Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Harmful Algae ; 133: 102587, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38485437

RESUMO

Hydrogen peroxide has gained popularity as an environmentally friendly treatment for cyanobacterial harmful algal blooms (cHABs) that takes advantage of oxidative stress sensitivity in cyanobacteria at controlled concentrations. Higher concentrations of hydrogen peroxide treatments may seem appealing for more severe cHABs but there is currently little understanding of the environmental impacts of this approach. Of specific concern is the associated microbial community, which may play key roles in the succession/recovery process post-treatment. To better understand impacts of a high concentration treatment on non-target microbial communities, we applied a hydrogen peroxide spray equating to a total volume concentration of 14 mM (473 mg/L, 0.04%) to 250 L mesocosms containing Microcystis bloom biomass, monitoring treatment and control mesocosms for 4 days. Cyanobacteria dominated control mesocosms throughout the experiment while treatment mesocosms experienced a 99% reduction, as determined by bacterial amplicon sequencing, and a 92% reduction in bacterial cell density within 1 day post-treatment. Only the bacterial community exhibited signs of regrowth, with a fold change of 9.2 bacterial cell density from day 1 to day 2. Recovery consisted of succession by Planctomycetota (47%) and Gammaproteobacteria (17%), which were likely resilient due to passive cell component compartmentalization and rapid upregulation of dnaK and groEL oxidative stress genes, respectively. The altered microbiome retained beneficial functionality of microcystin degradation through a currently recognized but unidentified pathway in Gammaproteobacteria, resulting in a 70% reduction coinciding with bacterial regrowth. There was also an 81% reduction of both total nitrogen and phosphorus, as compared to 91 and 93% in the control, respectively, due to high expressions of genes related to nitrogen (argH, carB, glts, glnA) and phosphorus (pntAB, phoB, pstSCB) cycling. Overall, we found a portion of the bacterial community was resilient to the high-concentration hydrogen peroxide treatment, resulting in Planctomycetota and Gammaproteobacteria dominance. This high-concentration treatment may be suitable to rapidly end cHABs which have already negatively impacted the aquatic environment rather than allow them to persist.


Assuntos
Cianobactérias , Microcystis , Microcystis/genética , Peróxido de Hidrogênio/metabolismo , Cianobactérias/genética , Nitrogênio/metabolismo , Fósforo/metabolismo
2.
Environ Res ; 241: 117597, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37939808

RESUMO

Since the 2007 water crisis occurred in Lake Taihu, substantial measures have been taken to restore the lake. This study evaluates the effectiveness of these restoration activities. We examined the physicochemical parameters and the distribution of microcystin and Microcystis in both the water column and sediment during the bloom period of May 2020 to October 2020. The mean value of extracellular and intracellular microcystin content was 0.12 µg L-1 and 16.26 µg L-1, respectively. The mean value of microcystin in sediment was 172.02 ng g-1 and peaked in August. The concentration in the water and sediment was significantly lower than the historical average concentration. The abundance of toxigenic Microcystis and total Microcystis in the water column ranged from 2.61 × 102 to 2.25 × 109 copies·L-1 and 8.28 × 105 to 2.76 × 109 copies·L-1, respectively. The proportion of toxic Microcystis in the sediment ranging from 31.2% to 19.12%. The highest and lowest region was Meiliang Bay and Grass-algae type zone, respectively. The copy number of the 16S rRNA gene was 1-4 orders of magnitude higher than that of mcyA gene in populations of Microcystis, indicating that non-toxic Microcystis was the dominant form in the majority of the lake. The abundance of toxic Microcystis in the water column was positively correlated with total phosphorus, PO43--P and pH, while the water temperature played distinct role to the distribution of toxic Microcystis in sediment. Our research indicated phosphorus remains a key factor influencing the toxic Microcystis and microcystins in the water column. pH played distinct roles in the distribution of microcystins in sediment and water column. The increasing water temperature is a threat. Explicit management actions and policies, which take into account nutrient concentrations, pH, and increasing temperatures, are necessary to understand and control the distribution of microcystin and Microcystis in Lake Taihu.


Assuntos
Água Potável , Microcystis , Lagos/química , Microcistinas , RNA Ribossômico 16S/genética , Microcystis/genética , Fósforo/análise , China
3.
FEMS Microbiol Ecol ; 100(1)2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38148131

RESUMO

Microcystis blooms have a marked effect on microbial taxonomical diversity in eutrophic lakes, but their influence on the composition of microbial functional genes is still unclear. In this study, the free-living microbial functional genes (FMFG) composition was investigated in the period before Microcystis blooms (March) and during Microcystis blooms (July) using a comprehensive functional gene array (GeoChip 5.0). The composition and richness of FMFG in the water column was significantly different between these two periods. The FMFG in March was enriched in the functional categories of nitrogen, sulfur, and phosphorus cycling, whereas the FMFG in July was enriched in carbon cycling, organic remediation, and metal homeostasis. Molecular ecological network analysis further demonstrated fewer functional gene interactions and reduced complexity in July than in March. Module hubs of the March network were mediated by functional genes associated with carbon, nitrogen, sulfur, and phosphorus, whereas those in July by a metal homeostasis functional gene. We also observed stronger deterministic processes in the FMFG assembly in July than in March. Collectively, this study demonstrated that Microcystis blooms induced significant changes in FMFG composition and metabolic potential, and abundance-information, which can support the understanding and management of biogeochemical cycling in eutrophic lake ecosystems.


Assuntos
Microcystis , Microcystis/genética , Microcystis/metabolismo , Lagos/química , Ecossistema , China , Fósforo/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Enxofre/metabolismo , Eutrofização
4.
Microbiome ; 11(1): 142, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365664

RESUMO

BACKGROUND: Phosphonates are the main components in the global phosphorus redox cycle. Little is known about phosphonate metabolism in freshwater ecosystems, although rapid consumption of phosphonates has been observed frequently. Cyanobacteria are often the dominant primary producers in freshwaters; yet, only a few strains of cyanobacteria encode phosphonate-degrading (C-P lyase) gene clusters. The phycosphere is defined as the microenvironment in which extensive phytoplankton and heterotrophic bacteria interactions occur. It has been demonstrated that phytoplankton may recruit phycospheric bacteria based on their own needs. Therefore, the establishment of a phycospheric community rich in phosphonate-degrading-bacteria likely facilitates cyanobacterial proliferation, especially in waters with scarce phosphorus. We characterized the distribution of heterotrophic phosphonate-degrading bacteria in field Microcystis bloom samples and in laboratory cyanobacteria "phycospheres" by qPCR and metagenomic analyses. The role of phosphonate-degrading phycospheric bacteria in cyanobacterial proliferation was determined through coculturing of heterotrophic bacteria with an axenic Microcystis aeruginosa strain and by metatranscriptomic analysis using field Microcystis aggregate samples. RESULTS: Abundant bacteria that carry C-P lyase clusters were identified in plankton samples from freshwater Lakes Dianchi and Taihu during Microcystis bloom periods. Metagenomic analysis of 162 non-axenic laboratory strains of cyanobacteria (consortia cultures containing heterotrophic bacteria) showed that 20% (128/647) of high-quality bins from eighty of these consortia encode intact C-P lyase clusters, with an abundance ranging up to nearly 13%. Phycospheric bacterial phosphonate catabolism genes were expressed continually across bloom seasons, as demonstrated through metatranscriptomic analysis using sixteen field Microcystis aggregate samples. Coculturing experiments revealed that although Microcystis cultures did not catabolize methylphosphonate when axenic, they demonstrated sustained growth when cocultured with phosphonate-utilizing phycospheric bacteria in medium containing methylphosphonate as the sole source of phosphorus. CONCLUSIONS: The recruitment of heterotrophic phosphonate-degrading phycospheric bacteria by cyanobacteria is a hedge against phosphorus scarcity by facilitating phosphonate availability. Cyanobacterial consortia are likely primary contributors to aquatic phosphonate mineralization, thereby facilitating sustained cyanobacterial growth, and even bloom maintenance, in phosphate-deficient waters. Video Abstract.


Assuntos
Cianobactérias , Microcystis , Organofosfonatos , Microcystis/genética , Microcystis/metabolismo , Ecossistema , Organofosfonatos/metabolismo , Cianobactérias/genética , Fitoplâncton , Lagos/microbiologia , Fósforo/metabolismo
5.
Toxins (Basel) ; 14(10)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36287957

RESUMO

The excessive proliferation of cyanobacteria in surface waters is a widespread problem worldwide, leading to the contamination of drinking water sources. Short- and long-term solutions for managing cyanobacterial blooms are needed for drinking water supplies. The goal of this research was to investigate the cyanobacteria community composition using shotgun metagenomics in a short term, in situ mesocosm experiment of two lakes following their coagulation with ferric sulfate (Fe2(SO4)3) as an option for source water treatment. Among the nutrient paramenters, dissolved nitrogen was related to Microcystis in both Missisquoi Bay and Petit Lac St. François, while the presence of Synechococcus was related to total nitrogen, dissolved nitrogen, dissolved organic carbon, and dissolved phosphorus. Results from the shotgun metagenomic sequencing showed that Dolichospermum and Microcystis were the dominant genera in all of the mesocosms in the beginning of the sampling period in Missisquoi Bay and Petit Lac St. François, respectively. Potentially toxigenic genera such as Microcystis were correlated with intracellular microcystin concentrations. A principal component analysis showed that there was a change of the cyanobacterial composition at the genus level in the mesocosms after two days, which varied across the studied sites and sampling time. The cyanobacterial community richness and diversity did not change significantly after its coagulation by Fe2(SO4)3 in all of the mesocosms at either site. The use of Fe2(SO4)3 for an onsite source water treatment should consider its impact on cyanobacterial community structure and the reduction of toxin concentrations.


Assuntos
Cianobactérias , Água Potável , Microcystis , Microcistinas/análise , Água Potável/análise , Cianobactérias/genética , Microcystis/genética , Lagos/microbiologia , Nitrogênio/análise , Fósforo/análise
6.
Science ; 376(6596): 1001-1005, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35617400

RESUMO

Harmful cyanobacteria are a global environmental problem, yet we lack actionable understanding of toxigenic versus nontoxigenic strain ecology and toxin production. We performed a large-scale meta-analysis including 103 papers and used it to develop a mechanistic, agent-based model of Microcystis growth and microcystin production. Simulations for Lake Erie suggest that the observed toxigenic-to-nontoxigenic strain succession during the 2014 Toledo drinking water crisis was controlled by different cellular oxidative stress mitigation strategies (protection by microcystin versus degradation by enzymes) and the different susceptibility of those mechanisms to nitrogen limitation. This model, as well as a simpler empirical one, predicts that the planned phosphorus load reduction will lower biomass but make nitrogen and light more available, which will increase toxin production, favor toxigenic cells, and increase toxin concentrations.


Assuntos
Lagos , Microcistinas , Microcystis , Fósforo , Canadá , Água Potável , Lagos/química , Lagos/microbiologia , Microcistinas/análise , Microcistinas/metabolismo , Microcistinas/toxicidade , Microcystis/genética , Microcystis/crescimento & desenvolvimento , Microcystis/metabolismo , Nitrogênio/metabolismo , Fósforo/análise , Fósforo/metabolismo , Estados Unidos , Abastecimento de Água
7.
Microbiome ; 9(1): 194, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579777

RESUMO

BACKGROUND: Cyanobacteria from the genus Microcystis can form large mucilaginous colonies with attached heterotrophic bacteria-their microbiome. However, the nature of the relationship between Microcystis and its microbiome remains unclear. Is it a long-term, evolutionarily stable association? Which partners benefit? Here we report the genomic diversity of 109 individual Microcystis colonies-including cyanobacteria and associated bacterial genomes-isolated in situ and without culture from Lake Champlain, Canada and Pampulha Reservoir, Brazil. RESULTS: We identified 14 distinct Microcystis genotypes from Canada, of which only two have been previously reported, and four genotypes specific to Brazil. Microcystis genetic diversity was much greater between than within colonies, consistent with colony growth by clonal expansion rather than aggregation of Microcystis cells. We also identified 72 bacterial species in the microbiome. Each Microcystis genotype had a distinct microbiome composition, and more closely related genotypes had more similar microbiomes. This pattern of phylosymbiosis could be explained by co-phylogeny in only two out of the nine most prevalent associated bacterial genera, Roseomonas and Rhodobacter. These phylogenetically associated genera could enrich the metabolic repertoire of Microcystis, for example by encoding the biosynthesis of complementary carotenoid molecules. In contrast, other colony-associated bacteria showed weaker signals of co-phylogeny, but stronger evidence of horizontal gene transfer with Microcystis. These observations suggest that acquired genes are more likely to be retained in both partners (Microcystis and members of its microbiome) when they are loosely associated, whereas one gene copy is sufficient when the association is physically tight and evolutionarily long-lasting. CONCLUSIONS: We have introduced a method for culture-free isolation of single colonies from nature followed by metagenomic sequencing, which could be applied to other types of microbes. Together, our results expand the known genetic diversity of both Microcystis and its microbiome in natural settings, and support their long-term, specific, and potentially beneficial associations. Video Abstract.


Assuntos
Cianobactérias , Microbiota , Microcystis , Lagos , Microbiota/genética , Microcystis/genética , Filogenia
8.
Artigo em Inglês | MEDLINE | ID: mdl-32882819

RESUMO

Harmful cyanobacterial blooms pose a risk to human health worldwide. To enhance understanding on the bloom-forming mechanism, the spatiotemporal changes in cyanobacterial diversity and composition in two eutrophic lakes (Erhai Lake and Lushui Reservoir) of China were investigated from 2010 to 2011 by high-throughput sequencing of environmental DNA. For each sample, 118 to 260 cpcBA-IGS operational taxonomic units (OTUs) were obtained. Fifty-two abundant OTUs were identified, which made up 95.2% of the total sequences and were clustered into nine cyanobacterial groups. Although the cyanobacterial communities of both lakes were mainly dominated by Microcystis, Erhai Lake had a higher cyanobacterial diversity. The abundance of mixed Nostocales species was lower than that of Microcystis, whereas Phormidium and Synechococcus were opportunistically dominant. The correlation between the occurrence frequency and relative abundance of OTUs was poorly fitted by the Sloan neutral model. Deterministic processes such as phosphorus availability were shown to have significant effects on the cyanobacterial community structure in Erhai Lake. In summary, the Microcystis-dominated cyanobacterial community was mainly affected by the deterministic process. Opportunistically dominant species have the potential to replace Microcystis and form blooms in eutrophic lakes, indicating the necessity to monitor these species for drinking water safety.


Assuntos
Cianobactérias , Eutrofização , Microcystis , Análise de Sequência de DNA , China , Cianobactérias/genética , DNA Bacteriano , Lagos , Microcystis/genética , Fósforo
9.
Appl Environ Microbiol ; 85(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31420344

RESUMO

The frequency and intensity of cyanobacterial blooms are increasing worldwide. Interactions between toxic cyanobacteria and aquatic microorganisms need to be critically evaluated to understand microbial drivers and modulators of the blooms. In this study, we applied 16S/18S rRNA gene sequencing and metabolomics analyses to measure the microbial community composition and metabolic responses of the cyanobacterium Microcystis aeruginosa in a coculture system receiving dissolved inorganic nitrogen and phosphorus (DIP) close to representative concentrations in Lake Taihu, China. M. aeruginosa secreted alkaline phosphatase using a DIP source produced by moribund and decaying microorganisms when the P source was insufficient. During this process, M. aeruginosa accumulated several intermediates in energy metabolism pathways to provide energy for sustained high growth rates and increased intracellular sugars to enhance its competitive capacity and ability to defend itself against microbial attack. It also produced a variety of toxic substances, including microcystins, to inhibit metabolite formation via energy metabolism pathways of aquatic microorganisms, leading to a negative effect on bacterial and eukaryotic microbial richness and diversity. Overall, compared with the monoculture system, the growth of M. aeruginosa was accelerated in coculture, while the growth of some cooccurring microorganisms was inhibited, with the diversity and richness of eukaryotic microorganisms being more negatively impacted than those of prokaryotic microorganisms. These findings provide valuable information for clarifying how M. aeruginosa can potentially modulate its associations with other microorganisms, with ramifications for its dominance in aquatic ecosystems.IMPORTANCE We measured the microbial community composition and metabolic responses of Microcystis aeruginosa in a microcosm coculture system receiving dissolved inorganic nitrogen and phosphorus (DIP) close to the average concentrations in Lake Taihu. In the coculture system, DIP is depleted and the growth and production of aquatic microorganisms can be stressed by a lack of DIP availability. M. aeruginosa could accelerate its growth via interactions with specific cooccurring microorganisms and the accumulation of several intermediates in energy metabolism-related pathways. Furthermore, M. aeruginosa can decrease the carbohydrate metabolism of cooccurring aquatic microorganisms and thus disrupt microbial activities in the coculture. This also had a negative effect on bacterial and eukaryotic microbial richness and diversity. Microcystin was capable of decreasing the biomass of total phytoplankton in aquatic microcosms. Overall, compared to the monoculture, the growth of total aquatic microorganisms is inhibited, with the diversity and richness of eukaryotic microorganisms being more negatively impacted than those of prokaryotic microorganisms. The only exception is M. aeruginosa in the coculture system, whose growth was accelerated.


Assuntos
Água Doce/microbiologia , Lagos/microbiologia , Interações Microbianas/fisiologia , Microcystis/crescimento & desenvolvimento , Microcystis/metabolismo , Toxinas Bacterianas/metabolismo , Biomassa , China , Técnicas de Cocultura , Meios de Cultura/química , DNA Bacteriano/análise , Genes de RNAr/genética , Microbiota , Microcistinas , Microcystis/genética , Nitrogênio/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fósforo/metabolismo , Fitoplâncton/crescimento & desenvolvimento
10.
FEMS Microbiol Ecol ; 94(12)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30289447

RESUMO

Cyanobacterial blooms are characterized by intense growth of one or few species that will dominate the phytoplankton community for periods of few months to an entire year or more. However, even during persistent blooms, important seasonal changes among dominant species can be observed. Pampulha reservoir is a tropical eutrophic reservoir presenting permanent blooms. To identify the main species in this environment, a closer analysis performed by microscopy and 16S-rRNA DGGE revealed Cylindrospermopsis raciborskii as highly dominant throughout the year. The second most abundant group comprised species belonging to the Microcystis genus. They followed a well-defined seasonal pattern described by interesting species-specific ecological trends. During thermal stratification in the rainy/warmer season, C. raciborskii dominated in the water column, while Microcystis spp. were abundant at the end of the dry season, a period characterized by higher total phosphorus concentrations. Phylogenetic analyses confirmed the two dominant taxa and their seasonal trends. The results showed that cyanobacteria major controlling factors were strongly species dependent, shifting from physical/climate related (stratification) to more chemical driven (nutrients/eutrophication). Identifying these drivers is therefore essential for the understanding of the bloom dynamics and the real risks associated with each species, and to eventually adopt the most appropriate and effective management strategies.


Assuntos
Cylindrospermopsis/classificação , Cylindrospermopsis/crescimento & desenvolvimento , Eutrofização/fisiologia , Microcystis/classificação , Microcystis/crescimento & desenvolvimento , Cylindrospermopsis/genética , Microcystis/genética , Fósforo/análise , Filogenia , Fitoplâncton/classificação , RNA Ribossômico 16S/genética , Estações do Ano
11.
Ecotoxicol Environ Saf ; 166: 192-199, 2018 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-30269014

RESUMO

Harmful cyanobacterial blooms are a growing threat to freshwater ecosystems worldwide due to the production of microcystin (MC), which can have detrimental effects on water quality and human health. The relations between MC-producing Microcystis, MC production, and environmental variables especially nutrient conditions in eutrophic lakes, Lake Taihu and Lake Yanghe, were investigated during the bloom season of 2015. Results showed that toxigenic cells contributed to 8.94-75.68% and 7.87-58.69% of the total Microcystis in Lake Taihu and Lake Yanghe, respectively. The dynamics of toxigenic cells and MC production were positively associated with NH3-N concentration in Lake Taihu, while positively associated with the concentrations of TP, TDP and PO4-P in Lake Yanghe, indicating that the dominant nutrient factor affecting the toxic blooms was nitrogen in Lake Taihu, whereas it was phosphorus in Lake Yanghe. The significant relationship between TLR eq (total MC after transformation of MC-RR and MC-YR into MC-LR) and Chlorophyll-a (Chl-a) concentration implied that Chl-a could be an alternative measure to predict MC risk in the two lakes, and the safe threshold value of Chl-a was proposed as 25.38 and 31.06 µg/L in Lake Taihu and Lake Yanghe, respectively.


Assuntos
Lagos/microbiologia , Microcistinas/análise , Microcystis/genética , China , Clorofila/análogos & derivados , Clorofila/análise , Genótipo , Lagos/química , Toxinas Marinhas , Nitrogênio/análise , Nutrientes , Fósforo/análise
12.
Antonie Van Leeuwenhoek ; 111(12): 2425-2440, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30069722

RESUMO

The Carpathian Basin is a lowland plain located mainly in Hungary. Due to the nature of the bedrock, alluvial deposits, and a bowl shape, many lakes and ponds of the area are characterized by high alkalinity. In this study, we characterized temporal changes in eukaryal and bacterial community dynamics with high throughput sequencing and relate the changes to environmental conditions in Lake Velence located in Fejér county, Hungary. The sampled Lake Velence microbial populations (algal and bacterial) were analyzed to identify potential correlations with other community members and environmental parameters at six timepoints over 6 weeks in the Spring of 2012. Correlations between community members suggest a positive relationship between certain algal and bacterial populations (e.g. Chlamydomondaceae with Actinobacteria and Acidobacteria), while other correlations allude to changes in these relationships over time. During the study, high nitrogen availability may have favored non-nitrogen fixing cyanobacteria, such as the toxin-producing Microcystis aeruginosa, and the eutrophic effect may have been exacerbated by high phosphorus availability as well as the high calcium and magnesium content of the Carpathian Basin bedrock, potentially fostering exopolymer production and cell aggregation. Cyanobacterial bloom formation could have a negative environmental impact on other community members and potentially affect overall water quality as well as recreational activities. To our knowledge, this is the first prediction for relationships between photoautotrophic eukaryotes and bacteria from an alkaline, Hungarian lake.


Assuntos
Cianobactérias/genética , Eutrofização , Lagos/microbiologia , Consórcios Microbianos/genética , Phaeophyceae/genética , Filogenia , Acidobacteria/classificação , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Acidobacteria/metabolismo , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Álcalis/química , Cálcio/química , Cálcio/metabolismo , Clorofíceas/classificação , Clorofíceas/genética , Clorofíceas/metabolismo , Cianobactérias/classificação , Cianobactérias/isolamento & purificação , Cianobactérias/metabolismo , DNA de Algas/genética , DNA Bacteriano/genética , Hungria , Concentração de Íons de Hidrogênio , Magnésio/química , Magnésio/metabolismo , Microcystis/classificação , Microcystis/genética , Microcystis/isolamento & purificação , Microcystis/metabolismo , Nitrogênio/química , Nitrogênio/metabolismo , Phaeophyceae/classificação , Phaeophyceae/isolamento & purificação , Phaeophyceae/metabolismo , Fósforo/química , Fósforo/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Microbiologia da Água
13.
PLoS One ; 13(5): e0195205, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29723219

RESUMO

Cyanobacterial blooms are a worldwide environmental problem and frequently occur in eutrophic lakes. Organophosphorus mineralization regulated by microbial alkaline phosphatase provides available nutrients for bloom regeneration. To uncover the dynamics of bacterial alkaline phosphatase activity and microbial backgrounds in relation to organophosphorus mineralization during the decomposition process of cyanobacterial blooms, the response of alkaline phosphatase PhoX-producing bacteria were explored using a 23-day mesocosm experiment with three varying densities of Microcystis biomass from eutrophic Lake Taihu. Our study found large amounts of soluble reactive phosphorus and dissolved organophosphorus were released into the lake water during the decomposition process. Bacterial alkaline phosphatase activity showed the peak values during days 5~7 in groups with different chlorophyll-a densities, and then all decreased dramatically to their initial experimental levels during the last stage of decomposition. Bacterial phoX abundances in the three experimental groups increased significantly along with the decomposition process, positively related to the dissolved organic carbon and organophosphorus released by the Microcystis blooms. The genotypes similar to the phoX genes of Alphaproteobacteria were dominant in all groups, whereas the genotypes most similar to the phoX genes of Betaproteobacteria and Cyanobacteria were also abundant in the low density (~15 µg L-1 chlorophyll-a) group. At the end of the decomposition process, the number of genotypes most similar to the phoX of Betaproteobacteria and Cyanobacteria increased in the medium (~150 µg L-1 chlorophyll-a) and high (~1500 µg L-1 chlorophyll-a) density groups. The released organophosphorus and increased bacterial phoX abundance after decomposition of Microcystis aggregates could potentially provide sufficient nutrients and biological conditions for algal proliferation and are probably related to the regeneration of Microcystis blooms in eutrophic lakes.


Assuntos
Ambiente Controlado , Eutrofização , Genes Bacterianos/genética , Microcystis/genética , Microcystis/metabolismo , Fósforo/metabolismo , Sequência de Bases , Fenômenos Químicos , Variação Genética , Genótipo , Lagos/microbiologia , Minerais/metabolismo , Filogenia
14.
Microbiol Res ; 205: 59-65, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28942845

RESUMO

The abundance, phosphorus solubilizing ability and community composition of phosphorus solubilizing bacteria (PSB) attached on two bloom-forming cyanobacteria, Microcystis and Anabeana, were investigated in Guanqiao ponds in 2014 and Lake Chaohu in 2015 and 2016. Thirty organic phosphate-mineralizing bacteria (OPB) and eighteen inorganic phosphate-solubilizing bacteria (IPB) isolated from Guanqiao ponds and Lake Chaohu were identified. The community compositions of PSB attached on Microcystis and Anabeana were found to be entirely different. Some PSB were found to be shared by OPB and IPB, especially the species attached on Microcystis, such as Rhizobium sp. Compared to the PSB attached on Anabeana, the PSB attached on Microcystis showed the lower numbers, higher phosphorus solubilizing ability and extensive substrate adaptability. This indicated that the PSB were important for the growth of Microcystis through meeting soluble reactive phosphorus (SRP) demand, which was further supported by the data from Guanqiao ponds where succession process from Anabeana to Microcystis was recorded. All these facts can explain why the succession from Anabeana to Microcystis frequently occurred in shallow eutrophic lakes. Therefore, the attached PSB should be considered as a crucial contributor on algal growth, succession and collapse, depending on algal species.


Assuntos
Cianobactérias/metabolismo , Lagos/microbiologia , Fosfatos/metabolismo , Fósforo/metabolismo , Microbiologia da Água , China , Contagem de Colônia Microbiana , Cianobactérias/classificação , Cianobactérias/genética , Cianobactérias/crescimento & desenvolvimento , DNA Bacteriano/análise , Eutrofização , Lagos/química , Microcystis/classificação , Microcystis/genética , Microcystis/crescimento & desenvolvimento , Microcystis/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Solubilidade
15.
Toxins (Basel) ; 9(5)2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28513574

RESUMO

An important goal of understanding harmful algae blooms is to determine how environmental factors affect the growth and toxin formation of toxin-producing species. In this study, we investigated the transcriptional responses of toxin formation gene (mcyB) and key photosynthesis genes (psaB, psbD and rbcL) of Microcystis aeruginosa FACHB-905 in different nutrient loading conditions using real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR). Three physio-biochemical parameters (malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH)) were also evaluated to provide insight into the physiological responses of Microcystis cells. We observed an upregulation of mcyB gene in nutrient-deficient conditions, especially in nitrogen (N) limitation condition, and the transcript abundance declined after the nutrient were resupplied. Differently, high transcription levels were seen in phosphorus (P) deficient treatments for key photosynthesis genes throughout the culture period, while those in N-deficient cells varied with time, suggesting an adaptive regulation of Microsystis cells to nutrient stress. Increased contents of antioxidant enzymes (SOD and GSH) were seen in both N and P-deficient conditions, suggesting the presence of excess amount of free radical generation caused by nutrient stress. The amount of SOD and GSH continued to increase even after the nutrient was reintroduced and a strong correlation was seen between the MDA and enzyme activities, indicating the robust effort of rebalancing the redox system in Microcystis cells. Based on these transcriptional and physiological responses of M. aeruginosa to nutrient loading, these results could provide more insight into Microcystis blooms management and toxin formation regulation.


Assuntos
Microcistinas/genética , Microcystis/efeitos dos fármacos , Nitrogênio/farmacologia , Fósforo/farmacologia , Fotossíntese/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Proliferação Nociva de Algas , Malondialdeído/metabolismo , Microcystis/genética , Microcystis/crescimento & desenvolvimento , Microcystis/metabolismo , Fotossíntese/genética , Complexo de Proteína do Fotossistema I/genética , Ribulose-Bifosfato Carboxilase/genética , Superóxido Dismutase/metabolismo
16.
Water Sci Technol ; 71(6): 856-61, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25812094

RESUMO

Our previous work revealed that Acacia mearnsii extract can inhibit the growth of Microcystis aeruginosa, the common species forming toxic cyanobacterial blooms in eutrophic freshwater. In the present study, we demonstrated that this plant extract can significantly increase cell membrane permeability and Ca²âº/Mg²âº-ATPase activity on the membrane. Long-term exposure to concentrations of 20 ppm A. mearnsii extract led to algal cell membrane leakage or even lysis. Comparison of expression of three photosynthesis-related genes (rbcL, psaB and psbD) in M. aeruginosa with and without plant extract treatment revealed that their expression was remarkably reduced in the presence of the extract. Down-regulation of photosynthesis-related genes could indicate the inhibition of the photosynthetic process. Thus, our results suggested that both photosynthetic systems and membranes of M. aeruginosa are potentially damaged by A. mearnsii extract.


Assuntos
Acacia/química , Proteínas de Cloroplastos/genética , Regulação da Expressão Gênica , Microcystis/efeitos dos fármacos , Microcystis/genética , Extratos Vegetais/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , ATPase de Ca(2+) e Mg(2+)/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Clorofila/metabolismo , Clorofila A , Proteínas de Cloroplastos/metabolismo , Microcystis/enzimologia , Microcystis/crescimento & desenvolvimento , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo
17.
Toxins (Basel) ; 6(12): 3238-57, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25474494

RESUMO

Lake Chaohu, which is a large, shallow, hypertrophic freshwater lake in southeastern China, has been experiencing lake-wide toxic Microcystis blooms in recent decades. To illuminate the relationships between microcystin (MC) production, the genotypic composition of the Microcystis community and environmental factors, water samples and associated environmental data were collected from June to October 2012 within Lake Chaohu. The Microcystis genotypes and MC concentrations were quantified using quantitative real-time PCR (qPCR) and HPLC, respectively. The results showed that the abundances of Microcystis genotypes and MC concentrations varied on spatial and temporal scales. Microcystis exists as a mixed population of toxic and non-toxic genotypes, and the proportion of toxic Microcystis genotypes ranged from 9.43% to 87.98%. Both Pearson correlation and stepwise multiple regressions demonstrated that throughout the entire lake, the abundances of total and toxic Microcystis and MC concentrations showed significant positive correlation with the total phosphorus and water temperature, suggesting that increases in temperature together with the phosphorus concentrations may promote more frequent toxic Microcystis blooms and higher concentrations of MC. Whereas, dissolved inorganic carbon (DIC) was negatively correlated with the abundances of total and toxic Microcystis and MC concentrations, indicating that rising DIC concentrations may suppress toxic Microcystis abundance and reduce the MC concentrations in the future. Therefore, our results highlight the fact that future eutrophication and global climate change can affect the dynamics of toxic Microcystis blooms and hence change the MC levels in freshwater.


Assuntos
Eutrofização , Lagos/microbiologia , Microcistinas/química , Microcystis/isolamento & purificação , Microbiologia da Água , China , DNA Bacteriano/isolamento & purificação , Genótipo , Modelos Lineares , Microcystis/genética , Fósforo , RNA Ribossômico 16S/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Temperatura
18.
Environ Sci Pollut Res Int ; 21(16): 9887-98, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24788861

RESUMO

Lake Erhai is the second largest lake of Southwest China and an important drinking water source. The lake is currently defined as the preliminary stage of eutrophic states, but facing a serious threat with transfer into intensive eutrophication. The present study examined the dynamics of Microcystis blooms and toxic Microcystis in Lake Erhai during 2010, based on quantitative real-time PCR method using 16S rRNA gene specific for Microcystis and microcystin systhesis gene (mcy), and chemical analysis on microcystin (MC) concentrations. Total Microcystis cell abundance at 16 sampling sites were shown as an average of 1.7 × 10(7) cells l(-1) (1.3 × 10(2)-3.8 × 10(9) cells l(-1)). Microcystin LR (MC-LR) and microcystin RR (MC-RR) were the main variants. The strong southwesterly winds, anticlockwise circular flows and geographical characteristics of lake and phytoplankton community succession impacted the distribution patterns of Chl a and MC in the lake. The concentration of Chl a and MC and abundances of total Microsytis and MC-producing Microsystis (MCM) were shown to be positively correlated with pH, DO and TP, negatively correlated with SD, NO3-N, TN/Chl a and TN/TP, and not correlated with NH4-N, TN, dissolved total nitrogen (DTN) and water temperatures. When TN/TP decrease, Microcystis tended to dominate and MC concentrations tended to increase, suggesting that the "TN/TP rule" can be partially applied to explain the correlation between the cyanobacterial blooms and nutrients N and P only within a certain nutrient level. It is speculated that N and P nutrients and the associated genes (e.g., mcy) may jointly drive MC concentration and toxigenicity of Microcystis in Lake Erhai.


Assuntos
Lagos/microbiologia , Microcistinas/metabolismo , Microcystis/isolamento & purificação , Nitrogênio/metabolismo , Fósforo/metabolismo , China , Eutrofização , Lagos/análise , Toxinas Marinhas , Microcystis/classificação , Microcystis/genética , Microcystis/metabolismo , Nitrogênio/análise , Fósforo/análise
19.
ISME J ; 8(10): 2080-92, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24858783

RESUMO

The cyanobacterium Microcystis aeruginosa is a globally distributed bloom-forming organism that degrades freshwater systems around the world. Factors that drive its dispersion, diversification and success remain, however, poorly understood. To develop insight into cellular-level responses to nutrient drivers of eutrophication, RNA sequencing was coupled to a comprehensive metabolomics survey of M. aeruginosa sp. NIES 843 grown in various nutrient-reduced conditions. Transcriptomes were generated for cultures grown in nutrient-replete (with nitrate as the nitrogen (N) source), nitrogen-reduced (with nitrate, urea or ammonium acting as the N sources) and phosphate-reduced conditions. Extensive expression differences (up to 696 genes for urea-grown cells) relative to the control treatment were observed, demonstrating that the chemical variant of nitrogen available to cells affected transcriptional activity. Of particular note, a high number of transposase genes (up to 81) were significantly and reproducibly up-regulated relative to the control when grown on urea. Conversely, phosphorus (P) reduction resulted in a significant cessation in transcription of transposase genes, indicating that variation in nutrient chemistry may influence transcription of transposases and may impact the highly mosaic genomic architecture of M. aeruginosa. Corresponding metabolomes showed comparably few differences between treatments, suggesting broad changes to gene transcription are required to maintain metabolic homeostasis under nutrient reduction. The combined observations provide novel and extensive insight into the complex cellular interactions that take place in this important bloom-forming organism during variable nutrient conditions and highlight a potential unknown molecular mechanism that may drive Microcystis blooms and evolution.


Assuntos
Microcystis/genética , Transcriptoma , Genoma Bacteriano , Homeostase , Microcystis/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Análise de Sequência de RNA
20.
Environ Monit Assess ; 186(5): 3053-62, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24429844

RESUMO

Lake Taihu is a large shallow freshwater lake (surface area 2,338 km(2), mean depth 1.9 m) in China, which has experienced toxic cyanobacterial bloom dominated by Microcystis annually during the last few decades. In the present study, the dynamics of toxic and nontoxic Microcystis in three sampling stations (Meiliang Bay (site N2), Gonghu Bay (site N4), and the lake center area (site S4)) were quantified using quantitative real-time PCR (qPCR) during bloom periods from April to September, 2010. Our data showed that the abundance of toxic Microcystis and the toxic proportion gradually increased from April to August in water samples and reached the peak in August. During the study period, toxic Microcystis genotypes comprised between 26.2 and 64.3, between 4.4 and 22.1, and between 10.4 and 20.6 % of the total Microcystis populations in the three sampling sites, respectively. Correlation analysis suggested that there was a strong positive relationship between total Microcystis, toxic Microcystis and the toxic proportion. Chlorophyll a, total phosphorus, and water temperature were positively correlated with the abundances of total Microcystis and toxic Microcystis. Furthermore, the toxic proportion was positively correlated with total phosphorus (P < 0.05) and water temperature (P < 0.01), showing that global warming together with eutrophication could promote more frequent toxic blooms.


Assuntos
Monitoramento Ambiental , Lagos/microbiologia , Microcystis/fisiologia , China , Clorofila/análise , Clorofila A , Eutrofização , Lagos/química , Microcystis/genética , Fósforo/análise , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA