Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 376(6596): 1001-1005, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35617400

RESUMO

Harmful cyanobacteria are a global environmental problem, yet we lack actionable understanding of toxigenic versus nontoxigenic strain ecology and toxin production. We performed a large-scale meta-analysis including 103 papers and used it to develop a mechanistic, agent-based model of Microcystis growth and microcystin production. Simulations for Lake Erie suggest that the observed toxigenic-to-nontoxigenic strain succession during the 2014 Toledo drinking water crisis was controlled by different cellular oxidative stress mitigation strategies (protection by microcystin versus degradation by enzymes) and the different susceptibility of those mechanisms to nitrogen limitation. This model, as well as a simpler empirical one, predicts that the planned phosphorus load reduction will lower biomass but make nitrogen and light more available, which will increase toxin production, favor toxigenic cells, and increase toxin concentrations.


Assuntos
Lagos , Microcistinas , Microcystis , Fósforo , Canadá , Água Potável , Lagos/química , Lagos/microbiologia , Microcistinas/análise , Microcistinas/metabolismo , Microcistinas/toxicidade , Microcystis/genética , Microcystis/crescimento & desenvolvimento , Microcystis/metabolismo , Nitrogênio/metabolismo , Fósforo/análise , Fósforo/metabolismo , Estados Unidos , Abastecimento de Água
2.
J Photochem Photobiol B ; 219: 112186, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33892284

RESUMO

Harmful algal blooms in inland waters are widely linked to excess phosphorus (P) loading, but increasing evidence shows that their growth and formation can also be influenced by nitrogen (N) and iron (Fe). Deficiency in N, P, and Fe differentially affects cellular photosystems and is manifested as changes in photosynthetic yield (Fv/Fm). While Fv/Fm has been increasingly used as a rapid and convenient in situ gauge of nutrient deficiency, there are few rigorous comparisons of instrument sensitivity and ability to resolve specific nutrient stresses. This study evaluated the application of Fv/Fm to cyanobacteria using controlled experiments on a single isolate and tested three hypotheses: i) single Fv/Fm measurements taken with different PAM fluorometers can distinguish among limitation by different nutrients, ii) measurements of Fv/Fm made by the addition of DCMU are comparable to PAM fluorometers, and iii) dark adaptation is not necessary for reliable Fv/Fm measurements. We compared Fv/Fm taken from the bloom-forming Microcystis aeruginosa (UTEX LB 3037) grown in nutrient-replete treatment (R) and N-, P-, and Fe-limited treatments (LN, LP, LFe, respectively), using three pulse-amplitude modulated (PAM) fluorometers and the chemical photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), and evaluated the effects of dark adaptation prior to PAM measurement. There were significant differences in Fv/Fm estimates among PAM fluorometers for light- versus dark-adapted cell suspensions over the whole experiment (21 days), which were all significantly higher than the DCMU-based measurements. However, dark adaptation had no effect on Fv/Fm when comparing PAM-based values across a single nutrient treatment. All Fv/Fm methods could distinguish LN and LP from R and LFe treatments but none were able to resolve LFe from R, or LN from LP cultures. These results indicated that for most PAM applications, dark adaptation is not necessary, and furthermore that single measurements of Fv/Fm do not provide a robust measurement of nutrient limitation in Microcystis aeruginosa UTEX LB 3037, and potentially other, common freshwater cyanobacteria.


Assuntos
Fluorometria/métodos , Microcystis/metabolismo , Nutrientes/química , Clorofila/química , Diurona/farmacologia , Proliferação Nociva de Algas/efeitos dos fármacos , Proliferação Nociva de Algas/efeitos da radiação , Ferro/química , Luz , Microcystis/crescimento & desenvolvimento , Microcystis/efeitos da radiação , Nitrogênio/química , Nutrientes/farmacologia , Fósforo/química , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação
3.
Arch Environ Occup Health ; 76(3): 123-133, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32364018

RESUMO

We study the dynamics of bloom-forming cyanobacteria and determined the major driving forces in subtropical lake of the Kumaun Himalayas, India. Water and plankton samples from different sites and depths of the lake were analyzed. Multivariate analyses were used to evaluate the factors controlling the distribution pattern of cyanobacteria. M. aeruginosa was the most abundant species with an average density of 10.39 × 106 individual/m3 and distributed throughout water depths. The geomorphic threshold modulates soil erosion processes resulting in lower transparency in the Himalayan lake; thereby limiting the growth of Chlorophycea. Effective persistence for M. aeroginosa into different depths is augmented by fluxes nutrient coupling with pigments. The ratio of nitrogen/phosphorus (N/P) had a significant negative correlation (F =-0.884; p = 0.0001) with densities. Expansion of M. aeruginosa in deep de-stratified lake is episodic and their proliferation can restrict by lowering phosphorus.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Lagos/microbiologia , Clorofíceas/crescimento & desenvolvimento , Monitoramento Ambiental , Eutrofização , Índia , Lagos/química , Microcystis/crescimento & desenvolvimento , Nitrogênio/análise , Nutrientes/análise , Oxigênio/análise , Fósforo/análise , Pigmentos Biológicos/análise , Estações do Ano , Temperatura
4.
Ecotoxicol Environ Saf ; 209: 111810, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33360217

RESUMO

The number of undesirable environmental impacts of fish feed has been reported widely. Although repeated fish feed exposures are more prospective to occur in water, previous studies were mostly conducted as a single exposure of fish feed. In order to fill these gaps, a 40 days incubator experiment was conducted to explore the effects of fish feed addition scenarios during the lag phase with prometryn on both Microcystis aeruginosa growth and concentrations of nutrients. The maximum algae densities in groups of single exposure were 6.0-26.2% and 8.8-74.4% higher than those in groups of double and triple exposures, respectively (P < 0.05). At the beginning of the experiment, concentrations of nutrients in groups with different feed exposure scenarios were significantly different. The pattern of nutrient limitation showed a transformation from phosphorus limitation to nitrogen limitation generally. Furthermore, the average inhibition rates of algae by prometryn in the case of a single fish feed exposure were 4.6-9.4% lower than those under double exposures, and 22.0-26.8% lower than those under triple exposures (P < 0.05). In addition, algae growth rates have been developed as a function of concentrations of consumed nutrients (R2 = 0.410-0.932). Based on the above results, we concluded that in terms of limiting algae growth multiple low-dosage additions of fish feed were considered as a better addition pattern. By optimizing feed addition scenarios, there is considerable potential to increase the environmental sustainability of aquaculture.


Assuntos
Ração Animal , Herbicidas/toxicidade , Microcystis/efeitos dos fármacos , Prometrina/toxicidade , Animais , Aquicultura/métodos , Peixes , Microcystis/crescimento & desenvolvimento , Nitrogênio/análise , Nutrientes , Fósforo/análise , Estudos Prospectivos , Qualidade da Água
5.
PLoS One ; 15(12): e0243582, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33351804

RESUMO

Bloom-forming cyanobacteria dramatically influence nutrient cycling in eutrophic freshwater lakes. The phosphorus (P) assimilation and release of bloom-forming cyanobacteria significantly may also affect the phosphorus source and amounts in water. To understand the phosphorus release process of bloom-forming cyanobacteria below the accumulated surface and sedimentary bloom-forming cyanobacteria, the degradation of bloom-forming cyanobacteria dominated by Microcystis spp. at different cell density in the dark was investigated over a 25-day microcosm experiment. The dissolved inorganic phosphorus (DIP) and dissolved total phosphorus (DTP) contents increased with the increment of cyanobacterial density, and the dark status markedly increased the proportion of DIP in water during the decline period of bloom-forming cyanobacteria. Meanwhile, the process of cyanobacterial apoptosis accompanied by the changes of malondialdehyde (MDA) and phosphatase (AKP) contents, and the increases of superoxide dismutase (SOD) and catalase (CAT) activities of cyanobacteria in the dark, especially in low-density groups (5.23×108 cells L-1), which further affect the physicochemical water parameters. Moreover, the DIP release from high-density cyanobacteria (7.86×107 cells L-1~5.23×108 cells L-1) resulted from the relative abundance of organophosphorus degrading bacteria in the dark. Therefore, the fast decay of cyanobacteria in the dark could accelerate DIP release, the high DIP release amount from accumulated bloom-cyanobacteria provide adequate P quickly for the sustained growth of cyanobacteria.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Eutrofização , Fósforo/metabolismo , Cianobactérias/citologia , Cianobactérias/metabolismo , Lagos/microbiologia , Viabilidade Microbiana , Microcystis/citologia , Microcystis/crescimento & desenvolvimento , Microcystis/metabolismo , Fotoperíodo
6.
Sci Rep ; 10(1): 187, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31932648

RESUMO

The effect of fish feed quality has gained increasing attention to alleviate the harmful environmental impacts induced by intensive aquaculture. In current research, we have conducted an incubator experiment to highlight the effect of fish feed quality on aquaculture water environment. Fish feed from three manufactures with two different dosages (0.1000 g, 0.2000 g) was added to the culture medium with and without Microcystis aeruginosa. Treatments with Microcystis aeruginosa were named as MHT, MHP and MZT; while the treatments without Microcystis aeruginosa named as HT, HP and ZT. Microcystis aeruginosa densities and nutrients concentrations were measured in the study. Results have shown that fish feed quality (manufactures) has a great effect on nutrients concentrations in the absence of Microcystis aeruginosa (P < 0.05). Meanwhile, fish feed can stimulate Microcystis aeruginosa growth that is also influenced by fish feed quality excluding lag phase (0~12 day) significantly in general (P < 0.05). The maximum Microcystis aeruginosa density (Nmax) is 1221.5, 984.5, 581.0, 2265.9, 2056.8 and 1766.6 1 × 104 cells mL-1 for MHT 0.1 g, MHP 0.1 g, MZT 0.1 g, MHT 0.2 g, MHP 0.2 g and MZT 0.2 g, respectively. In treatments with algae, fish feed quality affect total phosphorus (TP) concentrations (except the difference between MHT and MHP) and total nitrogen (TN) concentrations significantly (P < 0.05). For most of consumed nutrients, the obvious differences among all treatments were observed excluding lag phase in general (P < 0.05), which suggest that the nutrient utilization is also dependent on fish feed quality. Keeping in mind the above facts it is concluded that fish feed quality is a key factor in impacting aquaculture water environment.


Assuntos
Ração Animal/análise , Aquicultura/normas , Ecossistema , Peixes/fisiologia , Microcystis/crescimento & desenvolvimento , Nutrientes/análise , Água/química , Animais , Aquicultura/métodos , Incubadoras , Nitrogênio/análise , Fósforo/análise
7.
J Hazard Mater ; 384: 121312, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31699478

RESUMO

Harmful cyanobacterial bloom (HCB) by Microcystis aeruginosa is increasingly becoming a serious concern to the environment and human health alike. Currently, many physical, chemical, and biological controls are underway to eliminate HCB, but natural chemicals are rarely used. To find a control agent with low environmental toxicity and high potential for practical use, 60 plant extracts were screened. Only Selaginella tamariscina extract killed all four Microcystis aeruginosa strains, but not the other tested bacteria. Chloroform fraction of S. tamariscina extract (CSE) showed the highest killing activity. The effects of CSE on M. aeruginosa were monitored using differential interference contrast microscopy and flow-cytometry analysis, scanning electron microscopy, and transmission electron microscopy. The images showed that CSE-treated cells were abnormally altered, with damaged cell membranes, peptidoglycan layers, and cytoplasm. Quadrupole time-of-flight liquid chromatography-mass spectrometry was used to identify amentoflavone as a major active compound. Pure amentoflavone, even at low concentrations showed a powerful killing effect on M. aeruginosa, but not on other non-cyanobacteria. Overall, in this study, we have highlighted the potentials of S. tamariscina extracts and amentoflavone as selective HCB control agents.


Assuntos
Antibacterianos/farmacologia , Biflavonoides/farmacologia , Cianobactérias/efeitos dos fármacos , Selaginellaceae/química , Membrana Celular/efeitos dos fármacos , Clorofórmio , Cianobactérias/crescimento & desenvolvimento , Citoplasma/efeitos dos fármacos , Proliferação Nociva de Algas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microcystis/efeitos dos fármacos , Microcystis/crescimento & desenvolvimento , Peptidoglicano/química , Extratos Vegetais/farmacologia , Solventes
8.
Environ Pollut ; 256: 113441, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31672370

RESUMO

Phosphorus (P) plays a critical role in eutrophication and algal growth; therefore, improving our understanding of the impact of P is essential to control harmful algal blooms. In this study, Microcystis aeruginosa was treated with 5-h ambient irradiation in the medium with different dissolved inorganic P (DIP) concentrations, DIP-free, moderate-DIP, and high-DIP, to explore its growth and other physiological responses. Compared to photosynthetically active radiation (PAR), UV-A (320-400 nm) and UV-B (280-320 nm) radiation had inhibitive effects on the photosynthesis and growth of M. aeruginosa, while high P availability could alleviate or eliminate the negative effects of UV radiation. The photosynthetic parameters had a minimum reduction and quickly recovered after re-inoculation under high-DIP conditions. Confirmed by SEM, photosynthetic pigments, the generation of reactive oxygen species (ROS), superoxide dismutase (SOD) activity and other methods, ambient UV radiation exerted oxidative stresses rather than direct lethal effects on M. aeruginosa. Photosynthetic parameters indicated that algal UV-adaptation processes could include decreasing photo-induced damages and increasing self-repair efficiency. The P acquired by M. aeruginosa cells can have two function, which included alleviating UV-induced negative effects and sustaining algal growth. Consequently, UV-adaptation processes of M. aeruginosa resulted in an elevated demand for DIP, which resulted to increased P uptake rates and cellular P quota under moderate and high-DIP conditions. Therefore, the production of carotenoid and phycocyanin, and SOD activity increased under UV stress, leading to a better adaptation capability of M. aeruginosa and decreased negative effects of UV radiation on its growth. Overall, our findings demonstrated the significant interactive effects of P enrichment and irradiation on typical cyanobacteria, and the strong adaptation capability of M. aeruginosa in the eutrophic UV-radiated waters.


Assuntos
Aclimatação , Microcystis/fisiologia , Fósforo/metabolismo , Raios Ultravioleta , Carotenoides , Cianobactérias , Proliferação Nociva de Algas , Microcystis/crescimento & desenvolvimento , Estresse Oxidativo , Fotossíntese/efeitos dos fármacos , Ficocianina , Espécies Reativas de Oxigênio
9.
Cienc. tecnol. salud ; 7(2): 155-169, 2020. il 27 c
Artigo em Espanhol | LILACS, DIGIUSAC, LIGCSA | ID: biblio-1348112

RESUMO

Se realizó un estudio sobre la composición y abundancia del fitoplancton en el lago de Amatitlán, y el efecto de la calidad de agua sobre su biodiversidad. Para ello, se colectaron muestras de agua en cuatro puntos específicos del lago, en la superficie del agua y a profundidades de 5, 10 y 20 m, de manera mensual durante el 2017. Se midieron parámetros fisicoquímicos in situ como temperatura y pH. Igualmente, se identificaron y contabilizaron cianobacterias y microalgas. El índice de estado trófico (IETP) catalogó al lago como eutrófico e hipertrófico (IETP = 63.80-88.18). Se reportan 34 géneros de fitoplancton distribuidos en 30 familias, 17 órdenes y 10 clases. Los indicadores biológicos, tales como, floraciones algales de Microcystis (38.41%), baja diversidad de diatomeas (Nitzschia, Aulacoseira y Cyclotella), presencia de microalgas Nitzschia y Scenedesmusresistentes a procesos de eutrofización, y alta concentración de coliformes fecales, de hasta 24,000 NMP/100 ml, evidenciaron la baja calidad de agua que se presenta en el lago de Amatitlán. En época seca se encontró más diversidad de microalgas debido a la mayor incidencia de radiación solar, el poco recambio de agua y la acumulación de materia orgánica. Aunque esto varía con los cambios en la concentración de nitrógeno total (NT) y fosforo total (PT), que potencian la proliferación de cianobacterias tóxicas. La biodiversidad del lago fue baja debido al estado hipereutrófico en que se encuentra. Se recomienda poner en funcionamiento plantas de tratamiento de aguas residuales para evitar que esta problemática continúe.


A study was carried out on the composition and abundance of phytoplankton in Amatitlán lake, and the effect of water quality on its biodiversity. For this, water samples were collected at four specific points in the lake, on the water surface and at depths of 5, 10 and 20 m, in a monthly way during 2017. Physicochemical parameters were measured in situ such as temperature and pH. Likewise, cyanobacteria and microalgae were identified and accounted. The trophic state index (IETP) cataloged the lake as eutrophic and hypertrophic (IETP = 63.80-88.18). 34 genera of phytoplankton distributed in 30 families, 17 orders and 10 classes are reported. Biological indicators, such as Microcystis algal blooms (38.41%), low diatom diversity (Nitzschia, Aulacoseira and Cyclotella), presence of Nitzschia and Scenedesmus microalgae resistant to eutrophication processes, and high concentration of fecal coliforms, up to 24,000 NMP/100 ml, evidenced the low quality of water that occurs in lake Amatitlán. In the dry season, more microalgae diversity was found due to the higher incidence of solar radiation, little water change and the accumulation of organic matter. Even though this varies with changes in the concentration of total nitrogen (NT) and total phosphorus (PT), which enhance the proliferation of toxic cyanobacteria. The lake's biodiversity was low due to its hypereutrophic state. We recommend to put this wastewater treatment plants into operation to prevent this problem to continue.


Assuntos
Fitoplâncton/crescimento & desenvolvimento , Qualidade da Água , Lagos/análise , Fósforo/análise , Biodiversidade , Microcystis/crescimento & desenvolvimento , Coliformes , Eutrofização , Microalgas , Águas Residuárias/toxicidade , Nitrogênio/análise
10.
Toxins (Basel) ; 11(10)2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623095

RESUMO

Harmful algal blooms (HABs) are increasing in magnitude, frequency, and duration globally. Even though a limited number of phytoplankton species can be toxic, they are becoming one of the greatest water quality threats to public health and ecosystems due to their intrinsic toxicity to humans and the numerous interacting factors that undermine HAB forecasting. Here, we show that the carbon:nitrogen:phosphorus (C:N:P) stoichiometry of a common toxic phytoplankton species, Microcystis, regulates toxin quotas during blooms through a tradeoff between primary and secondary metabolism. Populations with optimal C:N (< 8) and C:P (< 200) cellular stoichiometry consistently produced more toxins than populations exhibiting stoichiometric plasticity. Phosphorus availability in water exerted a strong control on population biomass and C:P stoichiometry, but N availability exerted a stronger control on toxin quotas by regulating population biomass and C:N:P stoichiometry. Microcystin-LR, like many phytoplankton toxins, is an N-rich secondary metabolite with a C:N stoichiometry that is similar to the optimal growth stoichiometry of Microcystis. Thus, N availability relative to P and light provides a dual regulatory mechanism that controls both biomass production and cellular toxin synthesis. Overall, our results provide a quantitative framework for improving forecasting of toxin production during HABs and compelling support for water quality management that limit both N and P inputs from anthropogenic sources.


Assuntos
Carbono/metabolismo , Microcistinas/metabolismo , Microcystis/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Proliferação Nociva de Algas , Toxinas Marinhas , Microcystis/crescimento & desenvolvimento , Metabolismo Secundário
11.
Appl Environ Microbiol ; 85(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31420344

RESUMO

The frequency and intensity of cyanobacterial blooms are increasing worldwide. Interactions between toxic cyanobacteria and aquatic microorganisms need to be critically evaluated to understand microbial drivers and modulators of the blooms. In this study, we applied 16S/18S rRNA gene sequencing and metabolomics analyses to measure the microbial community composition and metabolic responses of the cyanobacterium Microcystis aeruginosa in a coculture system receiving dissolved inorganic nitrogen and phosphorus (DIP) close to representative concentrations in Lake Taihu, China. M. aeruginosa secreted alkaline phosphatase using a DIP source produced by moribund and decaying microorganisms when the P source was insufficient. During this process, M. aeruginosa accumulated several intermediates in energy metabolism pathways to provide energy for sustained high growth rates and increased intracellular sugars to enhance its competitive capacity and ability to defend itself against microbial attack. It also produced a variety of toxic substances, including microcystins, to inhibit metabolite formation via energy metabolism pathways of aquatic microorganisms, leading to a negative effect on bacterial and eukaryotic microbial richness and diversity. Overall, compared with the monoculture system, the growth of M. aeruginosa was accelerated in coculture, while the growth of some cooccurring microorganisms was inhibited, with the diversity and richness of eukaryotic microorganisms being more negatively impacted than those of prokaryotic microorganisms. These findings provide valuable information for clarifying how M. aeruginosa can potentially modulate its associations with other microorganisms, with ramifications for its dominance in aquatic ecosystems.IMPORTANCE We measured the microbial community composition and metabolic responses of Microcystis aeruginosa in a microcosm coculture system receiving dissolved inorganic nitrogen and phosphorus (DIP) close to the average concentrations in Lake Taihu. In the coculture system, DIP is depleted and the growth and production of aquatic microorganisms can be stressed by a lack of DIP availability. M. aeruginosa could accelerate its growth via interactions with specific cooccurring microorganisms and the accumulation of several intermediates in energy metabolism-related pathways. Furthermore, M. aeruginosa can decrease the carbohydrate metabolism of cooccurring aquatic microorganisms and thus disrupt microbial activities in the coculture. This also had a negative effect on bacterial and eukaryotic microbial richness and diversity. Microcystin was capable of decreasing the biomass of total phytoplankton in aquatic microcosms. Overall, compared to the monoculture, the growth of total aquatic microorganisms is inhibited, with the diversity and richness of eukaryotic microorganisms being more negatively impacted than those of prokaryotic microorganisms. The only exception is M. aeruginosa in the coculture system, whose growth was accelerated.


Assuntos
Água Doce/microbiologia , Lagos/microbiologia , Interações Microbianas/fisiologia , Microcystis/crescimento & desenvolvimento , Microcystis/metabolismo , Toxinas Bacterianas/metabolismo , Biomassa , China , Técnicas de Cocultura , Meios de Cultura/química , DNA Bacteriano/análise , Genes de RNAr/genética , Microbiota , Microcistinas , Microcystis/genética , Nitrogênio/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fósforo/metabolismo , Fitoplâncton/crescimento & desenvolvimento
12.
Aquat Toxicol ; 215: 105271, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31470337

RESUMO

Microcystis blooms and their associated microcystins pose a significant health risk to humans. Microcystis normally occurs as colonies in eutrophic water bodies, and its physiological tolerance to algaecides is dissimilar to that of unicellular forms. However, the differences of physiological response to algaecides between unicellular and colonial Microcystis have been poorly explored. The current study investigated the effects of hexane extract of Acorus calamus rhizome (HEACR) on the physiological and photosynthetic mechanisms of unicellular and colonial M. aeruginosa in the laboratory. We analyzed the cell density, reactive oxygen species (ROS) level, malonaldehyde (MDA) content, photosynthetic pigments, capsular polysaccharide (CPS), and photosystem (PS II) parameters of the two morphological forms of Microcystis. Our results show that HEACR suppresses the growth of both unicellular and colonial M. aeruginosa, increases the intracellular ROS level and cause lipid peroxidation, as well as exerting a detrimental effect on chlorophyll a (chl a) content and photosynthetic efficiency. Almost 100% inhibition was observed for unicellular and colonial M. aeruginosa after 3 d exposure to 50 and 100 mg L-1 HEACR, respectively. The ROS level increase, MDA accumulation, the chl a decrease and carotenoid increase in unicellular M. aeruginosa were all more obvious than that in colonial cells. The fall in photosynthetic efficiency of unicellular M. aeruginosa were also more significant than that of colonial cells. After 3d exposure, the maximum quantum yield of PS II photochemistry (Fv/Fm), effective quantum yield of PS II photochemistry (Fv'/Fm') and effective quantum yield of photochemical energy conversion in PS II (YII) of unicellular M. aeruginosa was almost totally inhibited by 20 mg L-1 HEACR, while the Fv/Fm, Fv'/Fm' and YII of colonial M. aeruginosa decreased by 43%, 26% and 66% for 100 mg L-1 of HEACR, respectively. Comparing the two morphological forms of Microcystis, colonies show a greater increase in CPS level to more effectively resist the stress of HEACR and to mitigate ROS generation thereby better defending against oxidative damage. Furthermore, colonial M. aeruginosa shows better photoprotection ability than the unicellular form when exposed to HEACR. The colonies also sustain their maximum electron transport rate, increase their tolerance to strong light, and maintain a higher ability to disperse excess energy. These results demonstrated that HEACR can significantly interfere with the growth and physiological processes of both unicellular and colonial M. aeruginosa, but that colonial M. aeruginosa has a greater ability to adjust physiological tolerance to resist the stresses of HEACR.


Assuntos
Acorus/química , Microcystis/efeitos dos fármacos , Microcystis/fisiologia , Extratos Vegetais/farmacologia , Rizoma/química , Luz , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos da radiação , Microcystis/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Pigmentos Biológicos/metabolismo , Polissacarídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
13.
Mar Pollut Bull ; 148: 194-201, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31430706

RESUMO

The utilization of phosphorus by algae in the low-phosphorus state has drawn wide concerns due to the high risk of forming algal blooms. The cyanobacteria Microcystis aeruginosa (M. aeruginosa) grew well under low-phosphorus condition by hydrolyzing dissolved organic phosphorus (DOP) to dissolved inorganic phosphorus (DIP) through alkaline phosphatase (AP). There was a negative correlation between DIP concentration and AP activity of algae. AP activity significantly increased at 0-3 d (p < 0.05), and reached the peak values of 43.06 and 49.11 King unit/gprot on day 5 for DIP (0.1 mg/L) and DOP (4.0 mg/L), respectively. The relative expression of phosphate transporter gene increased with decreasing phosphorus concentrations. The catalase activity under low-phosphorus condition increased significantly (p < 0.05) after one week, and was generally higher than 0.15 U/mgprot on day 14. Understanding the utilization efficiency and mechanism of DIP and DOP in the low-phosphorus state would help to inhibit the formation of algal blooms.


Assuntos
Microcystis/crescimento & desenvolvimento , Fósforo/análise , Fosfatase Alcalina/metabolismo , Proteínas de Bactérias/metabolismo , Eutrofização , Microcystis/enzimologia , Microcystis/metabolismo , Fósforo/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-31326544

RESUMO

Microcystins constitute a serious threat to the quality of drinking water worldwide. However, the eco-physiological role of them is not completely known and it is suggested that toxins can play a role in the antioxidant protection. The objective of this study was to evaluate the microcystin antioxidant capacity in vitro by Electronic Paramagnetic Resonance, highly specific for the different reactive oxygen species and in vivo by 7 days exposure of Microcystis aeruginosa to high (29 °C) temperature in addition to a 26 °C control condition. An effective in vitro antioxidant activity was observed for [D-Leu1]MC-LR against hydrosoluble radicals. As far as we know, this is the first in vitro record of the role of MC as antioxidant. In addition, a significant increase in cellular biomass was observed under 26 °C in cultures with [D-Leu1]MC-LR supplementation in coincidence with a significant decrease of reactive species. For cultures at 29 °C, the antioxidant role of toxins was inconclusive probably due to the presence of different reactive species generated during the experiment. Thus, MC could scavenge certain reactive species associated with the antioxidant role of CAT or the OH content by SOD activity (not measured) and then CAT activity could be lower in the presence of MC. Reinforcing our hypothesis, the [D-Leu1]MC-LR consumption after 7 days was significantly higher in cells with [D-Leu1]MC-LR supplementation in both 26 °C and 29 °C.When the production of reactive species was controlled by the scavenger activity of antioxidants plus MC, cells avoided the potential oxidative damage and started with exponential growth.


Assuntos
Antioxidantes/fisiologia , Toxinas Bacterianas/metabolismo , Microcistinas/fisiologia , Microcystis , Biomassa , Catalase/metabolismo , Microcystis/crescimento & desenvolvimento , Microcystis/metabolismo , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Temperatura
15.
Aquat Toxicol ; 211: 81-91, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30954847

RESUMO

The excessive proliferation of toxin producing cyanobacteria constitutes a significant health risk to the environment and humans. This is due to the contamination of potable water and accumulation of cyanotoxins in plant and animal tissues. As a means of controlling bloom forming cyanobacteria, secondary metabolites with pro-oxidative activities from plants are used to treat water bodies contaminated with cyanobacterial blooms and their associated toxins. The objective of the present study was to evaluate the mechanism of action of extract, fractions and isolated flavonoids of Tridax procumbens L. on Microcystis aeruginosa (Kützing) Kützing. by monitoring changes in growth, oxidative stress, antioxidant response, and cyanatoxin microcystins (MCs) production. The extract, fraction 3 and the isolated flavonoids significantly reduced the cell density of the cyanobacterium. Furthermore, the extract and fraction 3 increased the production of reactive oxygen species, induced lipid peroxidation, and altered antioxidant enzyme activities of M. aeruginosa. The total MCs content of the cyanobacterium was negatively affected by the presence of the extract, fractions and isolated flavonoids. The present study show that T. procumbens has secondary metabolites that are capable of interfering with the physiology and microcystins production of M. aeruginosa. These characteristics are promising for the control of this noxious cyanobacterium in aquatic ecosystems.


Assuntos
Asteraceae/química , Flavonoides/farmacologia , Microcistinas/análise , Microcystis/efeitos dos fármacos , Extratos Vegetais/química , Poluentes Químicos da Água/análise , Animais , Antioxidantes/metabolismo , Relação Dose-Resposta a Droga , Flavonoides/isolamento & purificação , Peroxidação de Lipídeos/efeitos dos fármacos , Microcystis/crescimento & desenvolvimento , Microcystis/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
16.
Chemosphere ; 225: 424-433, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30889406

RESUMO

Microcystis aeruginosa (M. aeruginosa), as the dominant algae in eutrophic water bodies, has caused a serious harm to the local eco-environment. A biological tool, employing allelopathic inhibitory of eucalyptus to control M. aeruginosa, has been receiving tremendous attention. This work presents the results of the allelopathic inhibitory effects of eucalyptus (Eucalyptus grandis × E.urophylla 'GLGU9') extracts of roots (ERE), stems (ESE), and leaves (ELE) on culture solutions of M. aeruginosa and its eco-physiological mechanism. The inhibitory effects of the extracts on the growth of M. aeruginosa varied greatly with ELE exhibiting the highest level of potency. Modes of action by which ELE inhibited M. aeruginosa growth were established. They involved reduction in photosynthesis, disruption of the cell membrane integrity, and inhibition of esterase activities of the cyanobacterial cells. However, ELE did not exhibit any gradients of toxicity towards zebrafish nor Washington grass plant. Species abundance and diversity in the systems remained likewise unaffected by ELE. The synergistic interaction between ELE and single-component allelochemicals (e.g., gallic acid and berberine) was ascribed to the increase in efficacy of allelochemicals in the various systems. The results of this study provide an underlying, novel, and attractive approach for controlling the growth of M. aeruginosa in aquatic environments.


Assuntos
Antibacterianos/farmacologia , Berberina/farmacologia , Eucalyptus/química , Ácido Gálico/farmacologia , Microcystis/crescimento & desenvolvimento , Feromônios/farmacologia , Extratos Vegetais/farmacologia , Alelopatia , Animais , Sinergismo Farmacológico , Esterases/antagonistas & inibidores , Microcystis/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/química , Raízes de Plantas/química , Caules de Planta/química , Poaceae/efeitos dos fármacos , Washington , Peixe-Zebra/metabolismo
17.
Environ Pollut ; 247: 165-171, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30669084

RESUMO

The frequent outbreaks of cyanobacteria bloom are often accompanied by the generation and release of reduced phosphorus species (e.g., phosphine), which raises interesting questions regarding their potential algae-related effects. To clarify the physiological and biochemical responses of cyanobacteria to phosphine, Microcystis aeruginosa was treated with different concentrations of phosphine. Net photosynthetic rate, total antioxidant capacity (T-AOC), catalase (CAT) activity, and the concentrations of chlorophyll a, carotenoid and total protein were investigated and scanning electron microscopy (SEM) was conducted to elucidate the physiological and biochemical responses of M. aeruginosa to phosphine. The results showed that phosphine was beneficial to the growth of algal cells after M. aeruginosa acclimatized to the treatment of phosphine, and treatment with 2.48 × 10-2 mg/L phosphine had a greater positive effect on the growth and reproduction of M. aeruginosa than 7.51 × 10-3 mg/L phosphine, in which most algal cells were smooth and flat on day 16. Treatment with the high concentration of phosphine (7.51 × 10-2 mg/L) for 16 d reduced T-AOC, CAT activity, net photosynthetic rate, and the concentrations of chlorophyll a, carotenoid and total protein of M. aeruginosa to the minimums, resulting in the lysis and death of M. aeruginosa cells, which indicates phosphine has a toxic effect on the growth of algal cells. However, the high concentration of phosphine (7.51 × 10-2 mg/L) had a greater positive effect on the growth of M. aeruginosa cells than the lower two (7.51 × 10-3 mg/L and 2.48 × 10-2 mg/L) from 3 d to 12 d. Our findings provide insight into how phosphine potentially affects the growth of M. aeruginosa cells and the important roles of elevated phosphine on the outbreak of cyanobacteria bloom.


Assuntos
Microcystis/efeitos dos fármacos , Microcystis/crescimento & desenvolvimento , Fosfinas/toxicidade , Carotenoides , Clorofila/metabolismo , Clorofila A , Cianobactérias/metabolismo , Oxirredução , Fósforo/metabolismo , Fotossíntese/efeitos dos fármacos
18.
Bull Environ Contam Toxicol ; 102(2): 231-238, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30623206

RESUMO

Pico-cyanobacteria and micro-cyanobacteria coexist ubiquitously in many lakes. Differences in cell size and abilities to utilize nutrients may influence their distribution patterns. In this study, Synechococcus sp. and Microcystis aeruginosa were chosen as pico- and micro-cyanobacteria, respectively. Gradient phosphorus treatments (0.002, 0.01, 0.05, and 0.25 mg P L-1) were designed in mono- and co-cultures. Growth curves were recorded and fitted by the Monod equation. Moreover, the interspecific competition was analyzed by the Lotka-Volterra model. When mono-cultured in lower P conditions (≤ 0.01 mg P L-1), Synechococcus sp. obtained much higher biomass than M. aeruginosa. But, M. aeruginosa grew faster than Synechococcus sp. in higher P groups (≥ 0.05 mg P L-1) (p < 0.05). Synechococcus sp. has abilities to thrive in low-phosphorus environments, whereas M. aeruginosa favored high-phosphorus conditions. In co-cultures, Synechococcus sp. strongly inhibited M. aeruginosa at each P treatment.


Assuntos
Microcystis/efeitos dos fármacos , Fósforo/farmacologia , Synechococcus/efeitos dos fármacos , Biomassa , Ecossistema , Lagos , Microcystis/citologia , Microcystis/crescimento & desenvolvimento , Especificidade da Espécie , Synechococcus/citologia , Synechococcus/crescimento & desenvolvimento
19.
Sci Total Environ ; 658: 439-448, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30579201

RESUMO

Microcystis aeruginosa is known as the main contributor to cyanobacterial bloom, which is prevalent globally and degrades freshwater systems worldwide. The argument that the introduction of anthropogenic contaminants in fresh water stimulates cyanobacterial growth and microcystin production has attracted widespread attention. Bisphenol A (BPA), one of the most abundant endocrine-disrupting compounds, is often detected in various water bodies due to its notably high annual levels of production and use. Research on the combined effects of endocrine-disrupting compounds and environmental factors on cyanobacteria remains limited. To investigate the mechanism of interactions between contaminants and cyanobacteria at the cellular and proteomic levels, the growth rate, chlorophyll-a content, photosynthetic activities, microcystin-LR (MC-LR) production and release, reactive oxygen species (ROS) content, superoxide dismutase (SOD) activities, malondialdehyde (MDA) content, and proteome expression of M. aeruginosa under 1 µM BPA stress at a standard phosphorus level were investigated. The results showed that stress responses to BPA included increases in the growth rate, chlorophyll-a content, and Fv/Fm and rETRmax values under the low phosphorus condition. Responses involving ROS, SOD, and MDA indicated that phosphorus sufficiency and BPA caused oxidative stress in M. aeruginosa. Moreover, phosphorus sufficiency and BPA stimulated the production and release of MCs. Compared to levels in the non-BPA-treated group, exposure of M. aeruginosa to BPA caused 72 up-regulated proteins, which were primarily associated with photosynthesis, ribosome, fatty acid biosynthesis, glycolysis/glyconeogenesis, and carbon fixation in photosynthetic organisms. The 105 down-regulated proteins were related to quorum sensing, base excision repair, ABC transporters, longevity regulating and cell cycle-caulobacter, suggesting that the cytotoxicity of cyanobacterial cells induced by BPA was significantly increased. These findings provide insights into the molecular mechanism of the effects of BPA and phosphorus on M. aeruginosa, suggesting that coexisting pollutants may cause greater harm to and health risks in the environment.


Assuntos
Compostos Benzidrílicos/efeitos adversos , Microcistinas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenóis/efeitos adversos , Fósforo/metabolismo , Proteoma/efeitos dos fármacos , Poluentes Químicos da Água/efeitos adversos , Proteínas de Bactérias/metabolismo , Toxinas Marinhas , Microcistinas/efeitos dos fármacos , Microcystis/efeitos dos fármacos , Microcystis/crescimento & desenvolvimento , Microcystis/fisiologia , Fotossíntese/efeitos dos fármacos
20.
Ecotoxicol Environ Saf ; 168: 401-407, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30399538

RESUMO

Single and co-culture systems of Microcystis aeruginosa and Scenedesmus obliquus were prepared with different initial algal densities and treated with different concentrations of aqueous extracts from the rhizome of Pontederia cordata to study its inhibitory effect on algal growth and the competitive relationship between these two algal species. The results showed that aqueous extracts could inhibit the growth of M. aeruginosa and S. obliquus, and the inhibition rate of aqueous extracts on the growth of M. aeruginosa was always higher than that of S. obliquus. A Lotka-Volterra competition model revealed that these two algal species can co-exist without the addition of aqueous extracts, and S. obliquus exhibited a stronger ability to compete than that of M. aeruginosa. Meanwhile, the dominant algal species changed with the addition of aqueous extracts regardless of the initial ratios of the two algae. The species ratio of mixed cultures had a strong effect on the interspecific interaction between the two algae. The higher proportion of S. obliquus in the initial proportion of two algae, the stronger competitive ability of S. obliquus when compared with that of M. aeruginosa.


Assuntos
Microcystis/efeitos dos fármacos , Extratos Vegetais/farmacologia , Pontederiaceae/química , Rizoma/química , Scenedesmus/efeitos dos fármacos , Microcystis/crescimento & desenvolvimento , Scenedesmus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA