Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Artif Organs ; 43(7): E139-E151, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30537257

RESUMO

Medical devices, such as ventricular assist devices (VADs), introduce both foreign materials and artificial shear stress to the circulatory system. The effects these have on leukocytes and the immune response are not well understood. Understanding how these two elements combine to affect leukocytes may reveal why some patients are susceptible to recurrent device-related infections and provide insight into the development of pump thrombosis. Biomaterials-DLC: diamond-like carbon-coated stainless steel; Sap: single-crystal sapphire; and Ti: titanium alloy (Ti6 Al4 V) were attached to the parallel plates of a rheometer. Whole human blood was left between the two discs for 5 minutes at +37°C with or without the application of shear stress (0 s-1 or 1000 s-1 ). Blood was removed and used for complete blood cell counts, flow cytometry (leukocyte activation, cell death, microparticle generation, phagocytic ability, and reactive oxygen species [ROS] production), and the production of pro-inflammatory cytokines. L-selectin expression on monocytes was decreased when blood was exposed to the biomaterials both with and without shear. Applying shear stress to blood on a Sap and Ti surface led to activation of neutrophils shown as decreased L-selectin expression. Sap and Ti blunted the LPS-stimulated macrophage migration inhibitory factor (MIF) production, most notably when sheared on Ti. The biomaterials used here have been shown to activate leukocytes in a static environment. The introduction of shear appears to exacerbate this activation. Interestingly, a widely accepted biocompatible material (Ti) utilized in many different types of devices has the capacity for immune cell activation and inhibition of MIF secretion when combined with shear stress. These findings contribute to our understanding of the contribution of biomaterials and shear stress to recurrent infections and vulnerability to sepsis in some VAD patients as well as pump thrombosis.


Assuntos
Materiais Biocompatíveis/efeitos adversos , Hemorreologia , Leucócitos , Ligas , Óxido de Alumínio/efeitos adversos , Micropartículas Derivadas de Células/efeitos dos fármacos , Micropartículas Derivadas de Células/imunologia , Células Cultivadas , Citocinas/imunologia , Coração Auxiliar/efeitos adversos , Hemorreologia/efeitos dos fármacos , Humanos , Leucócitos/citologia , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Teste de Materiais , Fagocitose/efeitos dos fármacos , Aço Inoxidável/efeitos adversos , Estresse Mecânico , Titânio/efeitos adversos
2.
Viral Immunol ; 31(6): 447-456, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29782226

RESUMO

Microparticles (MPs) are vesicles that are released by budding from plasma membrane of living cells. Recently, the role of MPs in antiviral activity has been proposed. We investigated quantity and anti-influenza activity of MPs from human alveolar epithelial cells A549, human bronchial epithelial cells BEAS-2B, human colon adenocarcinoma cells HT-29, and the human lung fibroblast cells MRC-5. MPs were found from all four cell lines. However, anti-influenza activity against an H1N1 influenza virus was found only from MPs of A549 and BEAS-2B. BEAS-2B cell differentiation did not increase MP release. Methyl-ß-cyclodextrin (MßCD) increased MP release and anti-influenza activity in HT-29 and A549. MP release increased after calcium ionophore A23187 treatment in three cell lines but only in HT-29 after forskolin treatment. These findings provide in vitro data supporting the role of MPs as an innate defense against influenza virus and as an approach to enhance the defense.


Assuntos
Adjuvantes Imunológicos/farmacologia , Micropartículas Derivadas de Células/imunologia , Imunidade Inata , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/imunologia , Brônquios/citologia , Brônquios/imunologia , Calcimicina/farmacologia , Linhagem Celular , Micropartículas Derivadas de Células/efeitos dos fármacos , Micropartículas Derivadas de Células/metabolismo , Colforsina/farmacologia , Células Epiteliais/citologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Fibroblastos , Humanos , Influenza Humana/virologia , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/metabolismo , beta-Ciclodextrinas/farmacologia
3.
Am J Physiol Regul Integr Comp Physiol ; 309(4): R338-44, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26084697

RESUMO

Predicated on evidence that diving-related microparticle generation is an oxidative stress response, this study investigated the role that oxygen plays in augmenting production of annexin V-positive microparticles associated with open-water SCUBA diving and whether elevations can be abrogated by ascorbic acid. Following a cross-over study design, 14 male subjects ingested placebo and 2-3 wk later ascorbic acid (2 g) daily for 6 days prior to performing either a 47-min dive to 18 m of sea water while breathing air (∼222 kPa N2/59 kPa O2) or breathing a mixture of 60% O2/balance N2 from a tight-fitting face mask at atmospheric pressure for 47 min (∼40 kPa N2/59 kPa O2). Within 30 min after the 18-m dive in the placebo group, neutrophil activation, and platelet-neutrophil interactions occurred, and the total number of microparticles, as well as subgroups bearing CD66b, CD41, CD31, CD142 proteins or nitrotyrosine, increased approximately twofold. No significant elevations occurred among divers after ingesting ascorbic acid, nor were elevations identified in either group after breathing 60% O2. Ascorbic acid had no significant effect on post-dive intravascular bubble production quantified by transthoracic echocardiography. We conclude that high-pressure nitrogen plays a key role in neutrophil and microparticle-associated changes with diving and that responses can be abrogated by dietary ascorbic acid supplementation.


Assuntos
Ácido Ascórbico/administração & dosagem , Micropartículas Derivadas de Células/efeitos dos fármacos , Doença da Descompressão/prevenção & controle , Suplementos Nutricionais , Mergulho/efeitos adversos , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Biomarcadores/sangue , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Micropartículas Derivadas de Células/imunologia , Micropartículas Derivadas de Células/metabolismo , Estudos Cross-Over , Doença da Descompressão/sangue , Doença da Descompressão/etiologia , Doença da Descompressão/imunologia , Embolia Aérea/diagnóstico por imagem , Embolia Aérea/etiologia , Humanos , Masculino , Neutrófilos/imunologia , Neutrófilos/metabolismo , Sindecana-1/sangue , Fatores de Tempo , Resultado do Tratamento , Tirosina/análogos & derivados , Tirosina/sangue , Ultrassonografia
4.
Vaccine ; 32(49): 6631-8, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25305564

RESUMO

In the recent decade, epidemic meningitis in the African meningitis belt has mostly been caused by Neisseria meningitidis of serogroups A, W and X (MenA, MenW and MenX, respectively). There is at present no licensed vaccine available to prevent MenX meningococcal disease. To explore a trivalent MenAWX vaccine concept, we have studied the immunogenicity in mice of MenX outer membrane vesicles (X-OMV) or MenX polysaccharide (X-PS) when combined with a bivalent A-OMV and W-OMV (AW-OMV) vaccine previously shown to be highly immunogenic in mice. The vaccine antigens were produced from three representative wild type strains of MenA (ST-7), MenW (ST-11) and MenX (ST-751) isolated from patients in the African meningitis belt. Groups of mice were immunized with two doses of X-OMV or X-PS combined with the AW-OMV vaccine or as individual components. All vaccine preparations were adsorbed to Al(OH)3. Sera from immunized mice were tested by ELISA and immunoblotting. Functional antibody responses were measured as serum bactericidal activity (SBA) and opsonophagocytic activity (OPA). Immunization of mice with X-OMV, alone or in combination with AW-OMV induced high levels of anti-X OMV IgG. Moreover, X-OMV alone or in combination with the AW-OMV vaccine induced high SBA and OPA titers against the MenX target strain. X-PS alone was not immunogenic in mice; however, addition of the AW-OMV vaccine to X-PS increased the immunogenicity of X-PS. Both AWX vaccine formulations induced high levels of IgG against A- and W-OMV and high SBA titers against the MenA and MenW vaccine strains. These results suggest that a trivalent AWX vaccine, either as a combination of OMV or OMV with X-PS, could potentially prevent the majority of meningococcal disease in the meningitis belt.


Assuntos
Meningite Meningocócica/microbiologia , Meningite Meningocócica/prevenção & controle , Vacinas Meningocócicas/imunologia , Vacinas Meningocócicas/isolamento & purificação , Neisseria meningitidis/imunologia , Sorogrupo , Adjuvantes Imunológicos/administração & dosagem , África , Compostos de Alúmen/administração & dosagem , Animais , Anticorpos Antibacterianos/sangue , Atividade Bactericida do Sangue , Micropartículas Derivadas de Células/imunologia , Avaliação Pré-Clínica de Medicamentos , Ensaio de Imunoadsorção Enzimática , Feminino , Immunoblotting , Meningite Meningocócica/epidemiologia , Camundongos , Neisseria meningitidis/isolamento & purificação , Proteínas Opsonizantes/sangue , Fagocitose , Polissacarídeos Bacterianos/imunologia , Vacinas Combinadas/imunologia , Vacinas Combinadas/isolamento & purificação
5.
J Biomed Mater Res B Appl Biomater ; 102(6): 1244-54, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24500854

RESUMO

We report the preparation of plasma microparticles (PMPs) from autologous blood plasma for sustained in vivo delivery of the entrapped antigens. The PMPs were prepared by high speed-stirring of calcium-enriched plasma, mixed with the antigen to be entrapped, in mineral oil. The preparation of PMPs did not necessitate addition of any external protein/enzyme nor special laboratory setup. Our results suggest that the PMPs release the entrapped invertase in a sustained manner both in vitro and in vivo, especially after crosslinking with glutaraldehyde. The preparations are reasonably stable to proteolysis and constitute strong candidates for eliciting immune response. Induction of humoral immune response by the PMP-entrapped invertase, as evident from the high antibody titers, was remarkable and comparable with that observed in animals receiving the antigen emulsified with Freund's Complete Adjuvant. Isotypic analysis of antibodies showed a Th1-biased immune response in animals administered uncrosslinked or crosslinked PMPs-entrapped invertase, especially after a booster dose. The analysis in animals of the group immunized with adjuvant-emulsified antigen suggested a combined Th1 and Th2 response. PMP-entrapment also caused high expression of surface markers (CD80 and CD86) on antigen presenting cells, as well as effector T-cells surface markers (CD4(+) and CD8(+) ) as revealed by FACS. The study suggests that PMPs offer remarkable promise as adjuvant-free and biocompatible vaccine delivery systems.


Assuntos
Antígenos , Micropartículas Derivadas de Células/química , Sistemas de Liberação de Medicamentos , Imunização/métodos , Óleo Mineral , Plasma/química , Animais , Antígenos/química , Antígenos/imunologia , Antígenos/farmacologia , Linfócitos T CD8-Positivos , Micropartículas Derivadas de Células/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Óleo Mineral/química , Óleo Mineral/farmacologia , Plasma/imunologia , Coelhos , Células Th1/imunologia , Células Th2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA