palm oil mill effluent (POME). It could potentially be used as a substrate for production of microalgal biomass though. In this study, the microalgal strain Chlamydomonas biconvexa Embrapa|LBA40, originally isolated from a sugarcane vinasse stabilization pond, was selected among 17 strains tested for growth in POME retrieved from anaerobic ponds of a palm oil industrial plant located within the Amazon rainforest region. During cultivation in POME, C. biconvexa Embrapa|LBA40 biomass productivity reached 190.60 mgDW • L-1 • d-1 using 15L airlift flat plate photobioreactors. Carbohydrates comprised the major fraction of algal biomass (31.96%), while the lipidic fraction reached up to 11.3% of dry mass. Reductions of 99% in ammonium and nitrite, as well as 98% reduction in phosphate present in POME were detected after 5 days of algal cultivation. This suggests that the aerobic pond stage, usually used in palm oil industrial plants to reduce POME inorganic load, could be substituted by high rate photobioreactors, significantly reducing the time and area requirements for wastewater treatment. In addition, the complete mitochondrial genome of C. biconvexa Embrapa|LBA40 strain was sequenced, revealing a compact mitogenome, with 15.98 kb in size, a total of 14 genes, of which 9 are protein coding genes. Phylogenetic analysis confirmed the strain taxonomic status within the Chlamydomonas genus, opening up opportunities for future genetic modification and molecular breeding programs in these species.


Assuntos
Chlamydomonas/metabolismo , Microbiologia Industrial/métodos , Óleo de Palmeira/metabolismo , Filogenia , Águas Residuárias/microbiologia , Biodegradação Ambiental , Biomassa , Chlamydomonas/classificação , Chlamydomonas/genética , Genoma Mitocondrial
5.
Bioprocess Biosyst Eng ; 44(7): 1501-1510, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33666753

RESUMO

A major hindrance to the effective use of fungi in bioremediation is their inherent slow growth. Despite this, Aspergillus spp. may be used effectively. Our experiments demonstrate that bacteria, although inefficient in hydrocarbon degradation, may be effectively used in a consortium to overcome the lag in fungal utilization of petroleum hydrocarbons. Crude petroleum oil (160 mg; at 8 g/L) in minimal medium was inoculated with a previously isolated biofilm-forming consortium (Aspergillus sp. MM1 and Bacillus sp. MM1) as well as monocultures of each organism and incubated at 30 ℃ under static conditions. Residual oil was analyzed by GC-MS. Crude oil utilization of Aspergillus-Bacillus biofilm was 24 ± 1.4% in 3 days, increased to 66 ± 7% by day 5 and reached 99 ± 0.2% in 7 days. Aspergillus sp. MM1 monoculture degraded only 14 ± 6% in 5 days. However, at the end of 7 days, it was able to utilize 98 ± 2%. Bacillus sp. MM1 monoculture utilized 20 ± 4% in 7 days. This study indicates that there is a reduction of the fungal lag in bioremediation when it is in association with the bacterium. Although in monoculture, Bacillus sp. MM1 is inefficient in crude oil degradation, it synergistically enhances the initial rate of crude petroleum oil degradation of the fungus in the consortium. The rapid initial removal of as much crude oil as possible from contaminated sites is vital to minimize detrimental impacts on biodiversity.


Assuntos
Aspergillus/metabolismo , Bacillus/metabolismo , Biofilmes , Biotecnologia/métodos , Microbiologia Industrial/métodos , Petróleo/metabolismo , Biodegradação Ambiental , Biodiversidade , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos/química , Nutrientes , Temperatura
6.
Bioprocess Biosyst Eng ; 44(7): 1577-1592, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33687550

RESUMO

The present study focused on lipopeptide biosurfactant production by Streptomyces sp. PBD-410L in batch and fed-batch fermentation in a 3-L stirred-tank reactor (STR) using palm oil as a sole carbon source. In batch cultivation, the impact of bioprocessing parameters, namely aeration rate and agitation speed, was studied to improve biomass growth and lipopeptide biosurfactant production. The maximum oil spreading technique (OST) result (45 mm) which corresponds to 3.74 g/L of biosurfactant produced, was attained when the culture was agitated at 200 rpm and aeration rate of 0.5 vvm. The best aeration rate and agitation speed obtained from the batch cultivation was adopted in the fed-batch cultivation using DO-stat feeding strategy to further improve the lipopeptide biosurfactant production. The lipopeptide biosurfactant production was enhanced from 3.74 to 5.32 g/L via fed-batch fermentation mode at an initial feed rate of 0.6 mL/h compared to that in batch cultivation. This is the first report on the employment of fed-batch cultivation on the production of biosurfactant by genus Streptomyces.


Assuntos
Biotecnologia/métodos , Microbiologia Industrial/métodos , Lipopeptídeos/química , Óleo de Palmeira/química , Streptomyces/metabolismo , Técnicas de Cultura Celular por Lotes/métodos , Biomassa , Reatores Biológicos , Carbono , Meios de Cultura , Fermentação , Tensoativos , Fatores de Tempo
7.
Bioprocess Biosyst Eng ; 44(4): 831-839, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33683450

RESUMO

Sophorolipids (SLs) from Candida batistae has a unique structure that contains ω-hydroxy fatty acids, which can be used as a building block in the polymer and fragrance industries. To improve the production of this industrially important SLs, we optimized the culture medium of C. batistae for the first time. Using an optimized culture medium composed of 50 g/L glucose, 50 g/L rapeseed oil, 5 g/L ammonium nitrate and 5 g/L yeast extract, SLs were produced at a concentration of 24.1 g/L in a flask culture. Sophorolipids production increased by about 19% (28.6 g/L) in a fed-batch fermentation using a 5 L fermentor. Sophorolipids production more increased by about 121% (53.2 g/L), compared with that in a flask culture, in a fed-batch fermentation using a 50 L fermentor, which was about 787% higher than that of the previously reported SLs production (6 g/L). These results indicate that a significant increase in C. batistae-derived SLs production can be achieved by optimization of the culture medium composition and fed-batch fermentation. Finally, we successfully separated and purified the SLs from the culture medium. The improved production of SLs from C. batistae in this study will help facilitate the successful development of applications for the SLs.


Assuntos
Reatores Biológicos , Biotecnologia/métodos , Carbono/química , Fermentação , Glicolipídeos/biossíntese , Microbiologia Industrial/métodos , Ácidos Oleicos/química , Saccharomycetales/metabolismo , Candida , Meios de Cultura/química , Ácidos Graxos , Glucose/química , Nitratos/química , Óleos de Plantas/química , Óleo de Brassica napus/química , Tensoativos/química
8.
Bioprocess Biosyst Eng ; 44(7): 1383-1404, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33660099

RESUMO

Cross-linked enzyme aggregates (CLEAs) of lipase were prepared after fractional precipitation with 40-50% ammonium sulfate and then cross-linking with glutaraldehyde. The process variables for the preparation of lipase-CLEAs such as glutaraldehyde concentration, cross-linking period, and initial pH of medium were optimized. The optimized conditions for the preparation of lipase-CLEAs were 25 mM/80 min/pH 7.0, and 31.62 mM/90 min/pH 6.0 with one factor at a time approach and numerical optimization with central composite design, respectively. Lipase-CLEAs were characterized by particle size analysis, SEM, and FTIR. Cross-linking not only shifted the optimal pH and temperature from 7.0 to 7.5 and 40-45 to 45-50 °C, but also altered the secondary structure. Lipase-CLEAs showed an increase in Km by 7.70%, and a decrease in Vmax by 16.63%. Lipase-CLEAs presented better thermostability than free lipase as evident from thermal inactivation constants (t1/2, D and Ed value), and thermodynamic parameters (Ed, ΔH°, ΔG°, and ΔS°) in the range of 50-70 °C. Lipase-CLEAs retained more than 65% activity up to four cycles and showed good storage stability for 12 days when stored at 4 ± 2 °C. They were successfully utilized for the epoxidation of lemongrass oil which was confirmed by changes in iodine value, epoxide value, and FTIR spectra.


Assuntos
Aspergillus niger/enzimologia , Biotecnologia/métodos , Reagentes de Ligações Cruzadas/química , Lipase/química , Óleos de Plantas/química , Terpenos/química , Biocatálise , Meios de Cultura/química , Estabilidade Enzimática , Enzimas Imobilizadas/química , Compostos de Epóxi/química , Glutaral/química , Concentração de Íons de Hidrogênio , Microbiologia Industrial/métodos , Iodo/química , Cinética , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termodinâmica
9.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498184

RESUMO

The synthesis and assembly of nanoparticles using green technology has been an excellent option in nanotechnology because they are easy to implement, cost-efficient, eco-friendly, risk-free, and amenable to scaling up. They also do not require sophisticated equipment nor well-trained professionals. Bionanotechnology involves various biological systems as suitable nanofactories, including biomolecules, bacteria, fungi, yeasts, and plants. Biologically inspired nanomaterial fabrication approaches have shown great potential to interconnect microbial or plant extract biotechnology and nanotechnology. The present article extensively reviews the eco-friendly production of metalloid nanoparticles, namely made of selenium (SeNPs) and tellurium (TeNPs), using various microorganisms, such as bacteria and fungi, and plants' extracts. It also discusses the methodologies followed by materials scientists and highlights the impact of the experimental sets on the outcomes and shed light on the underlying mechanisms. Moreover, it features the unique properties displayed by these biogenic nanoparticles for a large range of emerging applications in medicine, agriculture, bioengineering, and bioremediation.


Assuntos
Química Verde/métodos , Microbiologia Industrial/métodos , Nanopartículas Metálicas/química , Nanomedicina/métodos , Selênio/química , Telúrio/química , Animais , Humanos , Nanopartículas Metálicas/uso terapêutico
10.
Bioprocess Biosyst Eng ; 44(4): 901-911, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33486577

RESUMO

Targeting cancer cells with small nanoparticles is a novel and promising approach to cancer therapy. Breast cancer is the most common cancer afflicting women worldwide. In the present study, silver nanoparticles (AgNPs) were synthesized using the aqueous extract of the marine alga Capsosiphon (C.) fulvescens, and the cytotoxicity and anti-cancer activities of the nanoparticles against MCF-7 breast cancer cells were analyzed. Nanoparticle formation was confirmed by solution color change and UV-Vis spectroscopy. The size and distribution of the C. fulvescens-biosynthesized silver nanoparticles (CfAgNPs) were then examined using various analytical methods; the particle size was around 20-22 nm and spherical in shape with no agglomeration. Cytotoxicity analysis revealed that the inhibitory concentration (IC50) of CfAgNPs was 50 µg/ml. MCF-7 cell viability decreased with increasing concentrations of CfAgNPs. MCF-7 cells were evaluated for morphological changes before and after treatment with the CfAgNPs; cells treated with C. fulvescens aqueous algal extract (without CfAgNPs) showed irregular confluent aggregates with round polygonal cells, similar to the untreated control. Tamoxifen- (TMX) and CfAgNPs-treated cells show significant morphological changes. An apoptosis study was conducted using 4',6-diamidino-2-phenylindole (DAPI) staining, in which CfAgNP-treated MCF-7 cells generated bright blue fluorescence and shortened, disjointed chromatin was evident; control cells displayed less bright fluorescence. Flow cytometry analysis revealed that the percentage of cells in late apoptosis was high following treatment with TMX (77.2%) and CfAgNP (74.6%). A novel anti-cancer agent, developed by generating silver nanoparticles from C. fulvescens extract, showed strong cytotoxic activity against MCF-7 cells.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Clorófitas/metabolismo , Nanopartículas Metálicas/química , Nanomedicina/métodos , Prata/química , Antineoplásicos/farmacologia , Apoptose , Biotecnologia/métodos , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Citometria de Fluxo , Química Verde/métodos , Humanos , Indóis/química , Microbiologia Industrial/métodos , Concentração Inibidora 50 , Células MCF-7 , Microscopia Eletrônica de Varredura , Nanopartículas/química , Tamanho da Partícula , Extratos Vegetais/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Tamoxifeno , Difração de Raios X
11.
Bioprocess Biosyst Eng ; 44(4): 809-818, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33389167

RESUMO

The lipolytic yeast Yarrowia lipolytica produces cell-wall-associated lipases, namely Lip7p and Lip8p, that could have interesting properties as catalyst either in free (released lipase fraction-RLF) or cell-associated (cell-bound lipase fraction-CBLF) forms. Herein, a mixture of waste soybean frying oil, yeast extract and bactopeptone was found to favor the enzyme production. Best parameters for lipase activation and release from the cell wall by means of acoustic wave treatment were defined as: 26 W/cm2 for 1 min for CBLF and 52 W/cm2 for 2 min for RLF. Optimal pH and temperature values for lipase activity together with storage conditions were similar for both the free enzyme and cell-associated one: pH 7.0; T = 37 °C; and > 70% residual activity for 60 days at 4, - 4 °C and for 15 days at 30 °C.


Assuntos
Parede Celular/enzimologia , Microbiologia Industrial/métodos , Lipase/química , Óleo de Soja/química , Eliminação de Resíduos Líquidos/métodos , Yarrowia/enzimologia , Concentração de Íons de Hidrogênio , Ácido Oleico/química , Peptonas/química , Glycine max , Especificidade por Substrato , Temperatura , Fatores de Tempo , Ultrassom
12.
Bioprocess Biosyst Eng ; 44(4): 769-783, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33389169

RESUMO

Ultrasound-assisted extraction (UAE) and pressurized hot water extraction (PHWE) were tested as advanced clean methods to obtain polysaccharides from Phoma dimorpha mycelial biomass. These methods were compared to conventional extraction (hot water extraction, HWE) in terms of polysaccharides-enriched fractions (PEF) yield. A central composite rotational design was performed for each extraction method to investigate the influence of independent variables on the yield and to help the selection of the condition with the highest yield using water as an extraction solvent. The best extraction condition of PEF yielded 12.02 wt% and was achieved when using UAE with direct sonication for 30 min under the intensity of 75.11 W/cm2 and pulse factor of 0.57. In the kinetic profiles, the highest yield (15.28 wt%) was obtained at 50 °C under an ultrasound intensity of 75.11 W/cm2 and a pulse factor of 0.93. Structural analysis of extracted polysaccharide was performed using Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and thermal property. The water solubility index, water holding capacity, and emulsification index of PEF were 31.3 ± 1.5%, 138.1 ± 3.2%, and 62.9 ± 2.3%, respectively. The submerged fermentation demonstrates the huge potential of Phoma dimorpha to produce polysaccharides with bioemulsifying properties as a biotechnologically cleaner alternative if compared to commercial petroleum-derived compounds. Furthermore, UAE and PHWE are green technologies, which can be operated at an industrial scale for PEF extraction.


Assuntos
Ascomicetos/metabolismo , Biomassa , Microbiologia Industrial/métodos , Micélio/química , Polissacarídeos/química , Água/química , Biotecnologia , Fermentação , Química Verde , Cinética , Microscopia Eletrônica de Varredura , Petróleo , Solubilidade , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termogravimetria , Ultrassom , Difração de Raios X
13.
Nat Commun ; 11(1): 5155, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33056995

RESUMO

The diverse physiological functions of tocotrienols have listed them as valuable supplementations to α-tocopherol-dominated Vitamin E products. To make tocotrienols more readily available, tocotrienols-producing S. cerevisiae has been constructed by combining the heterologous genes from photosynthetic organisms with the endogenous shikimate pathway and mevalonate pathway. After identification and elimination of metabolic bottlenecks and enhancement of precursors supply, the engineered yeast can produce tocotrienols at yield of up to 7.6 mg/g dry cell weight (DCW). In particular, proper truncation of the N-terminal transit peptide from the plant-sourced enzymes is crucial. To further solve the conflict between cell growth and tocotrienols accumulation so as to enable high-density fermentation, a cold-shock-triggered temperature control system is designed for efficient control of two-stage fermentation, leading to production of 320 mg/L tocotrienols. The success in high-density fermentation of tocotrienols by engineered yeast sheds light on the potential of fermentative production of vitamin E tocochromanols.


Assuntos
Fermentação/fisiologia , Microbiologia Industrial/métodos , Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , Tocotrienóis/metabolismo , Aclimatação/genética , Vias Biossintéticas/genética , Temperatura Baixa/efeitos adversos , Resposta ao Choque Frio/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Sci Rep ; 10(1): 8815, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483188

RESUMO

Biobased degradable plastics have received significant attention owing to their potential application as a green alternative to synthetic plastics. A dye-based procedure was used to screen poly-3-hydroxybutyrate (PHB)-producing marine bacteria isolated from the Red Sea, Saudi Arabia. Among the 56 bacterial isolates, Pseudodonghicola xiamenensis, identified using 16S rRNA gene analyses, accumulated the highest amount of PHB. The highest PHB production by P. xiamenensis was achieved after 96 h of incubation at pH 7.5 and 35 °C in the presence of 4% NaCl, and peptone was the preferred nitrogen source. The use of date syrup at 4% (w/v) resulted in a PHB concentration of 15.54 g/L and a PHB yield of 38.85% of the date syrup, with a productivity rate of 0.162 g/L/h, which could substantially improve the production cost. Structural assessment of the bioplastic by Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy revealed the presence of methyl, hydroxyl, methine, methylene, and ester carbonyl groups in the extracted polymer. The derivative products of butanoic acid estimated by gas chromatography-mass spectrometry [butanoic acid, 2-amino-4-(methylseleno), hexanoic acid, 4-methyl-, methyl ester, and hexanedioic acid, monomethyl ester] confirmed the structure of PHB. The present results are the first report on the production of a bioplastic by P. xiamenensis, suggesting that Red Sea habitats are a potential biological reservoir for novel bioplastic-producing bacteria.


Assuntos
Plásticos Biodegradáveis/metabolismo , Biopolímeros/biossíntese , Hidroxibutiratos/metabolismo , Microbiologia Industrial/métodos , Resíduos Industriais , Phoeniceae , Poliésteres/metabolismo , Rhodobacteraceae/metabolismo , Técnicas Bacteriológicas , Plásticos Biodegradáveis/química , Biopolímeros/química , Meios de Cultura , Cromatografia Gasosa-Espectrometria de Massas , Sedimentos Geológicos/microbiologia , Hidroxibutiratos/química , Oceano Índico , Ressonância Magnética Nuclear Biomolecular , Filogenia , Preparações de Plantas , Poliésteres/química , Rhodobacteraceae/classificação , Rhodobacteraceae/genética , Rhodobacteraceae/isolamento & purificação , Ribotipagem , Água do Mar/microbiologia , Cloreto de Sódio/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Microbiologia da Água
16.
Biomolecules ; 10(5)2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384772

RESUMO

An effective and ecological method for liberation of pectin-derived oligosaccharides (POS) from sugar beet pulp (SBP) was developed using enzymatic and microorganism-mediated biomass conversion. The POS may be applied in the production of prebiotic feed additives. Various yeast strains were screened for their capacity for protein synthesis and monosaccharide assimilation. Combined yeast cultivation and pectin hydrolysis were found to be an effective method of producing prebiotics. Separate enzymatic hydrolysis and fermentation of SBP resulted in the release of 3.6 g of POS per 100 g d.w., whereas the yield of POS acquired after the combined process was 17.9% higher, giving 4.2 g of POS per 100 g d.w. Introducing the yeast into the process improved hydrolysis performance due to lower enzyme inhibition by mono- and disaccharides. The prebiotic effect of the POS was assessed by in vitro fermentation using individual cultures of gastrointestinal bacteria. The POS in the SBP hydrolysate effectively promoted the growth of lactobacilli and bifidobacteria. A large increase in adherence to Caco-2 cells in the presence of POS was noted for beneficial Lactobacillus brevis strains, whereas pathogenic bacteria and yeast (C. albicans, C. lusitanie, C. pelliculosa), responsible for infections in breeding animals, showed much weaker adhesion.


Assuntos
Ração Animal , Beta vulgaris/química , Candida/metabolismo , Fermentação , Pectinas/química , Prebióticos , Biomassa , Hidrólise , Microbiologia Industrial/métodos , Pectinas/metabolismo
17.
J Biosci Bioeng ; 130(2): 195-199, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32370929

RESUMO

Ectoine production using inexpensive and renewable biomass resources has attracted great interest among the researchers due to the low yields of ectoine in current fermentation approaches that complicate the large-scale production of ectoine. In this study, ectoine was produced from corn steep liquor (CSL) and soybean hydrolysate (SH) in replacement to yeast extract as the nitrogen sources for the fermentation process. To enhance the bacterial growth and ectoine production, biotin was added to the Halomonas salina fermentation media. In addition, the effects addition of surfactants such as Tween 80 and saponin on the ectoine production were also investigated. Results showed that both the CSL and SH can be used as the nitrogen source substitutes in the fermentation media. Higher amount of ectoine (1781.9 mg L-1) was produced in shake flask culture with SH-containing media as compared to CSL-containing media. A total of 2537.0 mg L-1 of ectoine was produced at pH 7 when SH-containing media was applied in the 2 L batch fermentation. Moreover, highest amount of ectoine (1802.0 mg L-1) was recorded in the SH-containing shake flask culture with addition of 0.2 µm mL-1 biotin. This study demonstrated the efficacy of industrial waste as the nutrient supplement for the fermentation of ectoine production.


Assuntos
Diamino Aminoácidos/metabolismo , Fermentação , Halomonas/metabolismo , Microbiologia Industrial/métodos , Técnicas de Cultura Celular por Lotes , Biomassa , Biotina/metabolismo , Meios de Cultura/química , Meios de Cultura/metabolismo , Resíduos Industriais , Nitrogênio/metabolismo , Glycine max/química , Zea mays/química
18.
Biomolecules ; 10(5)2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32413958

RESUMO

In the present study, the impact of eight phytohormones from six different classes on the growth, lipid and docosahexaenoic acid (DHA) biosynthetic capacity of Aurantiochytrium sp. SW1 (SW1) was evaluated. Kinetin (KIN), jasmonic acid (JA) and gibberellic acid (GA) significantly enhanced the growth and DHA production of SW1 by 16%-28% and 66%-84% in comparison to the control, respectively. The synergistic effect of these three phytohormones, evaluated by the response surface methodology (RSM), showed that a combination of 3.6 mg/L GA, 2.0 mg/L KIN and 20.0 mg/L JA further increased the growth and DHA production of SW1 by 16% to 28% and 22% to 36%, respectively, in comparison to the individual supplementation. The synergistic effect of these phytohormones was also shown to be time-dependent, where feeding at 24 h of cultivation led to 15%, 26% and 35% further increments in the biomass, lipid and DHA production in comparison to that of 0 h, respectively. The determination of stress markers, antioxidant enzymes and key enzymes involved in fatty acid biosynthesis aided to elucidate the potential mechanism underlying the improvement of growth and DHA production by SW1 at various times of feeding. Supplementation with the phytohormones at 24 h exhibited the maximum impact on reducing the level of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as augmented the antioxidants (superoxide dismutase and catalase) and key metabolic enzymes involved in lipogenesis (malic, glucose-6-phosphate dehydrogenase and ATP-citrate lyase) in comparison to the control and other time points. This study signifies the potential application of phytohormones for improving the growth, lipid and DHA production in Aurantiochytrium spp.


Assuntos
Ácidos Docosa-Hexaenoicos/biossíntese , Microalgas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Ciclopentanos/farmacologia , Sinergismo Farmacológico , Giberelinas/farmacologia , Microbiologia Industrial/métodos , Cinetina/farmacologia , Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Oxilipinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
19.
Crit Rev Biotechnol ; 40(4): 459-474, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32166983

RESUMO

Heavy oil accounts for around one-third of total global oil and gas resources. The progressive depletion of conventional energy reserves has led to an increased emphasis on the efficient exploitation of heavy oil and bitumen reserves in order to meet energy demand. Therefore, it is imperative to develop new technologies for heavy oil upgrading and recovery. Biologically-based technology that involves using microorganisms or their metabolites to mobilize heavy oil trapped in reservoir rocks can make a significant contribution to the recovery of heavy oils. Here, the results of laboratory experiments and field trials applying microbial enhanced oil recovery (MEOR) technologies are summarized. This review provides an overview of the basic concepts, mechanisms, advantages, problems, and trends in MEOR, and demonstrates the credibility of MEOR methods for applications in enhanced heavy oil recovery and the petroleum refining processes. This technology is cost-effective and environmentally-friendly. The feasibility of MEOR technologies for heavier oil has not yet been fully realized due to the perceived process complexity and a lack of sufficient laboratory research and field test data. However, novel developments such as enzyme-enhanced oil recovery continues to improve MEOR methods.HighlightsHeavy oil represents the largest known potentially-recoverable petroleum energy resource.Novel biotechnological processes are needed to recover or upgrade heavy oil.Microbial technologies have great potential for heavy oil recovery.Microorganisms can produce metabolic byproducts to mobilize oil trapped in reservoirs.More technological research is needed to develop microbial enhanced oil recovery.


Assuntos
Conservação de Recursos Energéticos , Microbiologia Industrial/métodos , Petróleo , Bactérias/metabolismo
20.
Arch Microbiol ; 202(5): 1203-1209, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32077990

RESUMO

Selenium nanoparticles (Se NPs) were synthesized using Saccharomyces cerevisiae yeast. Influences of different amounts of sodium selenite (5.0, 10.0, 15.0, 20.0, and 25 µg) were evaluated on growth of yeast during incubation at 32 °C, during 4 days. UV-Vis spectroscopy results have shown that synthesized Se NPs had broad emission peak (λmax) in the wavelength around 350 nm which demonstrated that formation of Se NPs occurred in intracellular manner. Physico-chemical characteristics of the synthesized Se NPs using dynamic light scattering particle-size analyzer indicated that the fabricated Se NPs had particle size, polydispersity index, and zeta potential ranging from 75 to 709 nm, 0.189 to 0989, and -7.06 to -10.3 mV, respectively. Obtained results revealed that intracellular Se NPs with minimum particle size (75 nm), maximum zeta potential (-10.3 mV), and antioxidant activity (48.5%) were synthesized using minimum amount of selenium salt (5 µg). However, most uniform Se NPs were formed using maximum amount of selenium salt (25 µg). Results also indicated that by increasing amount of sodium selenite in the culture media, from 5.0 to 25 µg, antioxidant activity of the formed Se NPs decreased from 48.5 to 20.8, respectively.


Assuntos
Biotecnologia/métodos , Microbiologia Industrial/métodos , Nanopartículas/química , Saccharomyces cerevisiae/metabolismo , Selênio/química , Meios de Cultura , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA