Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Expert Opin Ther Targets ; 22(11): 903-915, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30336698

RESUMO

INTRODUCTION: Microsporidia have been increasingly reported to infect humans. The most common presentation of microsporidiosis is chronic diarrhea, a significant mortality risk in immune-compromised patients. Albendazole, which inhibits tubulin, and fumagillin, which inhibits methionine aminopeptidase type 2 (MetAP2), are the two main therapeutic agents used for treatment of microsporidiosis. In addition, to their role as emerging pathogens in humans, microsporidia are important pathogens in insects, aquaculture, and veterinary medicine. New therapeutic targets and therapies have become a recent focus of attention for medicine, veterinary, and agricultural use. Areas covered: Herein, we discuss the detection and symptoms of microsporidiosis in humans and the therapeutic targets that have been utilized for the design of new drugs for the treatment of this infection, including triosephosphate isomerase, tubulin, MetAP2, topoisomerase IV, chitin synthases, and polyamines. Expert opinion: Enterocytozoon bieneusi is the most common microsporidia in human infection. Fumagillin has a broader anti-microsporidian activity than albendazole and is active against both Ent. bieneusi and Encephaliozoonidae. Microsporidia lack methionine aminopeptidase type 1 and are, therefore, dependent on MetAP2, while mammalian cells have both enzymes. Thus, MetAP2 is an essential enzyme in microsporidia and new inhibitors of this pathway have significant promise as therapeutic agents.


Assuntos
Antifúngicos/farmacologia , Microsporidiose/tratamento farmacológico , Terapia de Alvo Molecular , Albendazol/farmacologia , Animais , Cicloexanos/farmacologia , Desenho de Fármacos , Ácidos Graxos Insaturados/farmacologia , Humanos , Microsporídios/efeitos dos fármacos , Microsporídios/isolamento & purificação , Microsporidiose/microbiologia , Sesquiterpenos/farmacologia
3.
Sci Rep ; 8(1): 8591, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29872223

RESUMO

The microsporidia are a large group of intracellular parasites with a broad range of hosts, including humans. Encephalitozoon intestinalis is the second microsporidia species most frequently associated with gastrointestinal disease in humans, especially immunocompromised or immunosuppressed individuals, including children and the elderly. The prevalence reported worldwide in these groups ranges from 0 to 60%. Currently, albendazole is most commonly used to treat microsporidiosis caused by Encephalitozoon species. However, the results of treatment are variable, and relapse can occur. Consequently, efforts are being directed toward identifying more effective drugs for treating microsporidiosis, and the study of new molecular targets appears promising. These parasites lack mitochondria, and oxidative phosphorylation therefore does not occur, which suggests the enzymes involved in glycolysis as potential drug targets. Here, we have for the first time characterized the glycolytic enzyme triosephosphate isomerase of E. intestinalis at the functional and structural levels. Our results demonstrate the mechanisms of inactivation of this enzyme by thiol-reactive compounds. The most striking result of this study is the demonstration that established safe drugs such as omeprazole, rabeprazole and sulbutiamine can effectively inactivate this microsporidial enzyme and might be considered as potential drugs for treating this important disease.


Assuntos
Albendazol/uso terapêutico , Proteínas Fúngicas/antagonistas & inibidores , Microsporídios/efeitos dos fármacos , Microsporidiose/tratamento farmacológico , Triose-Fosfato Isomerase/antagonistas & inibidores , Sequência de Aminoácidos , Encephalitozoon/efeitos dos fármacos , Encephalitozoon/enzimologia , Encephalitozoon/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Gastroenteropatias/tratamento farmacológico , Gastroenteropatias/microbiologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Humanos , Microsporídios/enzimologia , Microsporídios/genética , Microsporidiose/microbiologia , Omeprazol/uso terapêutico , Rabeprazol/uso terapêutico , Homologia de Sequência de Aminoácidos , Tiamina/análogos & derivados , Tiamina/uso terapêutico , Triose-Fosfato Isomerase/genética , Triose-Fosfato Isomerase/metabolismo
4.
Antimicrob Agents Chemother ; 50(6): 2146-55, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16723577

RESUMO

Therapies for microsporidiosis in humans are limited, and fumagillin, which appears to be the most broadly effective antimicrosporidial drug, is considered to be moderately toxic. The purpose of this study was to apply an in vitro drug screening assay for Encephalitozoon intestinalis and Vittaforma corneae and an in vivo athymic mouse model of V. corneae infection to assess the efficacy of TNP-470 (a semisynthetic analogue of fumagillin), ovalicin, and eight ovalicin derivatives. TNP-470, ovalicin, and three of the ovalicin derivatives inhibited both E. intestinalis and V. corneae replication by more than 70% in vitro. Another three of the ovalicin derivatives inhibited one of the two microsporidian species by more than 70%. None of the treated athymic mice survived the V. corneae infection, but they did survive statistically significantly longer than the untreated controls after daily treatment with fumagillin administered at 5, 10, and 20 mg/kg of body weight subcutaneously (s.c.), TNP-470 administered at 20 mg/kg intraperitoneally (i.p.), or ovalicin administered at 5 mg/kg s.c. Of two ovalicin derivatives that were assessed in vivo, NSC 9665 given at 10 mg/kg i.p. daily also statistically significantly prolonged survival of the mice. No lesions associated with drug toxicity were observed in the kidneys or livers of uninfected mice treated with these drugs at the highest dose of 20 mg/kg daily. These results thus support continued studies to identify more effective fumagillin-related drugs for treating microsporidiosis.


Assuntos
Ácidos Graxos Insaturados/farmacologia , Microsporídios/efeitos dos fármacos , Microsporidiose/tratamento farmacológico , Sesquiterpenos/farmacologia , Animais , Cicloexanos , Avaliação Pré-Clínica de Medicamentos , Encephalitozoon/efeitos dos fármacos , Encephalitozoon/crescimento & desenvolvimento , Técnicas In Vitro , Masculino , Camundongos , Camundongos Nus , O-(Cloroacetilcarbamoil)fumagilol , Fatores de Tempo , Vittaforma/efeitos dos fármacos , Vittaforma/crescimento & desenvolvimento
5.
Antimicrob Agents Chemother ; 48(2): 388-91, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14742185

RESUMO

R126638 is a new triazole agent with potent antifungal activity in vitro against various dermatophytes, Candida spp., and Malassezia spp. Its activity against Malassezia spp. in vitro was superior to that of ketoconazole, the agent currently used for the treatment of Malassezia-related infections. R126638 showed activity comparable to or lower than that of itraconazole against dermatophytes in vitro; however, in guinea pig models of dermatophyte infections, R126638 given orally consistently showed antifungal activity superior to that of itraconazole, with 50% effective doses (ED(50)s) three- to more than eightfold lower than those of itraconazole, depending on the time of initiation and the duration of treatment. The ED(50) of R126638 in a mouse dermatophytosis model was more than fivefold lower than that of itraconazole. These data indicate that if the effects of R126638 seen when it is used to treat animals can be extrapolated to humans, the novel compound would be expected to show effects at doses lower than those of existing drugs and, hence, present a lower risk for side effects.


Assuntos
Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Dermatomicoses/tratamento farmacológico , Imidazóis/síntese química , Imidazóis/uso terapêutico , Microsporídios/efeitos dos fármacos , Tinha/tratamento farmacológico , Triazóis/síntese química , Triazóis/uso terapêutico , Trichophyton/efeitos dos fármacos , Animais , Candida/efeitos dos fármacos , Dermatomicoses/microbiologia , Relação Dose-Resposta a Droga , Cobaias , Itraconazol/farmacologia , Itraconazol/uso terapêutico , Cetoconazol/farmacologia , Cetoconazol/uso terapêutico , Camundongos , Testes de Sensibilidade Microbiana , Pele/microbiologia , Tinha/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA