Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 140: 108980, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37532068

RESUMO

An 8-week feeding trial was conducted to explore the feasibility of Momordica charantia saponins (MCS) administration to facilitate the protein-sparing action of high carbohydrate in diets for juvenile common carp (Cyprinus carpio) with initial mass of 5.41 ± 0.02 g. Based on our previous study, four diets with different the ratio of protein and carbohydrate (P/C ratio) were designed: 32%P/40%C, 30%P/43%C, 28%P/46%C, 28%P/46%C supplemented with 0.16% MCS (28%P/46%C + MCS). Each diet treatment was divided into 3 replicates. Results revealed that 30%P/43%C group increased growth performance and intestinal digestion, decreased intestinal inflammation, and optimized the intestinal microbiota compared to 32%P/40%C group, which presented the stronger protein-sparing action of high carbohydrate. But if the P/C ratio reduced to 28%P/46%C or less, the saving action would be restrained. However, compared to the 30%P/43%C and 28%P/46%C groups, 28%P/46%C + MCS group significantly elevated growth performance and activities of digestive enzymes and antioxidative enzymes, whilst the opposite trend occurred in the contents of glucose, triglyceride, total cholesterol, low density lipoprotein cholesterol, blood urea nitrogen, glutamic oxalacetic transaminase, glutamic-pyruvic transaminase and malondialdehyde. In addition, 28%P/46%C + MCS group markedly upregulated the expressions of GH/IGF axis genes, genes involved in protein synthesis, antioxidant genes and anti-inflammatory cytokine, whilst the opposite trend occurred in the expressions of pro-inflammatory cytokines. Moreover, 28%P/46%C + MCS group obtained the remarkably higher Enterococcus proportion and lower Lactococcus proportion compared to the 30%P/43%C and 28%P/46%C groups, whereas the opposite occurred in 30%P/43%C group, which indicated that there existed differences in the improvement mechanism on intestinal microflora composition between MCS and appropriate P/C ratio. Combined with the above mentioned changes in our research, we concluded that 0.16% MCS administration in a 28%P/46%C diet could facilitate the protein-sparing action of high carbohydrate in diets for common carp, which could decrease the 5% dosage of soybean meal and synchronously reduce the 4% crude protein of diets without affecting the growth and immune ability for common carp.


Assuntos
Carpas , Momordica charantia , Animais , Carpas/metabolismo , Momordica charantia/metabolismo , Suplementos Nutricionais , Dieta/veterinária , Antioxidantes/metabolismo , Carboidratos , Ração Animal/análise
2.
Metab Brain Dis ; 38(3): 1067-1077, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36287355

RESUMO

Aging is widely thought to be associated with oxidative stress. Momordica charantia (MC) is a classic vegetable and traditional herbal medicine widely consumed in Asia, and M. charantia polysaccharide (MCP) is the main bioactive ingredient of MC. We previously reported an antioxidative and neuroprotective effect of MCP in models of cerebral ischemia/reperfusion and hemorrhage injury. However, the role played by MCP in neurodegenerative diseases, especially during aging, remains unknown. In this study, we investigated the protective effect of MCP against oxidative stress and brain damage in a D-galactose-induced aging model (DGAM). The Morris water maze test was performed to evaluate the spatial memory function of model rats. The levels of malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) were measured and telomerase activity was determined. The results showed that MCP treatment attenuated spatial memory dysfunction induced by D-galactose. In addition, MCP increased antioxidant capacity by decreasing MDA and increasing SOD and GSH levels. MCP treatment also improved telomerase activity in aging rats. Mechanistically, MCP promoted the entry of both Nrf2 and ß-Catenin into the nucleus, which is the hallmark of antioxidation signaling pathway activation. This study highlights a role played by MCP in ameliorating aging-induced oxidative stress injury and reversing the decline in learning and memory capacity. Our work provides evidence that MCP administration might be a potential antiaging strategy.


Assuntos
Momordica charantia , Telomerase , Ratos , Animais , Galactose/toxicidade , Momordica charantia/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , beta Catenina/metabolismo , Telomerase/metabolismo , Telomerase/farmacologia , Envelhecimento/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Transdução de Sinais , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Superóxido Dismutase/metabolismo , Malondialdeído/metabolismo
3.
Sci Rep ; 12(1): 15374, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100691

RESUMO

The bitter gourd seed oil, rich in conjugated fatty acids, has therapeutic value to treat cancer, obesity, and aging. It also has an industrial application as a drying agent. Despite its significance, genomics studies are limited, and the genes for seed oil biosynthesis are not fully understood. In this study, we assembled the fruit transcriptome of bitter gourd using 254.5 million reads (Phred score > 30) from the green rind, white rind, pulp, immature seeds, and mature seeds. It consisted of 125,566 transcripts with N50 value 2,751 bp, mean length 960 bp, and 84% completeness. Transcript assembly was validated by RT-PCR and qRT-PCR analysis of a few selected transcripts. The transcripts were annotated against the NCBI non-redundant database using the BLASTX tool (E-value < 1E-05). In gene ontology terms, 99,443, 86,681, and 82,954 transcripts were classified under biological process, molecular function, and cellular component. From the fruit transcriptome, we identified 26, 3, and 10 full-length genes coding for all the enzymes required for synthesizing fatty acids, conjugated fatty acids, and triacylglycerol. The transcriptome, transcripts with tissue-specific expression patterns, and the full-length identified from this study will serve as an important genomics resource for this important medicinal plant.


Assuntos
Momordica charantia , Ácidos Graxos/análise , Frutas/química , Perfilação da Expressão Gênica , Momordica charantia/genética , Momordica charantia/metabolismo , Óleos de Plantas/metabolismo , Sementes/metabolismo
4.
Molecules ; 27(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35889375

RESUMO

Anti-aging is a challenging and necessary research topic. Momordica charantia L. is a common edible medicinal plant that has various pharmacological activities and is often employed in daily health care. However, its anti-aging effect on mice and the underlying mechanism thereof remain unclear. Our current study mainly focused on the effect of Momordica charantia L. on d-galactose-induced subacute aging in mice and explored the underlying mechanism. UHPLC-Q-Exactive Orbitrap MS was applied to qualitatively analyze the chemical components of Momordica charantia L. ethanol extract (MCE). A subacute aging mice model induced by d-galactose (d-gal) was established to investigate the anti-aging effect and potential mechanism of MCE. The learning and memory ability of aging mice was evaluated using behavioral tests. The biochemical parameters, including antioxidant enzyme activity and the accumulation of lipid peroxides in serum, were measured to explore the effect of MCE on the redox imbalance caused by aging. Pathological changes in the hippocampus were observed using hematoxylin and eosin (H&E) staining, and the levels of aging-related proteins in the PI3K/AKT signaling pathway were assessed using Western blotting. The experimental results demonstrated that a total of 14 triterpenoids were simultaneously identified in MCE. The behavioral assessments results showed that MCE can improve the learning and memory ability of subacute mice. The biochemical parameters determination results showed that MCE can improve the activity of antioxidant enzymes and decrease the accumulation of lipid peroxides in aging mice significantly. Furthermore, aging and injury in the hippocampus were ameliorated. Mechanistically, the results showed a significant upregulation in the protein expression of P-PI3K/PI3K and P-AKT/AKT (p < 0.01), as well as a significant reduction in cleaved caspase-3/caspase-3, Bax and P-mTOR/mTOR (p < 0.01). Our results confirm that MCE could restore the antioxidant status and improve cognitive impairment in aging mice, inhibit d-gal-induced apoptosis by regulating the PI3K/AKT signaling pathway, and rescue the impaired autophagy caused by mTOR overexpression, thereby exerting an anti-aging effect.


Assuntos
Momordica charantia , Envelhecimento , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Caspase 3/metabolismo , Galactose/efeitos adversos , Peróxidos Lipídicos , Camundongos , Momordica charantia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
5.
Br J Nutr ; 127(3): 377-383, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-33762029

RESUMO

Bitter melon (Momordica charantia L.) has been shown to have various health-promoting activities, including antidiabetic and hypoglycaemic effects. Improvement in insulin sensitivity and increase in glucose utilisation in peripheral tissues have been reported, but the effect on insulin secretion from pancreatic ß-cells remains unclear. In this study, we investigated the effect of bitter melon fruit on insulin secretion from ß-cells and the underlying mechanism. The green fruit of bitter melon was freeze-dried and extracted with methanol. The bitter melon fruit extract (BMFE) was fractionated using ethyl acetate (fraction A), n-butanol (fraction B) and water (fraction C). Insulin secretory capacity from INS-1 rat insulinoma cell line and rat pancreatic islets, as well as glucose tolerance in rats by oral glucose tolerance test (OGTT), was measured using BMFE and fractions. ATP production in ß-cells was also examined. BMFE augmented insulin secretion from INS-1 cells in a dose-dependent manner. The significant augmentation of insulin secretion was independent of the glucose dose. Fraction A (i.e. hydrophobic fraction), but not fractions B and C, augmented insulin secretion significantly at the same level as that by BMFE. This finding was also observed in pancreatic islets. In OGTT, BMFE and fraction A decreased blood glucose levels and increased serum insulin levels after glucose loading. The decrease in blood glucose levels was also observed in streptozotocin-induced diabetic rats. In addition, BMFE and fraction A increased the ATP content in ß-cells. We concluded that hydrophobic components of BMFE increase ATP production and augment insulin secretion from ß-cells, consequently decreasing blood glucose levels.


Assuntos
Diabetes Mellitus Experimental , Momordica charantia , Trifosfato de Adenosina/metabolismo , Animais , Glicemia/análise , Frutas/química , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Insulina , Secreção de Insulina , Medicina Tradicional Chinesa , Momordica charantia/química , Momordica charantia/metabolismo , Extratos Vegetais/farmacologia , Ratos
6.
J Nanobiotechnology ; 19(1): 259, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454534

RESUMO

BACKGROUND: Plant-derived extracellular vesicles (PDEVs) have been exploited for cancer treatment with several benefits. Bitter melon is cultivated as a vegetable and folk medicine with anticancer and anti-inflammatory activities. 5-Fluorouracil (5-FU) is widely used for cancer treatment. However, 5-FU-mediated NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammation activation induced the resistance of oral squamous cell carcinoma (OSCC) cells to 5-FU. In this study, we explored the potential of bitter melon-derived extracellular vesicles (BMEVs) for enhancing the therapeutic efficacy and reduce the resistance of OSCC to 5-FU. RESULTS: Herein, we demonstrate that bitter melon derived extracellular vesicles (BMEVs), in addition to their antitumor activity against OSCC have intrinsic anti-inflammatory functions. BMEVs induced S phase cell cycle arrest and apoptosis. Apoptosis induction was dependent on reactive oxygen species (ROS) production and JUN protein upregulation, since pretreatment with N-acetyl cysteine or catechin hydrate could prevent apoptosis and JUN accumulation, respectively. Surprisingly, BMEVs significantly downregulated NLRP3 expression, although ROS plays a central role in NLRP3 activation. We further assessed the underlying molecular mechanism and proposed that the RNAs of BMEVs, at least in part, mediate anti-inflammatory bioactivity. In our previous studies, NLRP3 activation contributed to the resistance of OSCC cells to 5-FU. Our data clearly indicate that BMEVs could exert a remarkable synergistic therapeutic effect of 5-FU against OSCC both in vitro and in vivo. Most notably, NLRP3 downregulation reduced the resistance of OSCC to 5-FU. CONCLUSIONS: Together, our findings demonstrate a novel approach to enhance the therapeutic efficacy and reduce the drug resistance of cancer cells to chemotherapeutic agents, which provides proof-of-concept evidence for the future development of PDEVs-enhanced therapy.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Fluoruracila/farmacologia , Momordica charantia/metabolismo , Neoplasias Bucais/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Int J Mol Sci ; 23(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35008866

RESUMO

Among the risk factors affecting the development of cancer, nutritional factors occupy a significant place. Pomegranate seed oil (PSO) and bitter melon extract (BME), used for ages in folk medicine, are nowadays used in the prevention of many diseases and as ingredients of dietary supplements. Despite numerous publications on these raw materials or their active substances, their mechanism of action in various pathological states has not been recognized yet, nor has the safety of their simultaneous use been evaluated. The study aimed to assess how dietary supplementation with either PSO, with BME, or both, affects fatty acids' profiles and their metabolism in hepatic microsomes, as well as the activity of selected microsomal enzymes (COX-2 and CYP1B1). Experimental animals (Sprague-Dawley rats) were divided into eight parallel experimental groups, differing in applied dietary modifications (control, PSO, BME and both PSO and BME) and introduction of chemical carcinogen-7,12-dimethylbenz[a]nthracene. Obtained results indicated the pronounced effect of the cancerous process on lipid metabolism and demonstrated the antagonistic effect of applied dietary supplements on the content of individual fatty acids and the activity of CYP1B1 and COX-2. The applied broad analytical approach and chemometric data analysis confirmed that raw materials, for which potential cancer prevention has been previously demonstrated, may differ in effects depending on the coexisting pathological state.


Assuntos
Ácidos Graxos/metabolismo , Microssomos Hepáticos/metabolismo , Neoplasias , Extratos Vegetais/farmacologia , Animais , Feminino , Metabolismo dos Lipídeos , Momordica charantia/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Punica granatum/metabolismo , Ratos , Ratos Sprague-Dawley
8.
PLoS One ; 15(9): e0239360, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32960911

RESUMO

Exploiting plant extracts to form metallic nanoparticles has been becoming the promising alternative routes of chemical and physical methods owing to environmentally friendly and abundantly renewable resources. In this study, Momordica charantia and Psidium guajava leaf extract (MC.broth and PG.broth) are exploited to fabricate two kinds of biogenic silver nanoparticles (MC.AgNPs and PG.AgNPs). Phytoconstituent screening is performed to identify the categories of natural compounds in MC.broth and PG.broth. Both extracts contain wealthy polyphenols which play a role of reducing agent to turn silver (I) ions into silver nuclei. Trace alkaloids, rich saponins and other oxygen-containing compounds creating the organic corona surrounding nanoparticles act as stabilizing agents. MC.AgNPs and PG.AgNPs are characterized by UV-vis and FTIR spectrophotometry, EDS and TEM techniques. FTIR spectra indicate the presence of O-H, C = O, C-O-C and C = C groups on the surface of silver nanoparticles which is corresponded with three elements of C, O and Ag found in EDS analysis. TEM micrographs show the spherical morphology of MC.AgNPs and PG.AgNPs. MC.AgNPs were 17.0 nm distributed in narrow range of 5-29 nm, while the average size of PG.AgNPs were 25.7 nm in the range of 5-53 nm. Further, MC.AgNPs and PG.AgNPs exhibit their effectively inhibitory ability against A. niger, A. flavus and F. oxysporum as dose-dependence. Altogether, MC.AgNPs and PG.AgNPs will have much potential in scaled up production and become the promising fungicides for agricultural applications.


Assuntos
Nanopartículas Metálicas/química , Momordica charantia/química , Extratos Vegetais/química , Psidium/química , Prata/química , Aspergillus flavus/efeitos dos fármacos , Aspergillus niger/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Química Verde , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Momordica charantia/metabolismo , Tamanho da Partícula , Folhas de Planta/química , Folhas de Planta/metabolismo , Psidium/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Molecules ; 25(18)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961947

RESUMO

Cutibacterium acnes (formerly Propionibacterium acnes) is a key pathogen involved in the development and progression of acne inflammation. The numerous bioactive properties of wild bitter melon (WBM) leaf extract and their medicinal applications have been recognized for many years. In this study, we examined the suppressive effect of a methanolic extract (ME) of WBM leaf and fractionated components thereof on live C. acnes-induced in vitro and in vivo inflammation. Following methanol extraction of WBM leaves, we confirmed anti-inflammatory properties of ME in C. acnes-treated human THP-1 monocyte and mouse ear edema models. Using a bioassay-monitored isolation approach and a combination of liquid-liquid extraction and column chromatography, the ME was then separated into n-hexane, ethyl acetate, n-butanol and water-soluble fractions. The hexane fraction exerted the most potent anti-inflammatory effect, suppressing C. acnes-induced interleukin-8 (IL-8) production by 36%. The ethanol-soluble fraction (ESF), which was separated from the n-hexane fraction, significantly inhibited C. acnes-induced activation of mitogen-activated protein kinase (MAPK)-mediated cellular IL-8 production. Similarly, the ESF protected against C. acnes-stimulated mouse ear swelling, as measured by ear thickness (20%) and biopsy weight (23%). Twenty-four compounds in the ESF were identified using gas chromatograph-mass spectrum (GC/MS) analysis. Using co-cultures of C. acnes and THP-1 cells, ß-ionone, a compound of the ESF, reduced the production of IL-1ß and IL-8 up to 40% and 18%, respectively. ß-ionone also reduced epidermal microabscess, neutrophilic infiltration and IL-1ß expression in mouse ear. We also found evidence of the presence of anti-inflammatory substances in an unfractionated phenolic extract of WBM leaf, and demonstrated that the ESF is a potential anti-inflammatory agent for modulating in vitro and in vivo C. acnes-induced inflammatory responses.


Assuntos
Anti-Inflamatórios/química , Momordica charantia/química , Extratos Vegetais/química , Propionibacteriaceae/patogenicidade , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Linhagem Celular , Modelos Animais de Doenças , Edema/tratamento farmacológico , Edema/microbiologia , Edema/patologia , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Masculino , Camundongos Endogâmicos ICR , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Momordica charantia/metabolismo , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/microbiologia , Extratos Vegetais/análise , Folhas de Planta/química , Folhas de Planta/metabolismo
10.
PLoS One ; 15(7): e0235556, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32614916

RESUMO

To gain a better insight into the selenium nanoparticle (nSe) benefits/toxicity, this experiment was carried out to address the behavior of bitter melon seedlings to nSe (0, 1, 4, 10, 30, and 50 mgL-1) or bulk form (selenate). Low doses of nSe increased biomass accumulation, while concentrations of 10 mgL-1 and above were associated with stem bending, impaired root meristem, and severe toxicity. Responses to nSe were distinct from that of bulk in that the nano-type exhibited a higher efficiency to stimulate growth and organogenesis than the bulk. The bulk form displayed higher phytotoxicity than the nano-type counterpart. According to the MSAP-based analysis, nSe mediated substantial variation in DNA cytosine methylation, reflecting the epigenetic modification. By increasing the concentration of nSe, the expression of the WRKY1 transcription factor linearly up-regulated (mean = 7.9-fold). Transcriptions of phenylalanine ammonia-lyase (PAL) and 4-Coumarate: CoA-ligase (4CL) genes were also induced. The nSe treatments at low concentrations enhanced the activity of leaf nitrate reductase (mean = 52%) in contrast with the treatment at toxic concentrations. The toxic concentration of nSe increased leaf proline concentration by 80%. The nSe supplement also stimulated the activities of peroxidase (mean = 35%) and catalase (mean = 10%) enzymes. The nSe-treated seedlings exhibited higher PAL activity (mean = 39%) and soluble phenols (mean = 50%). The nSe toxicity was associated with a disrupted differentiation of xylem conducting tissue. The callus formation and performance of the explants originated from the nSe-treated seedlings had a different trend than that of the control. This experiment provides new insights into the nSe-associated advantage/ cytotoxicity and further highlights the necessity of designing convincing studies to introduce novel methods for plant cell/tissue cultures and agriculture.


Assuntos
Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Momordica charantia/metabolismo , Nanopartículas/toxicidade , Selênio/química , Citosina/metabolismo , Momordica charantia/efeitos dos fármacos , Momordica charantia/crescimento & desenvolvimento , Nanopartículas/química , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Fenóis/metabolismo , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Prolina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima/efeitos dos fármacos
11.
Metabolomics ; 15(8): 104, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31321563

RESUMO

INTRODUCTION: Bitter melon (Momordica charantia, Cucurbitaceae) is a popular edible medicinal plant, which has been used as a botanical dietary supplement for the treatment of diabetes and obesity in Chinese folk medicine. Previously, our team has proved that cucurbitanes triterpenoid were involved in bitter melon's anti-diabetic effects as well as on increasing energy expenditure. The triterpenoids composition can however be influenced by changes of varieties or habitats. OBJECTIVES: To clarify the significance of bioactive metabolites diversity among different bitter melons and to provide a guideline for selection of bitter melon varieties, an exploratory study was carried out using a UHPLC-HRMS based metabolomic study to identify chemotypes. METHODS: Metabolites of 55 seed samples of bitter melon collected in different parts of China were profiled by UHPLC-HRMS. The profiling data were analysed with multivariate (MVA) statistical methods. Principle component analysis (PCA) and hierarchical cluster analysis (HCA) were applied for sample differentiation. Marker compounds were identified by comparing spectroscopic data with isolated compounds, and additional triterpenes were putatively identified by propagating annotations through a molecular network (MN) generated from UHPLC-HRMS & MS/MS metabolite profiling. RESULTS: PCA and HCA provided a good discrimination between bitter melon samples from various origins in China. This study revealed for the first time the existence of two chemotypes of bitter melon. Marker compounds of those two chemotypes were identified at different MSI levels. The combined results of MN and MVA demonstrated that the two chemotypes mainly differ in their richness in cucurbitane versus oleanane triterpenoid glycosides (CTGs vs. OTGs). CONCLUSION: Our finding revealed a clear chemotype distribution of bioactive components across bitter melon varieties. While bioactivities of individual CTGs and OTGs still need to be investigated in more depth, our results could help in future the selection of bitter melon varieties with optimised metabolites profile for an improved management of diabetes with this popular edible Chinese folk medicine.


Assuntos
Medicamentos de Ervas Chinesas/metabolismo , Glicosídeos/metabolismo , Metabolômica , Momordica charantia/metabolismo , Ácido Oleanólico/metabolismo , Triterpenos/metabolismo , Animais , China , Cromatografia Líquida de Alta Pressão , Diabetes Mellitus/tratamento farmacológico , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Glicosídeos/química , Glicosídeos/uso terapêutico , Humanos , Espectrometria de Massas , Medicina Tradicional Chinesa , Conformação Molecular , Momordica charantia/química , Ácido Oleanólico/química , Ácido Oleanólico/uso terapêutico , Triterpenos/química , Triterpenos/uso terapêutico
12.
Food Chem ; 288: 178-186, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30902279

RESUMO

The current study was designed to characterize the metabolite profile and bioactivity of two commercial bitter melon (Momordica charantia Linn.) genotypes. UPLC-high resolution mass spectrometry (HRMS) was used to identify 15 phenolic and 46 triterpenoids in various bitter melon extracts. Total phenolic levels were the highest (57.28 ±â€¯1.02) in methanolic extract of the inner tissue of Indian Green cultivar, which also correlated to the highest DPPH radical scavenging activity (30.48 ±â€¯2.49 ascorbic acid equivalents (mg of AAE)/g of FD). In addition, highest levels of total saponins were observed in chloroform extract of the Chinese bitter melon pericarp (75.73 mg ±â€¯4.67 diosgenin equivalents (DE)/g of FD). Differential inhibition of α-amylase and α-glucosidase activity was observed in response to polarity of extract, cultivar and tissue type. These results suggest that consumption of whole bitter melon may have potential health benefits to manage diabetes.


Assuntos
Momordica charantia/metabolismo , Ácido Ascórbico/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Momordica charantia/classificação , Momordica charantia/enzimologia , Fenóis/metabolismo , Extratos Vegetais/metabolismo , Saponinas/metabolismo , Especificidade da Espécie , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo
13.
Food Funct ; 10(1): 448-457, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30628614

RESUMO

Momordica charantia (M. charantia) has been widely used to treat obesity due to its bioactive ingredients. This research aimed to investigate the anti-obesity effect of polysaccharides (FP) from fermented M. charantia with Lactobacillus plantarum NCU116 on high-fat induced obese rats. We found that FP could effectively lower the body weight gain, Lee's index, insulin resistance and cell sizes of epididymal adipose tissues in obese rats compared with polysaccharides from non-fermented M. charantia (NFP). FP treatments decreased the total cholesterol, triacylglycerols, and low-density lipoprotein cholesterol, leptin, whereas they elevated the high-density lipoprotein cholesterol, adiponectin, significantly in the serum of obese rats. Furthermore, administrations of FP notably improved oxidative balance in obese rats. Lipidomics results indicated that 24 potential biomarkers have been identified in serum. Additionally, 21 lipids were considerably altered by FP and NFP intakes, such as fatty acyls, glycerolipids, sphingolipids, sterol lipids and glycerophospholipids. The anti-obesity properties of FP were revealed via relieving insulin resistance and fat accumulation of obese rats, which was associated with the regulation of lipid metabolism. Overall, FP exerted more favourable impacts on the anti-obesity effect than NFP, which may be attributed to fermentation.


Assuntos
Lactobacillus plantarum/metabolismo , Momordica charantia/química , Momordica charantia/microbiologia , Obesidade/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Polissacarídeos/administração & dosagem , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fermentação , Humanos , Resistência à Insulina , Masculino , Momordica charantia/metabolismo , Obesidade/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/metabolismo , Polissacarídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Triglicerídeos/metabolismo
14.
Genes Genomics ; 40(6): 561-567, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29892950

RESUMO

Obesity is known to induce pathological changes in the gut and diets rich in complex carbohydrates that resist digestion in the small bowel can alter large bowel ecology. The purposes of this study were to identify the effects of bitter melon powder (BMP) on the global gene expression pattern in the colon mucosa of obese rats. Obese rats were fed a high-fat diet and treated without or with BMP for 8 weeks. Genome-wide expression profiles of the colon mucosa were determined by RNA sequencing (RNA-Seq) analysis at the end of experiment. A total of 87 genes were identified as differentially expressed (DE) between these two groups (fold change > 1.2). These results were further validated by quantitative RT-PCR, confirming the high reliability of the RNA-Seq. Interestingly, DE genes implicated in inflammation and lipid metabolism were found to be downregulated by BMP in the colon. Network between genes and the top 15 KEGG pathways showed that PRKCß (protein kinase C beta) and Pla2g2a (phospholipase A2 group IIA) strongly interacted with surrounding pathways and genes. Results revealed that BMP supplement could remodel key colon functions by altering transcriptomic profile in obese rats.


Assuntos
Momordica charantia/efeitos dos fármacos , Obesidade/genética , Obesidade/metabolismo , Animais , Colo/efeitos dos fármacos , Colo/metabolismo , Dieta Hiperlipídica , Gorduras na Dieta/farmacologia , Suplementos Nutricionais , Perfilação da Expressão Gênica/métodos , Inflamação/tratamento farmacológico , Inflamação/genética , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Momordica charantia/metabolismo , RNA/farmacologia , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Transcriptoma/efeitos dos fármacos
15.
J Agric Food Chem ; 65(33): 7240-7249, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28737900

RESUMO

Charantin, a natural cucurbitane type triterpenoid, has been reported to have beneficial pharmacological functions such as anticancer, antidiabetic, and antibacterial activities. However, accumulation of charantin in bitter melon has been little studied. Here, we performed a transcriptome analysis to identify genes involved in the triterpenoid biosynthesis pathway in bitter melon seedlings. A total of 88,703 transcripts with an average length of 898 bp were identified in bitter melon seedlings. On the basis of a functional annotation, we identified 15 candidate genes encoding enzymes related to triterpenoid biosynthesis and analyzed their expression in different organs of mature plants. Most genes were highly expressed in flowers and/or fruit from the ripening stages. An HPLC analysis confirmed that the accumulation of charantin was highest in fruits from the ripening stage, followed by male flowers. The accumulation patterns of charantin coincide with the expression pattern of McSE and McCAS1, indicating that these genes play important roles in charantin biosynthesis in bitter melon. We also investigated optimum light conditions for enhancing charantin biosynthesis in bitter melon and found that red light was the most effective wavelength.


Assuntos
Momordica charantia/genética , Extratos Vegetais/metabolismo , Proteínas de Plantas/genética , Triterpenos/metabolismo , Frutas/genética , Frutas/metabolismo , Momordica charantia/química , Momordica charantia/metabolismo , Proteínas de Plantas/metabolismo , Plântula/genética , Plântula/metabolismo
16.
BMC Complement Altern Med ; 17(1): 319, 2017 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-28623919

RESUMO

BACKGROUND: Hypercholesterolemia is a serious diseases associated with type-2 diabetes, atherosclerosis, cardiovascular disorders and liver diseases. Humans seek for safe herbal medication such as karela (Momordica charantia/bitter melon) to treat such disorders to avoid side effect of pharmacotherapies widely used. METHODS: Forty male Wistar rats were divided into four equal groups; control group with free access to food and water, cholesterol administered group (40 mg/kg BW orally); karela administered group (5 g /kg BW orally) and mixture of cholesterol and karela. The treatments continued for 10 weeks. Karela was given for hypercholesterolemic rats after 6 weeks of cholesterol administration. Serum, liver and epididymal adipose tissues were taken for biochemical, histopathological and genetic assessments. RESULTS: Hypercholesterolemia induced a decrease in serum superoxide dismutase (SOD), catalase, reduced glutathione (GSH) and an increase in malondialdehyde (MDA) levels that were ameliorated by karela administration. Hypercholesterolemia up regulated antioxidants mRNA expression and altered the expression of carbohydrate metabolism genes. In parallel, hypercholesterolemic groups showed significant changes in the expression of PPAR-alpha and gamma, lipolysis, lipogenesis and cholesterol metabolism such as carnitine palmitoyltransferase-1 (CPT-1). Acyl CoA oxidase (ACO), fatty acids synthase (FAS), sterol responsible element binding protein-1c (SREBP1c), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR) and cholesterol 7α-hydroxylase (CYP7A1) at hepatic and adipose tissue levels. Interestingly, Karela ameliorated all altered genes confirming its hypocholesterolemic effect. Histopathological and immunohistochemical findings revealed that hypercholesterolemia induced hepatic tissue changes compared with control. These changes include cholesterol clefts, necrosis, karyolysis and sever congestion of portal blood vessel. Caspase-3 immunoreactivity showed positive expression in hepatic cells of hypercholesterolemic rats compared to control. All were counteracted and normalized after Karela administration to hypercholesterolemic group. CONCLUSION: Current findings confirmed that karela is a potential supplement useful in treatment of hypercholesterolemia and its associated disorders and is good for human health.


Assuntos
Metabolismo dos Carboidratos , Hipercolesterolemia/dietoterapia , Hipercolesterolemia/genética , Metabolismo dos Lipídeos , Momordica charantia/metabolismo , Tecido Adiposo/metabolismo , Animais , Anticolesterolemiantes/metabolismo , Colesterol/metabolismo , Colesterol 7-alfa-Hidroxilase/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Humanos , Hipercolesterolemia/enzimologia , Hipercolesterolemia/metabolismo , Fígado/metabolismo , Masculino , Ratos , Ratos Wistar
17.
BMC Complement Altern Med ; 17(1): 336, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28651578

RESUMO

BACKGROUND: Our present study was conducted to characterize the phytoconstituents present in the aqueous extract of Momordica charantia and evaluate the antimicrobial efficacy of silver-extract nanoparticles (Ag-Extract-NPs). METHODS: Silver nanoparticles (AgNPs) were prepared by reducing AgNO3; and NaBH4 served as reducing agent. After screening of phytochemicals; AgNPs and aqueous extract were mixed thoroughly and then coated by polyaniline. These NPs were characterized by using Visual inspection, UV spectroscopy, FTIR, SEM and TEM techniques. Antimicrobial activities were assessed against Staphylococcus aureus, Salmonella typhi, Escherichia coli and Pseudomonas aeruginosa. RESULTS: Aqueous extract of M. charantia fruits contain alkaloid, phenol, saponin etc. UV-Vis spectrum showed strong absorption peak around 408 nm. The presence of -CH, -NH, -COOH etc. stretching in FTIR spectrum of Ag-Extract-NPs endorsed that AgNPs were successfully capped by bio-compounds. SEM and TEM result revealed that synthesized NPs had particle size 78.5-220 nm. Ag-Extract-NPs showed 34.6 ± 0.8 mm zone of inhibition against E. coli compared to 25.6 ± 0.5 mm for ciprofloxacin. Maximum zone of inhibition for Ag-Extract-NPs were 24.8 ± 0.7 mm, 26.4 ± 0.4 mm, 7.4 ± 0.4 mm for S. aureus, P. aeruginosa and S. typhi. We found that Ag-Extract-NPs have much better antibacterial efficacy than AgNPs and M. charantia extract has individually. It is also noticed that gram negative bacteria (except S. typhi) are more susceptible to Ag-Extract-NPs than gram positive bacteria. CONCLUSION: Ag-Extract-NPs showed strong antibacterial activity. In order to make a reliable stand for mankind, further study is needed to consider determining the actual biochemical pathway by which AgNPs-extracts exert their antimicrobial effect.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Momordica charantia/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prata/farmacologia , Antibacterianos/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Momordica charantia/química , Nanopartículas/química , Nanopartículas/metabolismo , Extratos Vegetais/metabolismo , Prata/química , Prata/metabolismo
18.
Food Funct ; 8(5): 1749-1762, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28474032

RESUMO

Products derived from edible medicinal plants have been used for centuries to prevent, treat, and even cure multiple diseases. Momordica charantia L., widely cultivated around the world, is a typical one bred for vegetables and medicinal usage. All parts of M. charantia possess important medicinal properties, including antidiabetic, anticancer, hypotensive, anti-obesity, antimicrobial, antihyperlipidemic, antioxidant, anti-inflammatory, immuno-modulatory, anthelmintic, neuro-protective, as well as hepato-protective properties both in vitro and in vivo. This review summarizes the active components and medicinal properties of M. charantia, especially the activities and mechanisms of its anti-diabetic and anti-cancer properties. The anti-diabetic properties involve inhibiting intestinal α-glucosidase and glucose transport, protecting islet ß-cells, enhancing insulin secretion, increasing hepatic glucose disposal, decreasing gluconeogenesis, and even ameliorating insulin resistance. Moreover, the expressions of PPARs could also be activated and up-regulated. Meanwhile, its anticancer properties are mostly due to apoptosis, cell cycle arrest, and expression of serum factors associated with immunity. In this review, we aim to provide an overview of M. charantia and its benefits for development as a functional food.


Assuntos
Diabetes Mellitus Experimental/dietoterapia , Alimento Funcional/análise , Hipoglicemiantes/metabolismo , Momordica charantia/metabolismo , Extratos Vegetais/metabolismo , Verduras/metabolismo , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Humanos , Hipoglicemiantes/química , Momordica charantia/química , Verduras/química
19.
Oncol Rep ; 35(6): 3705-13, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27035419

RESUMO

Momordica anti-human immunodeficiency virus protein of 30 kDa (MAP30) has been shown to exhibit potent antitumor activities against several solid tumors. In the present investigation we demonstrated that MAP30 significantly inhibited the proliferation of acute myeloid leukemia (AML) HL-60 and THP-1 cell lines and patient AML cells through autophagy inhibition and apoptosis induction. Intriguingly, MAP30-induced cell death and apoptosis were partially rescued in combination with an autophagy activator rapamycin, and aggravated in combination with an autophagy inhibitor bafilomycin A1 in HL-60 cells, suggesting that autophagy is a pro-survival signal and its inhibition contributes to the induction of apoptosis in MAP30­induced cell death. Further mechanism analysis demonstrated that MAP30 enhanced p300, and C646, a selective inhibitor of p300, markedly promoted autophagy and partially rescued the MAP30-induced cell death in HL-60 cells and patient AML cells. Collectively, our findings suggest that apoptosis and autophagy act cooperatively to elicit MAP30-induced cell death and MAP30 may be a potential antitumor drug candidate against AML.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Leucemia Mieloide Aguda/patologia , Proteínas Inativadoras de Ribossomos Tipo 2/farmacologia , Benzoatos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HL-60 , Humanos , Macrolídeos/farmacologia , Momordica charantia/metabolismo , Nitrobenzenos , Extratos Vegetais/farmacologia , Pirazóis/farmacologia , Pirazolonas , Sirolimo/farmacologia , Fatores de Transcrição de p300-CBP/antagonistas & inibidores
20.
Sci Rep ; 6: 22419, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26926586

RESUMO

The antitumor activity of 3ß,7ß,25-trihydroxycucurbita-5,23(E)-dien-19-al (TCD), a triterpenoid isolated from wild bitter gourd, in breast cancer cells was investigated. TCD suppressed the proliferation of MCF-7 and MDA-MB-231 breast cancer cells with IC50 values at 72 h of 19 and 23 µM, respectively, via a PPARγ-independent manner. TCD induced cell apoptosis accompanied with pleiotrophic biological modulations including down-regulation of Akt-NF-κB signaling, up-regulation of p38 mitogen-activated protein kinase and p53, increased reactive oxygen species generation, inhibition of histone deacetylases protein expression, and cytoprotective autophagy. Together, these findings provided the translational value of TCD and wild bitter gourd as an antitumor agent for patients with breast cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Triterpenos/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Histona Desacetilases/biossíntese , Humanos , Células MCF-7 , Momordica charantia/metabolismo , NF-kappa B/metabolismo , PPAR gama/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Preparações de Plantas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA