Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 371
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 190: 105318, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36740338

RESUMO

Pentachlorophenol (PCP) is a synthetic organochlorine compound that is widely used in biocide and pesticide industries, and in preservation of wood, fence posts, cross arms and power line poles. Humans are usually exposed to PCP through air, contaminated water and food. PCP enters the body and adversely affects liver, gastrointestinal tract, kidney and lungs. PCP is a highly toxic class 2B or probable human carcinogen that produces large amount of reactive oxygen species (ROS) within cells. This work aimed to determine PCP-induced oxidative damage in rat kidney. Adult rats were given PCP (25, 50, 100, 150 mg/kg body weight), in corn oil, once a day for 5 days while control rats were given similar amount of corn oil by oral gavage. PCP increased hydrogen peroxide level and oxidation of thiols, proteins and lipids. The antioxidant status of kidney cells was compromised in PCP treated rats while enzymes of brush border membrane (BBM) and carbohydrate metabolism were inhibited. Plasma level of creatinine and urea was also increased. Administration of PCP increased DNA fragmentation, cross-linking of DNA to proteins and DNA strand scission in kidney. Histological studies supported biochemical findings and showed significant damage in the kidneys of PCP-treated rats. These changes could be due to redox imbalance or direct chemical modification by PCP or its metabolites. These results signify that PCP-induced oxidative stress causes nephrotoxicity, dysfunction of BBM enzymes and DNA damage.


Assuntos
Pentaclorofenol , Ratos , Humanos , Animais , Pentaclorofenol/toxicidade , Pentaclorofenol/metabolismo , Microvilosidades/metabolismo , Óleo de Milho/metabolismo , Ratos Wistar , Rim/patologia , Oxirredução , Estresse Oxidativo , Dano ao DNA
2.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36799118

RESUMO

The objective of this study was to compare the effects of post-ruminal provision of Ca-butyrate (CaB) when delivered via abomasal dosing, and Ca-gluconate (CaG) when provided ruminally using a rumen protected form or using an unprotected form via abomasal dosing on short-chain fatty acid (SCFA) concentration throughout the GIT, nutrient digestibility, GIT barrier function, ruminal SCFA absorption, ruminal morphometrics, intestinal brush border enzyme activity, and blood parameters for beef heifers. Thirty-two beef heifers fitted with ruminal cannulas were used in a randomized complete block design and assigned to one of four treatments: 1) negative control (ruminal infusion of double-distilled water; CON); 2) abomasal infusion of CaB (AB; 0.0029% of BW); 3) abomasal infusion of CaG (AG; 0.0077% of BW); and 4) ruminal infusion of a hydrogenated fat-embedded CaG (RG; 0.0192% of BW) to provide ruminal protection. Excluding CON, treatments were designed to deliver the same amount of butyrate in the small intestine. Heifers were housed in individual pens and DMI was limited to 95% of voluntary intake to minimize a potential confounding effect of DMI on treatment responses. Total GIT barrier function was assessed on day 17 and SCFA disappearance was evaluated on day 21 using the temporarily isolated and washed reticulo-rumen technique. On day 28, heifers were slaughtered, and ruminal and colonic digesta were collected to assess SCFA concentration. Additionally, ruminal, jejunal, and colonic tissues were collected to assess SCFA fluxes and regional barrier function ex vivo using the Ussing chamber technique. For colonic digesta, both AB and CaG treatments reduced the proportion of acetate (P < 0.05) and increased the proportion on propionate (P < 0.05) compared to CON. Relative to CON, AB but not CaG treatments increased in vivo ruminal disappearance of total SCFA (P = 0.01), acetate (P = 0.03), propionate (P = 0.01), and butyrate (P > 0.01). Treatments did not affect (P ≥ 0.10) acetate and butyrate fluxes in the ruminal and colonic tissues when measured ex vivo; however, when compared with CON, AB tended to decrease (P = 0.09) mannitol flux across ruminal tissue. In addition, mannitol flux was affected (P < 0.01) by region, with greater mannitol flux across the jejunum than rumen and colon. We conclude that while both abomasal infusion of CaB and CaG affect the molar proportion of acetate and propionate in the colon, only abomasal CaB stimulated ruminal SCFA absorption for growing beef heifers.


Butyrate, a short-chain fatty acid (SCFA), has received attention due to its ability to promote gastrointestinal (GIT) health and development. However, butyrate in its free form presents a strong odor, limiting its use in diet formulation. Supplementation of butyrate precursors, such as gluconate, have been studied to enhance butyrate production in the GIT. This study evaluated the effects of post-ruminal infusion of Ca-butyrate (AB; 0.0029% of BW) and Ca-gluconate (AG; 0.0077% of BW) and ruminal infusion of a hydrogenated fat-embedded Ca-gluconate (RG; 0.0192% of BW) relative to control (CON; ruminal infusion of double-distilled water). Thirty-two beef heifers fitted with ruminal cannulas were fed for 28 d and GIT barrier function and ruminal SCFA absorption were assessed. At slaughter, the rumen, jejunum, and colon tissues were collected and barrier function and SCFA fluxes were assessed ex vivo. Relative to CON, AB but not AG and RG increased in vivo ruminal SCFA absorption and tended to increase ex vivo barrier function. Thus, the data presented in this study shows that butyrate and gluconate do not function through the same mode of action in the GIT of beef heifers.


Assuntos
Butiratos , Dieta , Bovinos , Animais , Feminino , Butiratos/farmacologia , Butiratos/metabolismo , Dieta/veterinária , Propionatos/metabolismo , Microvilosidades , Ácidos Graxos Voláteis/metabolismo , Gluconatos/metabolismo , Absorção Intestinal , Rúmen/metabolismo , Ração Animal/análise , Fermentação , Digestão/fisiologia
3.
Nutrients ; 14(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36235576

RESUMO

Catechin is a flavonoid naturally present in numerous dietary products and fruits (e.g., apples, berries, grape seeds, kiwis, green tea, red wine, etc.) and has previously been shown to be an antioxidant and beneficial for the gut microbiome. To further enhance the health benefits, bioavailability, and stability of catechin, we synthesized and characterized catechin pentaacetate and catechin pentabutanoate as two new ester derivatives of catechin. Catechin and its derivatives were assessed in vivo via intra-amniotic administration (Gallus gallus), with the following treatment groups: (1) non-injected (control); (2) deionized H2O (control); (3) Tween (0.004 mg/mL dose); (4) inulin (50 mg/mL dose); (5) Catechin (6.2 mg/mL dose); (6) Catechin pentaacetate (10 mg/mL dose); and (7) Catechin pentabutanoate (12.8 mg/mL dose). The effects on physiological markers associated with brush border membrane morphology, intestinal bacterial populations, and duodenal gene expression of key proteins were investigated. Compared to the controls, our results demonstrated a significant (p < 0.05) decrease in Clostridium genera and E. coli species density with catechin and its synthetic derivative exposure. Furthermore, catechin and its derivatives decreased iron and zinc transporter (Ferroportin and ZnT1, respectively) gene expression in the duodenum compared to the controls. In conclusion, catechin and its synthetic derivatives have the potential to improve intestinal morphology and functionality and positively modulate the microbiome.


Assuntos
Catequina , Galinhas , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Bactérias/metabolismo , Catequina/metabolismo , Catequina/farmacologia , Galinhas/metabolismo , Escherichia coli/metabolismo , Ésteres/metabolismo , Ésteres/farmacologia , Inulina/metabolismo , Inulina/farmacologia , Ferro/metabolismo , Microvilosidades , Polissorbatos/farmacologia , Chá/metabolismo
4.
Nutrients ; 14(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956307

RESUMO

Nicotinamide riboside (NR) acts as a nicotinamide adenine dinucleotide (NAD+) precursor where NR supplementation has previously been shown to be beneficial. Thus, we synthesized and characterized nicotinamide riboside tributyrate chloride (NRTBCl, water-soluble) and nicotinamide riboside trioleate chloride (NRTOCl, oil-soluble) as two new ester derivatives of nicotinamide riboside chloride (NRCl). NRCl and its derivatives were assessed in vivo, via intra-amniotic administration (Gallus gallus), with the following treatment groups: (1) non-injected (control); and injection of (2) deionized H2O (control); (3) NRCl (30 mg/mL dose); (4) NRTBCl (30 mg/mL dose); and (5) NRTOCl (30 mg/mL dose). Post-intervention, the effects on physiological markers associated with brush border membrane morphology, intestinal bacterial populations, and duodenal gene expression of key proteins were investigated. Although no significant changes were observed in average body weights, NRTBCl exposure increased average cecum weight. NR treatment significantly increased Clostridium and NRCl treatment resulted in increased populations of Bifidobacterium, Lactobacillus, and E. coli. Duodenal gene expression analysis revealed that NRCl, NRTBCl, and NRTOCl treatments upregulated the expression of ZnT1, MUC2, and IL6 compared to the controls, suggesting alterations in brush border membrane functionality. The administration of NRCl and its derivatives appears to trigger increased expression of brush border membrane digestive proteins, with added effects on the composition and function of cecal microbial populations. Additional research is now warranted to further elucidate the effects on inflammatory biomarkers and observe changes in the specific intestinal bacterial populations post introduction of NR and its derivatives.


Assuntos
Galinhas , Escherichia coli , Animais , Bactérias/metabolismo , Galinhas/metabolismo , Cloretos/metabolismo , Escherichia coli/metabolismo , Microvilosidades , NAD , Niacinamida/análogos & derivados , Compostos de Piridínio
5.
J Anim Sci ; 100(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35652468

RESUMO

Gluconate salts have been identified as a butyrate precursor when fed to non-ruminant species and may increase the butyrate concentration in the large intestine supporting gastrointestinal health and development. The objective of this study was to evaluate the dose response of hydrogenated fat-embedded calcium gluconate (HFCG) on performance and gastrointestinal tract (GIT) development in growing lambs. Thirty-two wether lambs were used in a randomized complete block design and assigned to 1 of 4 treatments differing in the inclusion of HFCG: 0.0% (CON), 0.075% (LOW), 0.30% (MED), and 0.60% of the diet (HIGH). Lambs were allocated into individual pens and fed ad libitum with feed delivered twice daily. Feed intake was recorded daily, and body weight (BW) was assessed at the beginning and the end of the 29-d period. Blood was sampled on day 21, prior to feeding and 6 h post-feeding to evaluate changes in ß-hydroxybutyrate, glucose, and insulin concentrations. Total fecal collection was conducted during days 25 to 28 to assess apparent total tract digestibility. On day 29, lambs were slaughtered, and the entire GIT was separated by region to enable sampling of tissue and digesta. Data were analyzed to assess linear, quadratic, and cubic effects of HFCG dose. Final BW, average daily gain, and dry matter intake decreased linearly (P ≤ 0.02) with increasing HFCG. Increasing inclusion of HFCG linearly decreased (P = 0.01) the thickness of the stratum corneum in ruminal papillae but did not affect other strata (P ≥ 0.34). Omasal digesta weight linearly decreased (P = 0.01) as the concentration of HFCG increased and abomasal digesta weight was cubically affected (P = 0.03) the increasing dose of HFCG. Short-chain fatty acid concentration in the cecum was cubically affected (P < 0.01) with increasing dose of HFCG where low dose had the greatest concentration. Moreover, increasing the dietary supply of HFCG linearly increased the proportion of acetate (P = 0.04) in the cecum and linearly decreased the proportion of propionate in the digesta of both the cecum (P < 0.01) and colon (P = 0.01). Colon crypt depth was quadratically (P = 0.03) affected with the increasing dose of HFCG, where lambs fed MED had greatest crypt depth. We conclude that feeding HFCG to growing lambs did not increase butyrate concentration in the large intestine and consequently does not increase the absorptive surface area of the whole tract, the size of the GIT, or the functionality of the intestine.


Gluconate salts have been reported to be metabolized by microbes in the gastrointestinal tract to yield butyrate. Butyrate has shown potential to enhance functionality of the gastrointestinal tract by increasing the absorptive surface area, enzyme activity, and the barrier function. This study evaluated the inclusion of four levels of hydrogenated fat-embedded Ca-gluconate (HFCG; 0.0%, 0.075%, 0.30%, and 0.60% of the diet) designed to increase the production of butyrate in the large intestine. Thirty-two wether lambs were fed for 28 d, slaughtered, and eviscerated to allow complete evaluation of the gastrointestinal tract and its contents. Growth and dry matter intake decreased linearly with increasing dose of HFCG. Dose of HFCG cubically affected short-chain fatty acid concentration in the cecum with increased concentrations at the 0.075% dose. Moreover, increasing dose of HFCG linearly increased the proportion of acetate and linearly decreased the proportion of propionate in the cecum without altering the proportion of butyrate. Thus, the supplementation of HFCG did not increase butyrate concentration in the large intestine and did not enhance gastrointestinal tract function.


Assuntos
Digestão , Rúmen , Ração Animal/análise , Animais , Butiratos/metabolismo , Gluconato de Cálcio/metabolismo , Gluconato de Cálcio/farmacologia , Dieta/veterinária , Ingestão de Alimentos , Fermentação , Trato Gastrointestinal/metabolismo , Intestino Grosso/metabolismo , Masculino , Microvilosidades/metabolismo , Rúmen/metabolismo , Ovinos , Carneiro Doméstico
6.
Nutrients ; 14(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35011095

RESUMO

Saffron (Crocus sativus L.) is known as the most expensive spice. C. sativus dried red stigmas, called threads, are used for culinary, cosmetic, and medicinal purposes. The rest of the flower is often discarded, but is now being used in teas, as coloring agents, and fodder. Previous studies have attributed antioxidant, anti-inflammatory, hepatoprotective, neuroprotective, anti-depressant, and anticancer properties to C. sativus floral bio-residues. The aim of this study is to assess C. sativus flower water extract (CFWE) for its effects on hemoglobin, brush boarder membrane (BBM) functionality, morphology, intestinal gene expression, and cecal microbiome in vivo (Gallus gallus), a clinically validated model. For this, Gallus gallus eggs were divided into six treatment groups (non-injected, 18 Ω H2O, 1% CFWE, 2% CFWE, 5% CFWE, and 10% CFWE) with n~10 for each group. On day 17 of incubation, 1 mL of the extracts/control were administered in the amnion of the eggs. The amniotic fluid along with the administered extracts are orally consumed by the developing embryo over the course of the next few days. On day 21, the hatchlings were euthanized, the blood, duodenum, and cecum were harvested for assessment. The results showed a significant dose-dependent decrease in hemoglobin concentration, villus surface area, goblet cell number, and diameter. Furthermore, we observed a significant increase in Paneth cell number and Mucin 2 (MUC2) gene expression proportional to the increase in CFWE concentration. Additionally, the cecum microbiome analysis revealed C. sativus flower water extract altered the bacterial populations. There was a significant dose-dependent reduction in Lactobacillus and Clostridium sp., suggesting an antibacterial effect of the extract on the gut in the given model. These results suggest that the dietary consumption of C. sativus flower may have negative effects on BBM functionality, morphology, mineral absorption, microbial populations, and iron status.


Assuntos
Ceco/microbiologia , Crocus/química , Flores/química , Microbioma Gastrointestinal/efeitos dos fármacos , Microvilosidades/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Galinhas
7.
Food Funct ; 12(14): 6157-6166, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34079965

RESUMO

The intra-amniotic administration approach has been used to evaluate the effects of plant origin prebiotics on intestinal health and on brush border membrane functionality and morphology. Prebiotics are fermentable dietary fibers, which can positively affect the host by selectively stimulating the growth and activity of colon bacteria, thus improving intestinal health. The consumption of prebiotics increases digestive tract motility, which leads to hyperplasia and/or hypertrophy of intestinal cells, increasing nutrient digestive and absorptive surface area. This review collates information about the effects and relationship between prebiotic consumption on small intestinal brush border membrane functionality and morphology by utilizing the intra-amniotic administration approach. To date, research has shown that the intra-amniotic administration of prebiotics affects the expression of key brush border membrane functional proteins, intestinal surface area (villi height/width), and goblet cell number/size. These effects may improve brush border membrane functionality and digestive/absorptive capabilities.


Assuntos
Galinhas , Mucosa Intestinal/efeitos dos fármacos , Microvilosidades/efeitos dos fármacos , Extratos Vegetais/farmacologia , Prebióticos/administração & dosagem , Animais , Colo/microbiologia , Fibras na Dieta/administração & dosagem , Digestão , Duodeno/metabolismo , Duodeno/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Motilidade Gastrointestinal , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Absorção Intestinal , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Microvilosidades/metabolismo
8.
Nutrients ; 13(4)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920564

RESUMO

Intestinal health relies on the association between the mucosal immune system, intestinal barrier and gut microbiota. Bioactive components that affect the gut microbiota composition, epithelial physical barrier and intestinal morphology were previously studied. The current systematic review evaluated evidence of anthocyanin effects and the ability to improve gut microbiota composition, their metabolites and parameters of the physical barrier; this was conducted in order to answer the question: "Does food source or extract of anthocyanin promote changes on intestinal parameters?". The data analysis was conducted following the PRISMA guidelines with the search performed at PubMed, Cochrane and Scopus databases for experimental studies, and the risk of bias was assessed by the SYRCLE tool. Twenty-seven studies performed in animal models were included, and evaluated for limitations in heterogeneity, methodologies, absence of information regarding allocation process and investigators' blinding. The data were analyzed, and the anthocyanin supplementation demonstrated positive effects on intestinal health. The main results identified were an increase of Bacteroidetes and a decrease of Firmicutes, an increase of short chain fatty acids production, a decrease of intestinal pH and intestinal permeability, an increase of the number of goblet cells and tight junction proteins and villi improvement in length or height. Thus, the anthocyanin supplementation has a potential effect to improve the intestinal health. PROSPERO (CRD42020204835).


Assuntos
Antocianinas/farmacocinética , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Bacteroidetes/metabolismo , Disponibilidade Biológica , Ácidos Graxos Voláteis/biossíntese , Firmicutes/metabolismo , Células Caliciformes/metabolismo , Humanos , Microvilosidades/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos
9.
Nutrients ; 13(2)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572926

RESUMO

Rosa canina L. is a natural polyphenol-rich medicinal plant that exhibits antioxidant and anti-inflammatory activities. Recent in vivo studies have demonstrated that a methanol extract of Rosa canina L. (RCME) has reversed an inflammatory bowel disease (IBD)-like phenotype that has been triggered by dextran sulfate sodium (DSS) in mice. In the current study, we investigated the effects of RCME on perturbations of cellular mechanisms induced by DSS-treatment of intestinal Caco-2 cells, including stress response in the endoplasmic reticulum (ER), protein trafficking and sorting as well as lipid rafts integrity and functional capacities of an intestinal enzyme. 6 days post-confluent cells were treated for 24 h with DSS (3%) or simultaneously with DSS (3%) and RCME (100 µg/mL) or exclusively with RCME (100 µg/mL) or not treated. The results obtained demonstrate the ability of RCME to counteract the substantial increase in the expression levels of several ER stress markers in DSS-treated cells. Concomitantly, the delayed trafficking of intestinal membrane glycoproteins sucrase-isomaltase (SI) and dipeptidyl peptidase 4 (DPP4) induced by DSS between the ER and the Golgi has been compromised by RCME. Furthermore, RCME restored the partially impaired polarized sorting of SI and DPP4 to the brush border membrane. An efficient sorting mechanism of SI and DPP4 is tightly associated with intact lipid rafts structures in the trans-Golgi network (TGN), which have been distorted by DSS and normalized by RCME. Finally, the enzymatic activities of SI are enhanced in the presence of RCME. Altogether, DSS treatment has triggered ER stress, impaired trafficking and function of membrane glycoproteins and distorted lipid rafts, all of which can be compromised by RCME. These findings indicate that the antioxidants in RCME act at two major sites in Caco-2 cells, the ER and the TGN and are thus capable of maintaining the membrane integrity by correcting the sorting of membrane-associated proteins.


Assuntos
Retículo Endoplasmático/efeitos dos fármacos , Doenças Inflamatórias Intestinais/terapia , Metanol/farmacologia , Extratos Vegetais/farmacologia , Transporte Proteico/efeitos dos fármacos , Rosa/química , Animais , Células CACO-2 , Sulfato de Dextrana , Dipeptidil Peptidase 4/metabolismo , Modelos Animais de Doenças , Humanos , Doenças Inflamatórias Intestinais/induzido quimicamente , Mucosa Intestinal/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Camundongos , Microvilosidades/metabolismo , Fenótipo , Complexo Sacarase-Isomaltase/metabolismo
10.
Food Res Int ; 137: 109705, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233279

RESUMO

This study evaluates the effects of intra-amniotic administration of yacon (Smallanthus sonchifolius) flour soluble extracts (YFSE) on intestinal bacterial populations, brush border membrane (BBM) functionality and morphology, by using the Gallus gallus model. The YFSE increased (p < 0.05) relative abundance of Lactobacillus, Bifidobacterium, Clostridium and E. coli compared to 18MΩ H2O. The YFSE had systematic effect on BBM functionality, via the upregulation of zinc (zinc transporters - ZnT1, ZnT7 and ZIP9) and iron (ferroportin, Duodenal cytochrome (DcytB) transporters, sucrose isomaltase (SI), and down regulation of Interleukin 1 beta (IL1ß), and hepcidin genes expression when compared to the inulin administered group. The YFSE administration increased glycogen concentrations in pectoral muscle compared to noninjected and 18 Ω H2O groups, however, did not change gene expression of enzymes related to glycolysis (phosphofructokinase) and gluconeogenesis (glucose-6 phosphatase). The YFSE increased the depth of crypts, crypt goblet cell diameter, number and type (acidic), and villi goblet cell diameter and type (acidic) when compared to all other groups. Thus, YFSE demonstrated prebiotic effects resulting in improving intestinal bacterial populations profile, BBM functionality, digestive and absorptive capabilities, intestinal morphology, glycogen status and immune system.


Assuntos
Galinhas , Microbioma Gastrointestinal , Animais , Escherichia coli , Farinha , Microvilosidades , Extratos Vegetais/farmacologia
11.
Nutrients ; 12(10)2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023112

RESUMO

The consumption of teff (Eragrostis tef), a gluten-free cereal grain, has increased due to its dense nutrient composition including complex carbohydrates, unsaturated fatty acids, trace minerals (especially Fe), and phytochemicals. This study utilized the clinically-validated Gallus gallus intra amniotic feeding model to assess the effects of intra-amniotic administration of teff extracts versus controls using seven groups: (1) non-injected; (2) 18Ω H2O injected; (3) 5% inulin; (4) teff extract 1%; (5) teff extract 2.5%; (6) teff extract 5%; and (7) teff extract 7.5%. The treatment groups were compared to each other and to controls. Our data demonstrated a significant improvement in hepatic iron (Fe) and zinc (Zn) concentration and LA:DGLA ratio without concomitant serum concentration changes, up-regulation of various Fe and Zn brush border membrane proteins, and beneficial morphological changes to duodenal villi and goblet cells. No significant taxonomic alterations were observed using 16S rRNA sequencing of the cecal microbiota. Several important bacterial metabolic pathways were differentially enriched in the teff group, likely due to teff's high relative fiber concentration, demonstrating an important bacterial-host interaction that contributed to improvements in the physiological status of Fe and Zn. Therefore, teff appeared to represent a promising staple food crop and should be further evaluated.


Assuntos
Eragrostis , Microbioma Gastrointestinal/efeitos dos fármacos , Estado Nutricional/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Prebióticos/administração & dosagem , Sementes , Âmnio , Animais , Ceco/microbiologia , Galinhas , Microbioma Gastrointestinal/genética , Injeções , Mucosa Intestinal/metabolismo , Ferro/sangue , Magnésio/sangue , Microvilosidades/efeitos dos fármacos , RNA Ribossômico 16S/efeitos dos fármacos , Oligoelementos/sangue , Zinco/sangue
12.
Nutrients ; 12(10)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036197

RESUMO

In age-related macular degeneration (AMD), both systemic and local zinc levels decline. Elevation of zinc in clinical studies delayed the progression to end-stage AMD. However, the molecular pathways underpinning this beneficial effect are not yet identified. In this study, we used differentiated primary human fetal retinal pigment epithelium (RPE) cultures and long-term zinc supplementation to carry out a combined transcriptome, proteome and secretome analysis from three genetically different human donors. After combining significant differences, we identified the complex molecular networks using Database for Annotation, Visualization and Integrated Discovery (DAVID) and Ingenuity Pathway Analysis (IPA). The cell cultures from the three donors showed extensive pigmentation, development of microvilli and basal infoldings and responded to zinc supplementation with an increase in transepithelial electrical resistance (TEER) (apical supplementation: 443.2 ± 79.3%, basal supplementation: 424.9 ± 116.8%, compared to control: 317.5 ± 98.2%). Significant changes were observed in the expression of 1044 genes, 151 cellular proteins and 124 secreted proteins. Gene set enrichment analysis revealed changes in specific molecular pathways related to cell adhesion/polarity, extracellular matrix organization, protein processing/transport, and oxidative stress response by zinc and identified a key upstream regulator effect similar to that of TGFB1.


Assuntos
Micronutrientes , Proteoma , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcriptoma , Fator de Crescimento Transformador beta1/fisiologia , Zinco/farmacologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/genética , Células Cultivadas , Impedância Elétrica , Matriz Extracelular/metabolismo , Humanos , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/prevenção & controle , Microvilosidades/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Pigmentação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Epitélio Pigmentado da Retina/embriologia , Epitélio Pigmentado da Retina/fisiologia , Zinco/metabolismo
13.
Nanotoxicology ; 14(10): 1301-1323, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32930049

RESUMO

Food grade titanium dioxide (TiO2) containing nanofractions, is commonly applied to whiten and brighten food products, which put consumers under health risks of ingesting TiO2 nanoparticles (NPs). Although the oral toxicity of TiO2-NPs has been evaluated in several studies, gaps in knowledge exist regarding interactions between NPs and food components. Therefore, this study aimed to estimate the influence of TiO2-NPs on nutrient absorption and metabolism through an in situ intestinal loop experiment which conducted on adult Sprague Dawley (SD) rats after 30-d gastrointestinal exposure to TiO2-NPs of two different sizes (N-TiO2 and M-TiO2). Results showed that exposure to TiO2-NPs caused flat apical membranes with sparse and short microvilli and inflammatory infiltration in small intestine. Both particles were absorbed into small intestinal cells, but N-TiO2 with smaller size could more easily be transported through gut and raise the blood titanium (Ti) levels. Changes in serum levels of amino acid were also different after exposure to these two particles. After injecting mixed solution of nutrients into in situ intestinal loop, the N-TiO2 exposure groups displayed significant absorption inhibition of the added histidine (His) and metabolism disorder of some non-added amino acid. However, no influence was observed on metal elements or glucose levels. This study identified TiO2-NPs with small sizes could affect nutrient absorption and metabolism by inducing intestinal epithelium injury, and amino acids were more susceptible than metal elements and glucose. These findings suggested that foods supplemented with TiO2-NPs should be carefully consumed by people with high protein requirements, such as children, the elderly, and patients with high metabolic disease or intestinal inflammation.


Assuntos
Aminoácidos/metabolismo , Glucose/metabolismo , Absorção Intestinal/efeitos dos fármacos , Nanopartículas/toxicidade , Nutrientes/metabolismo , Titânio/toxicidade , Administração Oral , Idoso , Animais , Humanos , Inflamação , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Microvilosidades/efeitos dos fármacos , Microvilosidades/metabolismo , Ratos , Ratos Sprague-Dawley
14.
PLoS One ; 15(6): e0232831, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32497096

RESUMO

The burden of enteric pathogens in poultry is growing after the ban of antibiotic use in animal production. Organic acids gained attention as a possible alternative to antibiotics due to their antimicrobial activities, improved nutrient metabolism and performance. The current study was conducted to evaluate the effectiveness of organic acid blend on broilers cecal microbiota, histomorphometric measurements, and short-chain fatty acid production in Salmonella enterica serovar Typhimurium challenge model. Birds were divided into four treatments, including a negative control, positive control challenged with S. Typhimurium, group supplemented with an organic acid blend, and birds supplemented with organic acid blend and Salmonella challenged. Results illustrate significant differences in feed conversion ratios and production efficiency factor between treatment groups, however, the influence of organic acid supplement was marginal. Organic acid blend significantly increased cecal acetic and butyric acids concentrations when compared to unsupplemented groups and resulted in minor alterations of intestinal bacterial communities.


Assuntos
Acetatos/metabolismo , Ração Animal , Butiratos/metabolismo , Galinhas/microbiologia , Suplementos Nutricionais , Ácidos Graxos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Doenças das Aves Domésticas/terapia , Salmonelose Animal/terapia , Salmonella typhimurium/efeitos dos fármacos , Animais , Ceco/microbiologia , Galinhas/metabolismo , Ácidos Graxos/administração & dosagem , Ácidos Graxos Voláteis/administração & dosagem , Ácidos Graxos Voláteis/farmacologia , Íleo/metabolismo , Íleo/ultraestrutura , Mananas/administração & dosagem , Microvilosidades/ultraestrutura , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/prevenção & controle , Distribuição Aleatória , Salmonelose Animal/microbiologia , Salmonelose Animal/prevenção & controle , Salmonella typhimurium/isolamento & purificação , Salmonella typhimurium/metabolismo
15.
Ecotoxicol Environ Saf ; 201: 110828, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32531576

RESUMO

Toosendanin (TSN), which is extracted from the root bark of Melia toosendan Siebold and Zuccarini, has multiple modes of action against insects. Especially, this compound has a potent stomach poisoning activity against several lepidoptera pests. In this paper, the signs of toxicity, digestive enzymes activity, the histopathological changes and immuno-electron microscopic localization of TSN in the midgut epithelium of Mythimna separate Walker larvae were investigated for better understanding its action mechanism against insects. The bioassay results indicated that TSN has strong stomach poisoning against the fifth-instar larvae of M. separata (LC50 = 252.23 µg/mL). The typical poisoned symptom were regurgitation and paralysis. Activities of digestive enzymes had no obvious changes after treatment with LC80 dose of TSN. The midgut epithelial cells of insect were damaged by TSN, showing the degeneration of microvilli, hyperplasia of smooth endoplasmic reticulum and condensation of chromatin. Immunohistochemical analysis revealed that the gold particles existed on the microvilli of columnar cells and goblet cells, and gradually accumulated with the exacerbation of poisoning symptoms, showing that TSN targets on the microvilli of the midgutcells. Therefore, TSN acts on digestive system and locates in the microvilli of midgutcells of M. separata.


Assuntos
Sistema Digestório/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Células Epiteliais/efeitos dos fármacos , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Microvilosidades/efeitos dos fármacos , Mariposas/efeitos dos fármacos , Animais , Sistema Digestório/ultraestrutura , Células Epiteliais/ultraestrutura , Microscopia Eletrônica de Transmissão , Microvilosidades/ultraestrutura , Mariposas/crescimento & desenvolvimento
16.
Rejuvenation Res ; 23(2): 171-175, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32253980

RESUMO

Diminished integrity of the intestinal epithelial barrier with advanced age is believed to contribute to aging-associated dysfunction and pathologies in animals. In mammals, diminished gut integrity contributes to inflammaging, the increase in inflammatory processes observed in old age. Recent work suggests that expression of intestinal alkaline phosphatase (IAP) plays a key role in maintaining gut integrity. IAP expression decreases with increasing age in mice and humans. Absence of IAP leads to liver inflammation and shortened life-spans in mice lacking the IAP gene. In normal mice, exogenous supplemental IAP reverses age-induced barrier dysfunction, improves aging-associated metabolic dysfunction, prevents microbiome dysbiosis (imbalance), and extends life-span. Consistent with IAP playing a conserved role in maintaining gut integrity, increased dietary IAP increases aging-diminished physical performance in flies. IAP helps maintain gut integrity in part by supporting the expression of tight junction proteins that maintain the intestinal epithelial barrier and by inactivating bacterial pro-inflammatory factors such as lipopolysaccharides (LPS) by dephosphorylation. Recombinant IAP is in late clinical trials for sepsis-associated acute kidney injury, suggesting it may soon become available as a therapeutic. Taken together, these reports support the idea that directly increasing IAP levels by supplemental recombinant IAP or by indirectly increasing IAP levels using dietary means to induce endogenous IAP may slow the development of aging-associated pathologies.


Assuntos
Fosfatase Alcalina , Lipopolissacarídeos , Envelhecimento , Animais , Suplementos Nutricionais , Camundongos , Microvilosidades
17.
Fish Physiol Biochem ; 46(4): 1375-1385, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32232615

RESUMO

This study investigated the effect of Lactobacillus acidophilus-fortified diets on growth performance, antioxidant profiles, and immunity-related gene expressions of common carp, Cyprinus carpio juveniles. Four isonitrogenous diets containing 0, 102, 104, or 106 cfu/mL/kg L. acidophilus were fed to 240 Cyprinus carpio juveniles (mean = 21.34 ± 1.85 g), allotted to 12 rectangular tanks in a completely randomized designed at 3% body weight for 56 days. Growth performance and nutrient utilization were evaluated using standard procedures. Intestinal villi were measured, antioxidant profiles were evaluated from blood sera, and immunity-related gene expressions were evaluated. The results revealed that fish fed dietary 106 had significantly higher weight gain, SGR, feed intake, and lower FCR. Also, villi length, width, and areas of absorption were significantly improved in a dose-dependent manner. Furthermore, innate immune profiles, superoxide dismutase, catalase, respiratory bust activity as well as transforming growth factor beta (TGFß), interleukin 8 (IL-8), and tumor necrosis factor alpha (TNF-alpha) were significantly stimulated. This study evoked that Lactobacillus acidophilus supplementation enhanced better growth performance, improved antioxidant profiles, and modulated expression of immune-related genes of common carp, Cyprinus carpio, than the fish fed control diet. Results show that fish fed fortified diets had better growth performance, improved antioxidant profiles, and modulated expression of immune-related genes.


Assuntos
Carpas/fisiologia , Lactobacillus acidophilus/fisiologia , Análise de Variância , Animais , Antioxidantes/metabolismo , Carpas/crescimento & desenvolvimento , Carpas/imunologia , Carpas/metabolismo , Catalase/metabolismo , Suplementos Nutricionais , Ingestão de Alimentos , Alimentos Fortificados , Expressão Gênica/imunologia , Peróxido de Hidrogênio/análise , Concentração de Íons de Hidrogênio , Intestinos/anatomia & histologia , Microvilosidades/ultraestrutura , Oxigênio/análise , Distribuição Aleatória , Explosão Respiratória , Temperatura , Água/normas , Aumento de Peso
18.
J Nutr Biochem ; 77: 108305, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31926453

RESUMO

Obese women have an approximately twofold higher risk to deliver an infant with neural tube defects (NTDs) despite folate supplementation. Placental transfer of folate is mediated by folate receptor alpha (FR-α), proton coupled folate transporter (PCFT), and reduced folate carrier (RFC). Decreased placental transport may contribute to NTDs in obese women. Serum folate levels were measured and placental tissue was collected from 13 women with normal BMI (21.9±1.9) and 11 obese women (BMI 33.1±2.8) undergoing elective termination at 8-22 weeks of gestation. The syncytiotrophoblast microvillous plasma membranes (MVM) were isolated using homogenization, magnesium precipitation, and differential centrifugation. MVM expression of FR-α, PCFT and RFC was determined by western blot. Folate transport capacity was assessed using radiolabeled methyl-tetrahydrofolate and rapid filtration techniques. Differences in expression and transport capacity were adjusted for gestational age and maternal age in multivariable regression models. P<.05 was considered statistically significant. Serum folate levels were not significantly different between groups. Placental MVM folate transporter expression did not change with gestational age. MVM RFC (-19%) and FR-α (-17%) expression was significantly reduced in placentas from obese women (P<.05). MVM folate transporter activity was reduced by-52% (P<.05) in obese women. These differences remained after adjustment for gestational age. There was no difference in mTOR signaling between groups. In conclusion, RFC and FR alpha expression and transporter activity in the placental MVM are significantly reduced in obese women in early pregnancy. These results may explain the higher incidence of NTDs in infants of obese women with adequate serum folate.


Assuntos
Receptor 1 de Folato/metabolismo , Ácido Fólico/sangue , Obesidade/sangue , Placenta/metabolismo , Complicações na Gravidez , Transportador de Folato Acoplado a Próton/metabolismo , Proteína Carregadora de Folato Reduzido/metabolismo , Adulto , Índice de Massa Corporal , Membrana Celular/metabolismo , Feminino , Ácido Fólico/análogos & derivados , Ácido Fólico/metabolismo , Humanos , Incidência , Microvilosidades/metabolismo , Análise Multivariada , Obesidade/complicações , Gravidez , Primeiro Trimestre da Gravidez , Segundo Trimestre da Gravidez , Serina-Treonina Quinases TOR/metabolismo , Trofoblastos/metabolismo , Adulto Jovem
19.
Elife ; 92020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31933478

RESUMO

Induction of intestinal drug metabolizing enzymes can complicate the development of new drugs, owing to the potential to cause drug-drug interactions (DDIs) leading to changes in pharmacokinetics, safety and efficacy. The development of a human-relevant model of the adult intestine that accurately predicts CYP450 induction could help address this challenge as species differences preclude extrapolation from animals. Here, we combined organoids and Organs-on-Chips technology to create a human Duodenum Intestine-Chip that emulates intestinal tissue architecture and functions, that are relevant for the study of drug transport, metabolism, and DDI. Duodenum Intestine-Chip demonstrates the polarized cell architecture, intestinal barrier function, presence of specialized cell subpopulations, and in vivo relevant expression, localization, and function of major intestinal drug transporters. Notably, in comparison to Caco-2, it displays improved CYP3A4 expression and induction capability. This model could enable improved in vitro to in vivo extrapolation for better predictions of human pharmacokinetics and risk of DDIs.


Assuntos
Avaliação Pré-Clínica de Medicamentos/instrumentação , Interações Medicamentosas , Duodeno/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Células CACO-2 , Biologia Computacional , Citocromo P-450 CYP3A/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Microvilosidades , Técnicas de Cultura de Órgãos , Organoides/metabolismo , Permeabilidade , Transcriptoma
20.
Food Res Int ; 123: 172-180, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31284965

RESUMO

The effect of soluble extracts with putative prebiotic ability extracted from various bean varieties on the intestinal brush border membrane (BBM) iron related proteins, and intestinal bacterial populations were evaluated using the Gallus gallus model and by the intra-amniotic administration procedure. Eight treatment groups [(non-injected; 18 MΩ H2O; 40 mg/mL Inulin; 50 mg/mL BRS Perola (carioca standard); 50 mg/mL BRS Cometa (carioca, Fe biofortified); 50 mg/mL BRS Esteio (black, standard); 50 mg/mL SMN 39 (black, Fe biofortified); 50 mg/mL BRS Artico (white, standard)] were utilized. Tested groups reduced the relative abundance of Clostridium and E. coli compared to the Inulin group (positive control) and they did not affect the relative abundance of Bifidobacterium and Lactobacillus compared to the negative control (18MΩ H2O). The relative expression of zinc transporter 1, ferroportin and amino peptidase were up-regulated in the BRS Cometa group (Fe-biofortified carioca beans). Results suggest that soluble extracts from carioca beans may improve the iron bioavailability by affecting intestinal bacterial populations, and BBM functionality.


Assuntos
Galinhas/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/microbiologia , Ferro/metabolismo , Microvilosidades/metabolismo , Phaseolus/química , Extratos Vegetais/farmacologia , Animais , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Bifidobacterium/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Clostridium/efeitos dos fármacos , Clostridium/metabolismo , Fibras na Dieta , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Prebióticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA