Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 292
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Calcif Tissue Int ; 114(5): 513-523, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38656326

RESUMO

Previously, we demonstrated that prebiotics may provide a complementary strategy for increasing calcium (Ca) absorption in adolescents which may improve long-term bone health. However, not all children responded to prebiotic intervention. We determine if certain baseline characteristics of gut microbiome composition predict prebiotic responsiveness. In this secondary analysis, we compared differences in relative microbiota taxa abundance between responders (greater than or equal to 3% increase in Ca absorption) and non-responders (less than 3% increase). Dual stable isotope methodologies were used to assess fractional Ca absorption at the end of crossover treatments with placebo, 10, and 20 g/day of soluble corn fiber (SCF). Microbial DNA was obtained from stool samples collected before and after each intervention. Sequencing of the 16S rRNA gene was used to taxonomically characterize the gut microbiome. Machine learning techniques were used to build a predictive model for identifying responders based on baseline relative taxa abundances. Model output was used to infer which features contributed most to prediction accuracy. We identified 19 microbial features out of the 221 observed that predicted responsiveness with 96.0% average accuracy. The results suggest a simplified prescreening can be performed to determine if a subject's bone health may benefit from a prebiotic. Additionally, the findings provide insight and prompt further investigation into the metabolic and genetic underpinnings affecting calcium absorption during pubertal bone development.


Assuntos
Cálcio , Microbioma Gastrointestinal , Prebióticos , Adolescente , Criança , Feminino , Humanos , Masculino , Cálcio/metabolismo , Estudos Cross-Over , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Microbioma Gastrointestinal/genética , Projetos Piloto , Prebióticos/administração & dosagem
2.
Gut Microbes ; 16(1): 2298697, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38303501

RESUMO

The early life gut microbiome affects the developing brain, and therefore may serve as a target to support neurodevelopment of children living in stressful and under-resourced environments, such as Black youth living on the South Side of Chicago, for whom we observe racial disparities in health. Microbiome compositions/functions key to multiple neurodevelopmental facets have not been studied in Black children, a vulnerable population due to racial disparities in health; thus, a subsample of Black infants living in urban, low-income neighborhoods whose mothers participated in a prenatal nutrition study were recruited for testing associations between composition and function of the gut microbiome (16S rRNA gene sequencing, shotgun metagenomics, and targeted metabolomics of fecal samples) and neurodevelopment (developmental testing, maternal report of temperament, and observed stress regulation). Two microbiome community types, defined by high Lachnospiraceae or Enterobacteriaceae abundance, were discovered in this cohort from 16S rRNA gene sequencing analysis; the Enterobacteriaceae-dominant community type was significantly negatively associated with cognition and language scores, specifically in male children. Vitamin B12 biosynthesis emerged as a key microbiome function from shotgun metagenomics sequencing analysis, showing positive associations with all measured developmental skills (i.e., cognition, language, motor, surgency, effortful control, and observed stress regulation). Blautia spp. also were identified as substantial contributors of important microbiome functions, including vitamin B12 biosynthesis and related vitamin B12-dependent microbiome functions, anti-inflammatory microbial surface antigens, competitive mechanisms against pathobionts, and production of antioxidants. The results are promising with respect to the potential for exploring therapeutic candidates, such as vitamin B12 nutritional or Blautia spp. probiotic supplementation, to support the neurodevelopment of infants at risk for experiencing racial disparities in health.


Assuntos
Microbioma Gastrointestinal , Vitamina B 12 , Lactente , Criança , Gravidez , Feminino , Adolescente , Humanos , Masculino , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/genética , Encéfalo , Vitaminas
3.
Medicine (Baltimore) ; 103(6): e37053, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335441

RESUMO

Chai Shao Liu Jun Zi decoction (CSLJZD) is an effective Chinese medicine for the treatment of chronic atrophic gastritis (CAG). However, the effect of CSLJZD on the intestinal flora of patients with CAG remains unclear. We used 16S rRNA gene sequencing to investigate the regulatory effects of CSLJZD on intestinal microflora in patients with CAG. Eight patients with CAG were randomly selected as the model group and 8 healthy medical examiners as the control group; the treatment group comprised patients with CAG after CSLJZD treatment. High-throughput sequencing and bioinformatics analysis of the V3V4 region of the 16S rRNA gene of intestinal bacteria obtained from the intestinal isolates of fecal specimens from all participants were performed separately. A rarefaction curve, species accumulation curve, Chao1 index, and ACE index were calculated to assess the alpha diversity. Principal component analysis (PCA), non-metric multi-dimensional scaling, and the unweighted pair group method with arithmetic mean were used to examine beta diversity. The LEfSe method was used to identify the differentially expressed bacteria. Differential function analysis was performed using PCA based on KEGG function prediction. Rarefaction and species accumulation curves showed that the sequencing data were reasonable. The Chao1 and ACE indices were significantly increased in patients with CAG compared with those in the healthy group. Following CSLJZD and vitacoenzyme treatment, Chao1 and ACE indices decreased. The PCA, non-metric multi-dimensional scaling, and unweighted pair group method with arithmetic mean results showed that the CAG group was distinct from the healthy and treatment groups. The LEfSe results showed that the abundances of the genus Bilophila, family Desulfovibrionaceae, order Desulfovibrionales and genus Faecalibacterium were significantly higher in the healthy group. The abundance of genus Klebsiella, order Deltaproteobacteria, genus Gemmiger, and other genera was significantly higher in the treatment group. Treatment with CSLJZD had a therapeutic effect on the intestinal flora of patients with CAG.


Assuntos
Doenças Autoimunes , Medicamentos de Ervas Chinesas , Gastrite Atrófica , Microbioma Gastrointestinal , Humanos , Gastrite Atrófica/tratamento farmacológico , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/genética , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Doenças Autoimunes/tratamento farmacológico
4.
J Food Sci ; 89(4): 2465-2481, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380680

RESUMO

Camellia seed oil (CO) has high nutritional value and multiple bioactivities. However, the specific anti-fatigue characteristics and the implied mechanism of CO have not yet been fully elucidated. Throughout this investigation, male C57BL/6J mice, aged 8 weeks, underwent exhaustive exercise with or without CO pretreatment (2, 4, and 6 mL/kg BW) for 28 days. CO could extend the rota-rod and running time, reduce blood urea nitrogen levels and serum lactic acid, and increase muscle and hepatic glycogen, adenosine triphosphate, and anti-oxidative indicators. Additionally, CO could upregulate the mRNA and Nrf2 protein expression levels, as well as enhance the levels of its downstream antioxidant enzymes and induce the myofiber-type transformation from fast to slow and attenuate the gut mechanical barrier. Moreover, CO could ameliorate gut dysbiosis by reducing Firmicutes to Bacteroidetes ratio at the phylum level, increasing the percentage of Alistipes, Alloprevotella, Lactobacillus, and Muribaculaceae, and decreasing the proportion of Dubosiella at the genus level. In addition, specific bacterial taxa, which were altered by CO, showed a significant correlation with partial fatigue-related parameters. These findings suggest that CO may alleviate fatigue by regulating antioxidant capacity, muscle fiber transformation, gut mechanical barrier, and gut microbial composition in mice. PRACTICAL APPLICATION: Our study revealed that camellia seed oil (CO) could ameliorate exercise-induced fatigue in mice by modulating antioxidant capacity, muscle fiber, and gut microbial composition in mice. Our results promote the application of CO as an anti-fatigue functional food that targets oxidative stress, myofiber-type transformation, and microbial community.


Assuntos
Camellia , Microbioma Gastrointestinal , Camundongos , Masculino , Animais , Antioxidantes/farmacologia , Microbioma Gastrointestinal/genética , Camundongos Endogâmicos C57BL , Fadiga/tratamento farmacológico , Fadiga/metabolismo , Óleos de Plantas/farmacologia , Bacteroidetes , Firmicutes , Fibras Musculares Esqueléticas
5.
Altern Ther Health Med ; 30(9): 390-405, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38294742

RESUMO

Objective: To explore intestinal flora differences in species diversity, community structure, and abundance of breast cancer and non-breast cancer populations with anxiety and depression and the corresponding group without anxiety and depression by 16S rRNA high-throughput sequencing technology. Method: Breast cancer and non-breast cancer participants were recruited based on the inclusion and exclusion criteria as the research subjects. The study employed the anxiety self-assessment scale and the depression self-rating scale in the questionnaire survey to collect data. Results: The scores of anxiety and depression of the four groups are as follows: In the breast cancer with anxiety and/or depression (BCAD) group, the anxiety score is 58.80 ± 5.27 and the depression score is 59.60 ± 4.94. In the breast cancer without anxiety and/or depression (BCWAD) group, the anxiety score is 36.53 ± 4.52 and the depression score is 38.20 ± 3.78. In the non-breast cancer group with anxiety and/or depression (HAD) group, the anxiety score is 57.87 ± 4.53 and the depression score is 59.13 ± 5.24. In the non-breast cancer group without anxiety and depression (HWAD) group, the anxiety score is 35.13 ± 5.28 and the depression score is 32.33 ± 4.37. Conclusion: The intestinal flora of the breast cancer patients is significantly different from those of non-breast cancer patients, suggesting that there is an internal relationship between the changes in the intestinal flora and the occurrence and development of breast cancer. People with anxiety and depression without breast cancer show changes in their intestinal flora, suggesting that the changes of the intestinal flora can indeed trigger anxiety and depression. For the breast cancer patients with anxiety and depression, the intestinal flora shows a decrease in diversity and abundance, suggesting that the intestinal flora of the breast cancer patients with anxiety and depression undergo further changes. Thus the intestinal flora can become a new tool for monitoring, preventing, and treating the breast cancer and negative emotions.


Assuntos
Ansiedade , Neoplasias da Mama , Depressão , Microbioma Gastrointestinal , RNA Ribossômico 16S , Humanos , Neoplasias da Mama/psicologia , Neoplasias da Mama/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Ansiedade/microbiologia , Depressão/microbiologia , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Adulto , Idoso
6.
J Ethnopharmacol ; 323: 117681, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38163557

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Mulberry (Morus alba L.) leaf is a well-known herbal medicine and has been used to treat diabetes in China for thousands of years. Our previous studies have proven mulberry leaf water extract (MLWE) could improve type 2 diabetes mellitus (T2D). However, it is still unclear whether MLWE could mitigate T2D by regulating gut microbiota dysbiosis and thereof improve intestinal permeability and metabolic dysfunction through modulation of lipopolysaccharide (LPS) and endocannabinoid system (eCBs). AIM OF STUDY: This study aims to explore the potential mechanism of MLWE on the regulation of metabolic function disorder of T2D mice from the aspects of gut microbiota, LPS and eCBs. MATERIALS AND METHODS: Gut microbiota was analyzed by high-throughput 16S rRNA gene sequencing. LPS, N-arachidonoylethanolamine (AEA) and 2-ararchidonylglycerol (2-AG) contents in blood were determined by kits or liquid phase chromatography coupled with triple quadrupole tandem mass spectrometry, respectively. The receptors, enzymes or tight junction protein related to eCBs or gut barrier were detected by RT-PCR or Western blot, respectively. RESULTS: MLWE reduced the serum levels of AEA, 2-AG and LPS, decreased the expressions of N-acylphophatidylethanolamine phospholipase D, diacylglycerol lipase-α and cyclooxygenase 2, and increased the expressions of fatty acid amide hydrolase (FAAH), N-acylethanolamine-hydrolyzing acid amidase (NAAA), alpha/beta hydrolases domain 6/12 in the liver and ileum and occludin, monoacylglycerol lipase and cannabinoid receptor 1 in the ileum of T2D mice. Furthermore, MLWE could change the abundances of the genera including Acetatifactor, Anaerovorax, Bilophila, Colidextribacter, Dubosiella, Gastranaerophilales, Lachnospiraceae_NK4A136_group, Oscillibacter and Rikenella related to LPS, AEA and/or 2-AG. Moreover, obvious improvement of MLWE treatment on serum AEA level, ileum occludin expression, and liver FAAH and NAAA expression could be observed in germ-free-mimic T2D mice. CONCLUSION: MLWE could ameliorate intestinal permeability, inflammation, and glucose and lipid metabolism imbalance of T2D by regulating gut microbiota, LPS and eCBs.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Morus , Camundongos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Endocanabinoides/metabolismo , Lipopolissacarídeos , Morus/química , Microbioma Gastrointestinal/genética , Disbiose/tratamento farmacológico , Ocludina , RNA Ribossômico 16S , Folhas de Planta/metabolismo
7.
Cancer Causes Control ; 35(3): 429-435, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37815646

RESUMO

PURPOSE: Mounting evidence suggests a possible link between gut microbiome and oral cancer, pointing to some potential modifiable targets for disease prevention. In the present study, Mendelian randomization (MR) was used to explore whether there was a causal link between gut microbiome and oral cancer. METHODS: The single nucleotide polymorphisms (SNPs) significantly associated with gut microbiome were served as instrumental variables. MR analyses were performed using genetic approaches such as inverse variance weighting (IVW), MR Egger and weighted median, with IVW as the primary approach, supplemented by MR Egger and weighted median. Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) and MR-Egger regression were used to detect the presence of horizontal pleiotropy and identify outlier SNPs. RESULTS: Causal effect estimates indicated that genetically predicted abundance of Prevotellaceae was associated with higher risk of oral cancer (odds ratio (OR) 1.80, 95% confidence interval (CI) 1.16-2.81, p = 0.009). There was no evidence of notable heterogeneity and horizontal pleiotropy. CONCLUSION: Genetically derived estimates suggest that Prevotellaceae may be associated with the risk of oral cancer. Such robust evidence should be given priority in future studies and explore the underlying mechanisms.


Assuntos
Microbioma Gastrointestinal , Neoplasias Bucais , Humanos , Microbioma Gastrointestinal/genética , Neoplasias Bucais/genética , Suplementos Nutricionais , Análise da Randomização Mendeliana , Razão de Chances , Estudo de Associação Genômica Ampla
8.
Metab Syndr Relat Disord ; 22(2): 133-140, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37971853

RESUMO

Background: To prevent cardiovascular disease (CVD), it is important to determine the factors that are associated with its development. High serum low-density lipoprotein (LDL) cholesterol (LDL-C) levels are a modifiable prevention and treatment target known to contribute to the development of CVD, but the factors affecting blood cholesterol levels, including LDL-C, remain controversial. Objective: In this study, the factors (genetic, nutritional, and gut microbiota) thought to be effective on serum LDL-C levels were discussed from a holistic perspective, and the effects of the relationship between these factors on LDL-C levels were examined. Methods: The study was carried out with 609 adults (48% male) who applied to a private health institution between 2016 and 2022. Results: It was observed that serum LDL-C levels were positively correlated with body mass index (BMI) (P = 0.000) and different ApoE alleles had significant effects on LDL-C levels. It was observed that the highest LDL-C levels were in the ɛ4+ group, followed by ɛ3+ and ɛ2+ groups, respectively (P = 0.000). Results showed that dietary cholesterol and fiber consumption did not significantly affect serum LDL-C levels (P = 0.705 and P = 0.722, respectively). It was also observed that enterotypes and the butyrate synthesis potential of intestinal microbiota did not cause significant changes in serum LDL-C levels (P = 0.369 and P = 975, respectively). Conclusion: Serum LDL-C levels are affected by modifiable factors such as BMI and nonmodifiable factors such as APOE genotype. By identifying these factors and conducting further studies on them, new ways to improve serum LDL-C levels, which is an important factor in the development of CVD, can be identified. In addition, no significant effect of gene-nutrient or microbiota-nutrient interactions on serum LDL-C levels was detected. Further research is needed, especially on the relationship between intestinal microbiota and serum LDL levels.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Adulto , Humanos , Masculino , Feminino , LDL-Colesterol , Microbioma Gastrointestinal/genética , Apolipoproteínas E/genética , Colesterol , Polimorfismo Genético , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/prevenção & controle , HDL-Colesterol
9.
Clin Nutr ; 42(11): 2258-2269, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37826992

RESUMO

BACKGROUND & AIMS: The effect of walnut-related modulation of gut microbiota composition on microbiota functionality is unknown. The aim was to characterize the effect of a walnut-enriched diet (WD), compared to a fatty acid-matched diet devoid of walnuts (WFMD) and a diet where oleic acid replaces alpha-linolenic acid (ORAD), on bacterial gene expression. METHODS: A 3-period, randomized, crossover, controlled-feeding study was conducted. Participants were provided a 2-week run-in standard western diet (SWD; 50% kcal carbohydrate, 16% protein, 34% fat, 12% SFA). Following the SWD in random sequence order, participants were provided the WD, WFMD, and ORAD (48% carbohydrate; 17% protein; fat 35%; 7% SFA). The WD contained 18% of energy from walnuts (57 g/d/2100 kcal). The WFMD and ORAD were devoid of walnuts; liquid non-tropical plant oils were included in these diets. Metatranscriptomic analyses were performed as an exploratory outcome. RESULTS: The analytical sample included 35 participants (40% female) with a mean ± SD age of 43 ± 10 y and BMI of 30.3 ± 4.9 kg/m2. The ⍺-diversity of taxa actively expressing genes, assessed by observed species (p = 0.27) and Pielou's Evenness (p = 0.09), did not differ among the diets. The ⍺-diversity of actively expressed genes was greater following the WD compared to the WFMD and ORAD as assessed by the observed genes and Pielou's Evenness metrics (p < 0.05). ß-Diversity of the actively expressed genes differed following the WD compared to the WFMD (p = 0.001) and ORAD (p = 0.001); ß-diversity did not differ between the WFMD and ORAD. Active composition analyses showed increased Gordonibacter (p < 0.001) activity following the WD vs. the ORAD. Greater expression of many genes was observed following the WD compared to the WFMD and ORAD. Following the WD, greater expression of metabolism-related genes encoding glycine amidinotransferase (GATM; K00613) and arginine deiminase (K01478) was observed compared to the WFMD. Greater expression of glycine amidinotransferase (GATM; K00613) by Gordonibacter was also observed following the WD vs. the WFMD and ORAD. CONCLUSION: Our results suggest walnut intake may increase endogenous production of homoarginine through gut microbiota-mediated upregulation of GATM, which is a novel mechanism by which walnuts may lower cardiovascular disease risk. However, given the exploratory nature replication is needed. CLINICAL TRIAL REGISTRATION: Clinicaltrials.gov (NCT02210767).


Assuntos
Microbioma Gastrointestinal , Juglans , Humanos , Microbioma Gastrointestinal/genética , Nozes , Dieta , Dieta Ocidental , Carboidratos , Estudos Cross-Over
10.
Chin J Nat Med ; 21(10): 723-729, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37879791

RESUMO

Many natural products can be bio-converted by the gut microbiota to influence pertinent efficiency. Ginsenoside compound K (GCK) is a potential anti-type 2 diabetes (T2D) saponin, which is mainly bio-transformed into protopanaxadiol (PPD) by the gut microbiota. Studies have shown that the gut microbiota between diabetic patients and healthy subjects are significantly different. Herein, we aimed to characterize the biotransformation of GCK mediated by the gut microbiota from diabetic patients and healthy subjects. Based on 16S rRNA gene sequencing, the results indicated the bacterial profiles were considerably different between the two groups, especially Alistipes and Parabacteroides that increased in healthy subjects. The quantitative analysis of GCK and PPD showed that gut microbiota from the diabetic patients metabolized GCK slower than healthy subjects through liquid chromatography tandem mass spectrometry (LC-MS/MS). The selected strain A. finegoldii and P. merdae exhibited a different metabolic capability of GCK. In conclusion, the different biotransformation capacity for GCK may impact its anti-diabetic potency.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Cromatografia Líquida/métodos , Voluntários Saudáveis , RNA Ribossômico 16S , Fezes/microbiologia , Espectrometria de Massas em Tandem , Biotransformação , Diabetes Mellitus Tipo 2/tratamento farmacológico
11.
Molecules ; 28(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37570841

RESUMO

Theaflavins (TFs), the primary bioactive components in black tea, are poorly absorbed in the small intestine. However, the biological activity of TFs does not match their low bioavailability, which suggests that the gut microbiota plays a crucial role in their biotransformation and activities. In this study, we aimed to investigate the biotransferred metabolites of TFs produced by the human gut microbiota and these metabolites' function. We profiled the microbial metabolites of TFs by in vitro anaerobic human gut microbiota fermentation using liquid chromatography tandem mass spectrometry (LC-MS/MS) methods. A total of 17 microbial metabolites were identified, and their corresponding metabolic pathways were proposed. Moreover, full-length 16S rRNA gene sequence analysis revealed that the TFs altered the gut microbiota diversity and increased the relative abundance of specific members of the microbiota involved in the catabolism of the TFs, including Flavonifractor_plautii, Bacteroides_uniformis, Eubacterium_ramulus, etc. Notably, the antioxidant capacity of the TF sample increased after fermentation compared to the initial sample. In conclusion, the results contribute to a more comprehensive understanding of the microbial metabolites and antioxidant capacity of TFs.


Assuntos
Camellia sinensis , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Cromatografia Líquida , Antioxidantes/farmacologia , Antioxidantes/análise , Chá/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Fezes/química , Espectrometria de Massas em Tandem , Camellia sinensis/genética
12.
J Med Virol ; 95(5): e28784, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37219044

RESUMO

Several studies have shown a possible correlation between gut microbiota and COVID-19. However, the cause-and-effect relationship between the two has not been investigated. We conducted a two-sample Mendelian randomization study (MR) study using publicly available GWAS data. Inverse variance weighted (IVW) analysis was the main MR analysis technique and was supplemented with other sensitivity analyses. Forty-two bacterial genera were associated with COVID-19 susceptibility, hospitalization, and severity in the IVW method. Among these gut microbiota, five gut microbiota (genus unknowngenus [id.1000005472], family unknownfamily [id.1000005471], genus Tyzzerella3, order MollicutesRF9.id.11579, and phylum Actinobacteria) were significantly associated with COVID-19 hospitalization and severity. Three gut microbiota (class Negativicutes, order Selenomonadales, and class Actinobacteria) were significantly associated with COVID-19 hospitalization and susceptibility, while two microbiota (class Negativicutes and order Selenomonadales) were significantly associated with COVID-19 hospitalization and severity, and susceptibility. Sensitivity analysis did not detect any heterogeneity and horizontal pleiotropy. Our findings demonstrated that several microorganisms were causally linked to COVID-19, and improved our understanding of the relationship between gut microbiota and COVID-19 pathology.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Análise da Randomização Mendeliana , Suplementos Nutricionais , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
13.
Nutrients ; 15(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37049587

RESUMO

We examined the association between caffeine and coffee intake and the community composition and structure of colonic microbiota. A total of 34 polyp-free adults donated 97 colonic biopsies. Microbial DNA was sequenced for the 16S rRNA gene V4 region. The amplicon sequence variant was assigned using DADA2 and SILVA. Food consumption was ascertained using a food frequency questionnaire. We compared the relative abundance of taxonomies by low (<82.9 mg) vs. high (≥82.9 mg) caffeine intake and by never or <2 cups vs. 2 cups vs. ≥3 cups coffee intake. False discovery rate-adjusted p values (q values) <0.05 indicated statistical significance. Multivariable negative binomial regression models were used to estimate the incidence rate ratio and its 95% confidence interval of having a non-zero count of certain bacteria by intake level. Higher caffeine and coffee intake was related to higher alpha diversity (Shannon index p < 0.001), higher relative abundance of Faecalibacterium and Alistipes, and lower relative abundance of Erysipelatoclostridium (q values < 0.05). After adjustment of vitamin B2 in multivariate analysis, the significant inverse association between Erysipelatoclostridium count and caffeine intake remained statistically significant. Our preliminary study could not evaluate other prebiotics in coffee.


Assuntos
Cafeína , Microbioma Gastrointestinal , Adulto , Humanos , Café , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Mucosa Intestinal/microbiologia , Fatores de Risco
14.
Curr Opin Microbiol ; 73: 102307, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37002975

RESUMO

The human gut microbiome is often described as the collection of bacteria, archaea, fungi, protists, and viruses associated with an individual, with no acknowledgement of the plasmid constituents. However, like viruses, plasmids are autonomous intracellular replicating entities that can influence the genotype and phenotype of their host and mediate trans-kingdom interactions. Plasmids are frequently noted as vehicles for horizontal gene transfer and for spreading antibiotic resistance, yet their multifaceted contribution to mutualistic and antagonistic interactions within the human microbiome and impact on human health is overlooked. In this review, we highlight the importance of plasmids and their biological properties as overlooked components of microbiomes. Subsequent human microbiome studies should include dedicated analyses of plasmids, particularly as a holistic understanding of human-microbial interactions is required before effective and safe interventions can be implemented to improve human well-being.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Plasmídeos/genética , Microbiota/genética , Bactérias/genética , Metagenômica
15.
J Med Food ; 26(3): 185-192, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36920238

RESUMO

Surströmming, a Swedish fermented fish, loved by some and avoided by others, occurs in many reports on improved or cured gastrointestinal problems even by a single meal. We tested the hypothesis that the microbes of the fermented food might have a potency to modify the gut microbiome. Two groups of voluntary participants (11 male, 8 female; aged 20-80 years) were exposed to a single meal containing the fish. A 7-day dietary intervention was carried out comprising the fish as the main source of protein in a single adult. The microbiome was characterized using 16S rRNA and metagenomic sequencing. Individual community-level changes in the microbiome were compared, as well as the presence of bacteria associated with the fermented fish. We focused on Shannon alpha and UniFrac beta diversity. We did not detect any global changes in the gut microbiome in response to Surströmming, nor were we able to recover and identify any members of Halanaerobium, which were associated with and abundant in the ingested fish, in the stool samples of the participants. Our results suggest that Surströmming consumption does not alter the microbiome of healthy individuals. However, beneficial effects on a diseased gut, impaired gut microbiome, or other effects in disease remain to be studied.


Assuntos
Bactérias , Microbioma Gastrointestinal , Animais , Masculino , Feminino , RNA Ribossômico 16S/genética , Fezes/microbiologia , Microbioma Gastrointestinal/genética
16.
Food Chem ; 412: 135048, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36753939

RESUMO

In this study, the anti-obesity mechanism of Ganpu tea (GPT) from the perspectives of microbiome, metabolome and transcriptome was investigated. GPT significantly reduced the high-fat-diet (HFD)-induced levels of inflammatory cytokines and the expansion of lipid droplets and white adipose tissue. GPT also improved HFD-induced gut microbiome imbalance by significantly reducing the proportion of Firmicutes to Bacteroidota. Metabolomic data showed that HFD-induced metabolic disorder was regulated by GPT and probably characterised by being related to 4-aminobutyraldehyde and 5-acetylamino-6-amino-3-methyluracil. Transcriptome showed that the improvement of obesity was mainly related to the IL-17 signaling pathway and the metabolism of xenobiotics by cytochrome P450. Spearman's correlation analysis indicated that gut microbiota were significantly correlated with inflammatory factors, genes and metabolites. Metabolome-transcriptome analysis showed that GPT reversed obesity mainly through the carbohydrate metabolism, amino acid metabolism and lipid metabolism.Collectively, GPT may be used as a health drink to prevent or treat obesity.


Assuntos
Microbioma Gastrointestinal , Obesidade , Animais , Camundongos , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/metabolismo , Dieta Hiperlipídica , Perfilação da Expressão Gênica , Metaboloma , Microbioma Gastrointestinal/genética , Metabolismo dos Lipídeos/genética , Chá/química , Camundongos Endogâmicos C57BL
17.
Biol Res Nurs ; 25(3): 436-443, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36624571

RESUMO

Irritable bowel syndrome (IBS) is a common disorder of gut-brain interaction with multifaceted pathophysiology. Prior studies have demonstrated higher rates of vitamin D deficiency in individuals with IBS compared to healthy controls (HC), as well as associations of vitamin D concentration with IBS symptoms. A systematic review of 10 mouse and 14 human studies reported a positive association between vitamin D (serum levels and supplementation) and beta diversity of gut microbiome in a variety of conditions. The present retrospective case-control study aimed to compare vitamin D (25(OH)D) plasma concentrations and gut microbiome composition in adult women with IBS (n=99) and HC (n=62). Plasma concentrations of 25(OH)D were assessed using the Endocrine Society Guidelines definition of vitamin D deficiency (25(OH)D <20 ng/ml) and insufficiency (25(OH)D >20-<30 ng/ml). 16S rRNA microbiome gene sequencing data was available for 39 HC and 62 participants with IBS. Genus-level Bifidobacterium and Lactobacillus and phylum-level Firmicutes and Bacteroidetes relative abundances were extracted from microbiome profiles. Results showed vitamin D deficiency in 40.3% (n=25) vs. 41.4% (n=41), and insufficiency 33.9% (n=21) vs. 34.3% (n=34) in the HCs vs. IBS groups, respectively. The odds of IBS did not differ depending on 25(OH)D status (p=0.75 for deficient, p=0.78 for insufficient), and the average plasma vitamin D concentration did not differ between IBS (mean 24.8 ng/ml) and HCs (mean 25.1 ng/ml; p=0.57). We did not find evidence of an association between plasma 25(OH)D concentration and richness, Shannon index, Simpson index or specific bacterial abundances in either HCs or the IBS group.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Deficiência de Vitamina D , Adulto , Humanos , Feminino , Animais , Camundongos , Vitamina D , Estudos Transversais , Estudos de Casos e Controles , Estudos Retrospectivos , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética
18.
BMC Microbiol ; 23(1): 32, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36707764

RESUMO

BACKGROUND: Interactions between diet, stress and the gut microbiome are of interest as a means to modulate health and performance. Here, in vitro fermentation was used to explore the effects of a sudden change in diet, 21 days sole sustenance on the Meal, Ready-to-Eat (MRE) U.S. military combat ration, on inter-species competition and functional potential of the human gut microbiota. Human fecal samples collected before and after MRE intervention or consuming a habitual diet (HAB) were introduced to nutrient-rich media supplemented with starch for in vitro fermentation under ascending colon conditions. 16S rRNA amplicon and Whole-metagenome sequencing (WMS) were used to measure community composition and functional potential. Specific statistical analyses were implemented to detect changes in relative abundance from taxa, genes and pathways. RESULTS: Differential changes in relative abundance of 11 taxa, Dorea, Lachnospira, Bacteroides fragilis, Akkermansia muciniphila, Bifidobacterium adolescentis, Betaproteobacteria, Enterobacteriaceae, Bacteroides egerthii, Ruminococcus bromii, Prevotella, and Slackia, and nine Carbohydrate-Active Enzymes, specifically GH13_14, over the 24 h fermentation were observed as a function of the diet intervention and correlated to specific taxa of interest. CONCLUSIONS: These findings suggest that consuming MRE for 21 days acutely effects changes in gut microbiota structure in response to carbohydrate but may induce alterations in metabolic capacity. Additionally, these findings demonstrate the potential of starch as a candidate supplemental strategy to functionally modulate specific gut commensals during stress-induced states.


Assuntos
Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Dieta , Fezes/microbiologia , Carboidratos , Amido/metabolismo , Suplementos Nutricionais
19.
Biomed Pharmacother ; 157: 114002, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36410120

RESUMO

Non-alcoholic fatty liver disease (NAFLD) pathogenesis is affected by dysbiosis of the gut microbiome and the metabolites it generates. Therefore, restoring the equilibrium between the gut microbiome and the generated metabolites may have therapeutic potential for the syndrome. Zuogui Jiangtang Qinggan Fang (ZGJTQGF) is a Chinese herbal formulation used clinically to treat type 2 diabetic mellitus (T2DM) and fatty liver disease. However, its pharmacological mechanisms have not been well characterized. This work aimed to evaluate the hepatoprotective mechanism of ZGJTQGF in T2DM with NAFLD mice by incorporating gut microbiota, short-chain fatty acids(SCFAs), and metabolomic analysis, and then to provide strong support for clinical treatment of T2DM with NAFLD. The sequencing of 16 S rRNA revealed that ZGJTQGF therapy modified the composition and abundance of the gut microbiome, raised the level of SCFAs, and restored the intestinal mucosal barrier. The non-targeted metabolomic analysis of liver tissues identified 212 compounds, of which108 were differentially expressed between the HFD and ZGJTQGF groups. Moreover, L-glutamic acid, L-Phenylalanine, Glycine, Taurine, Deoxycholic acid, and citric acid levels were also considerably altered by ZGJTQGF. Our findings suggest that ZGJTQGF ameliorates HFD-induced hepatic steatosis by modulating the gut microbiota composition and its metabolites and boosting the levels of SCFAs. More notably, ZGJTQGF may be a promising medication for preventing and treating NAFLD.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta Hiperlipídica/efeitos adversos , Diabetes Mellitus Tipo 2/metabolismo , Microbioma Gastrointestinal/genética , Ácidos Graxos Voláteis/metabolismo , Fígado/metabolismo
20.
Microb Pathog ; 174: 105927, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36529285

RESUMO

BACKGROUND: Massa Medicata Fermentata (MMF) is one of the most commonly used traditional fermented Chinese medicines. MMF is widely used for the treatment of digestive diseases such as dyspepsia and flatulence in traditional Chinese medicine (TCM). However, the therapeutic mechanism of MMF is not well understood. METHOD: In this study, SD rats received 0.1% iodoacetamide either alone or in combination with water platform sleep deprivation to induce functional dyspepsia and were administered MMF (1 or 3 g/kg/d, ig), mosapride citrate (Mosa., 2 mg/kg/d, ig) or saline for 21 days. After treatment, the sucrose preferences and gastric emptying rates of the rats were assessed; HE staining was used to detect the pathological changes in the rat duodenum; ELISA kits were used to detect motilin (MTL) in the rat duodenum and the serum contents of Interferon-λ (IFN-λ), Interleukin 6 (IL-6), and Tumor Necrosis Factor-α (TNF-α). An approach based on 16S rDNA amplicon sequencing was utilized to explore the intestinal microflora in the colon contents of rats and the metabolism of the microflora to assess the potential mechanisms of MMF in ameliorating functional dyspepsia (FD). In addition, gas chromatography-mass spectrometry (GC/MS) was used to detect changes in short fatty acids (SCFAs) in the colon contents of rats. RESULTS: MMF reduced the serum levels of TNF-α, and IFN-λ, improved the morphology of duodenal intestinal villi and ameliorated intestinal mucosal lamina propria injury in FD rats, and the sucrose preference increased and the gastric emptying rate decreased in FD rats. MMF alleviated intestinal microflora disturbance and exerted a regulatory effect on Bacteroidetes, Proteobacteria, and Firmicutes, reduced total SCAFs, Butyric Acid, Propionic acid-2-methyl, Butanoic Acid-3-methyl, and Hexanoic acid. CONCLUSIONS: These results showed that the effect of MMF on the intestinal flora and its metabolites may provide a new treatment strategy for FD.


Assuntos
Dispepsia , Microbioma Gastrointestinal , Ratos , Animais , Dispepsia/tratamento farmacológico , Dispepsia/microbiologia , Microbioma Gastrointestinal/genética , Fator de Necrose Tumoral alfa/metabolismo , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA